 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DOutput Swing Includes Both Supply Rails
DLow Noise . . . 19 nV/Hz Typ at f = 1 kHz
DLow Input Bias Current ...1 pA Typ
DFully Specified for Both Single-Supply and
Split-Supply Operation
DVery Low Power ...34 µA Per Channel Typ
DCommon-Mode Input Voltage Range
Includes Negative Rail
DLow Input Offset Voltage
850 µV Max at TA = 25°C
DWide Supply Voltage Range
2.7 V to 8 V
DMacromodel Included
DAvailable in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TLV2252 and TLV2254 are dual and
quadruple low-voltage operational amplifiers from
Texas Instruments. Both devices exhibit rail-to-rail
output performance for increased dynamic range
in single- or split-supply applications. The
TLV225x family consumes only 34 µA of supply
current per channel. This micropower operation
makes them good choices for battery-powered
applications. This family is fully characterized at
3 V and 5 V and is optimized for low-voltage
applications. The noise performance has been
dramatically improved over previous generations
of CMOS amplifiers. The TLV225x has a noise
level of 19 nV / Hz at 1kHz, four times lower than
competitive micropower solutions.
The TLV225x, exhibiting high input impedance
and low noise, are excellent for small-signal
conditioning for high-impedance sources, such as
piezoelectric transducers. Because of the micro-
power dissipation levels combined with 3-V
operation, these devices work well in hand-held
monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is
available and has a maximum input offset voltage of 850 µV.
The TLV2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output
dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to
be used in a wider range of applications. For applications that require higher output drive and wider input voltage
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their
small size and low power consumption, make them ideal for high density, battery-powered equipment.
Copyright 1997−2006, Texas Instruments Incorporated
  !"#$%" & '##% & "! (')*%" %+
#"'%& "!"#$ %" &(!%"& (# %, %#$& "! & &%#'$%&
&%# -##%.+ #"'%" (#"&&/ "& "% &&#*. *'
%&%/ "! ** (#$%#&+
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Figure 1
− High-Level Output Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
VOH
| IOH | − High-Level Output Current − µA
2
1.5
1
00 200 400
2.5
3
600 800
TA = 25°C
TA = 85°C
0.5
TA = 125°C
VDD = 3 V
TA = −40°C
 (#"'%& "$(*% %" 010 ** (#$%#& # %&%
'*&& "%,#-& "%+  ** "%,# (#"'%& (#"'%"
(#"&&/ "& "% &&#*. *' %&%/ "! ** (#$%#&+
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252 AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
CERAMIC
FLATPACK
(U)
−40°C to 125°C
850 µV
TLV2252AID
TLV2252AIP
TLV2252AIPWLE
−40°C to 125°C
850 µV
1500 µV
TLV2252AID
TLV2252ID
TLV2252AIP
TLV2252IP
TLV2252AIPWLE
−40°C to 125°C
850 µV
TLV2252AQD
−40°C to 125°C
850 µV
1500 µV
TLV2252AQD
TLV2252QD
−55°C to 125°C850 µV
1500 µV
TLV2252AMFK
TLV2252MFK TLV2252AMJG
TLV2252MJG
TLV2252AMU
TLV2252MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2252CDR).
The PW package is available only left-end taped and reeled.
§Chips are tested at 25°C.
TLV2254 AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TSSOP
(PW)
CERAMIC
FLATPACK
(W)
−40°C to 125°C
850 µV
TLV2254AID
TLV2254AIN
TLV2254AIPWLE
−40°C to 125°C
850 µV
1500 µV
TLV2254AID
TLV2254ID
TLV2254AIN
TLV2254IN
TLV2254AIPWLE
−40°C to 125°C
850 µV
TLV2254AQD
−40°C to 125°C
850 µV
1500 µV
TLV2254AQD
TLV2254QD
−55°C to 125°C850 µV
1500 µV
TLV2254AMFK
TLV2254MFK TLV2254AMJ
TLV2254MJ
TLV2254AMW
TLV2254MW
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2254CDR).
The PW package is available only left-end taped and reeled.
§Chips are tested at 25°C.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252M, TLV2252AM . . . JG PACKAGE
(TOP VIEW)
TLV2252Q, TLV2252AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
NC
VCC +
2OUT
2IN
2IN +
NC
1OUT
1IN
1IN +
VCC/GND
1
2
3
4
5
10
9
8
7
6
TLV2252M, TLV2252AM ...U PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC VDD+
DD−/GND
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
TLV2254I, TLV2254AI, TLV2254Q, TLV2254AQ ...D OR N PACKAG
TLV2254M, TLV2254AM ...J OR W PACKAGE
(TOP VIEW)
TLV2254I, TLV2254AI . . . PW PACKAGE
(TOP VIEW)
114
8
7
4OUT
4IN
4IN +
VDD /GND
3IN +
3IN
3OUT
1OUT
1IN
1IN +
VDD+
2IN +
2IN
2OUT
3212019
910111213
4
5
6
7
8
18
17
16
15
14
4IN+
NC
VDD/GND
NC
3IN+
1IN+
NC
VDD+
NC
2IN+
1IN −
1OUT
NC
3OUT
3IN − 4IN −
2IN −
NC 4OUT
2OUT
TLV2252M, TLV2252AM . . . FK PACKAGE
(TOP VIEW) TLV2254M, TLV2254AM . . . FK PACKAGE
(TOP VIEW)
Template Release Date: 7−11−94
2
222
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
2
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
Q2 Q5 Q7 Q8 Q10 Q11
D1
Q17Q15Q13
Q4Q1
R5
C1
VDD+
IN+
IN
R3 R4 R1 R2
OUT
VDD/GND
R6
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLV2252 TLV2254
Transistors 38 76
Resistors 30 56
Diodes 9 18
Capacitors 3 6
Includes both amplifiers and all ESD, bias, and trim circuitry
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 16 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) VDD0.3 V to VDD+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current (at or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: I Suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q Suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M Suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C. . . . . . .
J, JG, U, and W packages 300°C. . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to VDD .
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below VDD − 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA
25
°
C
DERATING FACTOR
TA = 85
°
C
TA = 125
°
C
PACKAGE
TA 25 C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 85 C
POWER RATING
TA = 125 C
POWER RATING
D−8 725 mW 5.8 mW/°C377 mW 145 mW
D−14 950 mW 7.6 mW/°C 494 mW 190 mW
FK 1375 mW 11.0 mW/°C 715 mW 275 mW
J1375 mW 11.0 mW/°C 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 546 mW 210 mW
N1150 mW 9.2 mW/°C 598 mW 230 mW
P1000 mW 8.0 mW/°C 520 mW 200 mW
PW−8 525 mW 4.2 mW/°C 273 mW 105 mW
PW−14 700 mW 5.6 mW/°C 364 mW 140 mW
U700 mW 5.5 mW/°C 370 mW 150 mW
W700 mW 5.5 mW/°C370 mW 150 mW
recommended operating conditions
TLV225xI TLV225xQ TLV225xM
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD    2.7 8 2.7 8 2.7 8 V
Input voltage range, VIVDD VDD+1.3 VDD VDD+1.3 VDD VDD+1.3 V
Common-mode input voltage, VIC VDD VDD+1.3 VDD VDD+1.3 VDD VDD+1.3 V
Operating free-air temperature, TA−40 125 −40 125 −55 125 °C
NOTE 1: All voltage values, except differential voltages, are with respect to VDD .
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-term drift (see
Note 4)
VDD = 1.5 V,
V = 0,
25°C 0.003 0.003 µV/mo
VDD± = ±1.5 V
,
VO = 0,
VIC = 0,
RS = 50
25°C 0.5 60 0.5 60
IIO Input offset current
V
O
= 0,
IC
R
S
= 50
−40°C
to 85°C150 150 pA
Full range 1000 1000
25°C 1 60 1 60
IIB Input bias current −40°C
to 85°C150 150 pA
Full range 1000 1000
0
0.3
0
0.3
25°C
0
to
0.3
to
0
to
0.3
to
VICR
Common-mode input
voltage range
RS = 50
|VIO |≤5 mV
25 C
to
2
to
2.2
to
2
to
2.2
V
V
ICR
Common-mode input
voltage range
R
S
= 50
Ω, |
V
IO
| ≤
5 mV
0
0
V
voltage range
Full range
0
to
0
to
Full range
to
1.7
to
1.7
IOH = −20 µA 25°C 2.98 2.98
VOH
High-level output
voltage
IOH = −75 µA
25°C 2.9 2.9
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 2.8 2.8
V
voltage
IOH = −150 µA 25°C 2.8 2.8
VIC = 1.5 V,
IOL = 50 µA
25°C 10 10
V
IC
= 1.5 V,
I
OL
= 50
µ
A
Full range 80 80
VOL
Low-level output
voltage
VIC = 1.5 V,
IOL = 500 µA
25°C 100 100
mV
V
OL
Low-level output
voltage
V
IC
= 1.5 V,
I
OL
= 500
µ
A
Full range 150 150
mV
voltage
VIC = 1.5 V,
IOL = 1 A
25°C 200 200
V
IC
= 1.5 V,
I
OL
= 1
A
Full range 300 300
Large-signal differential
VIC = 1.5 V,
RL = 100 k
25°C 100 250 100 250
A
VD
Large-signal differentia
l
voltage amplification
VIC = 1.5 V,
VO = 1 V to 2 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
VO = 1 V to 2 V
RL = 1 M25°C 800 800
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 220 220
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
25°C 65 75 65 77
dB
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
VO = 1.5 V, RS = 50 Full range 60 60
dB
Full range is − 40°C to 125°C.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
kSVR
Supply voltage
rejection ratio
V
DD
= 2.7 V to 8 V,
V = V /2, No load
25°C 80 95 80 100
dB
k
SVR
rejection ratio
(VDD /VIO)
VDD = 2.7 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO = 1.5 V,
No load
25°C 68 125 68 125
µA
I
DD
Supply current
V
O
= 1.5 V,
No load
Full range 150 150 µ
A
Full range is − 40°C to 125°C.
TLV2252I operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
V = 1.1 V to 1.9 V,
25 C
0.07
0.1
0.07
0.1
V
O
= 1.1 V to 1.9 V,
R = 100 k ,
25°C0.07 0.1 0.07 0.1
SR Slew rate at unity gain
VO = 1.1 V to 1.9 V,
RL = 100 k,
CL = 100 pF
Full
0.05
0.05
V/µs
SR
Slew rate at unity gain
RL = 100 k ,
CL = 100 pF
Full
range 0.05 0.05
V/µs
Vn
Equivalent input noise
f = 10 Hz 25°C 35 35
nV/Hz
Vn
Equivalent input noise
voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input noise
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
V
VN(PP)
equivalent input noise
voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
Gain-bandwidth product
f = 1 kHz,
RL = 50 k
,
25°C
0.187
0.187
MHz
Gain-bandwidth produc
t
f = 1 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.187 0.187 MHz
BOM
Maximum output-swing
VO(PP) = 1 V,
AV = 1,
25°C
60
60
kHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 1 V,
RL = 50 k,
AV = 1,
CL = 100 pF25°C60 60 kHz
φmPhase margin at unity
gain R
L
= 50 k, C
L
= 100 pF25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is −40°C to 125°C.
Referenced to 1.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage long-
term drift (see Note 4) 25°C 0.003 0.003 µV/mo
VDD± =
±
2.5 V,
VIC = 0,
25°C 0.5 60 0.5 60
IIO Input offset current
VDD± = ±2.5 V,
VO = 0,
VIC = 0,
RS = 50 −40°C
to 85°C150 150 pA
Full range 1000 1000
25°C 1 60 1 60
IIB Input bias current −40°C
to 85°C150 150 pA
Full range 1000 1000
VICR
Common-mode input
|VIO |≤5 mV,
RS = 50
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
V
ICR
Common-mode input
voltage range |
V
IO
| ≤
5 mV,
R
S
= 50
Full range 0
to
3.5
0
to
3.5
V
IOH = −20 µA 25°C 4.98 4.98
VOH
High-level output voltage
IOH = −75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
High-level output voltage
I
OH
= −75
µ
A
Full range 4.8 4.8
V
IOH = −150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V,
IOL = 50 µA
25°C 0.01 0.01
V
IC
= 2.5 V,
I
OL
= 50
µ
A
Full range 0.06 0.06
VOL
Low-level output voltage
VIC = 2.5 V,
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
V
V
OL
Low-level output voltage
V
IC
= 2.5 V,
I
OL
= 500
µ
A
Full range 0.15 0.15
V
VIC = 2.5 V,
IOL = 1 A
25°C 0.2 0.3 0.2 0.3
V
IC
= 2.5 V,
I
OL
= 1
A
Full range 0.3 0.3
Large-signal differential
VIC = 2.5 V,
RL = 100 k
25°C 100 350 100 350
A
VD
Large-signal differential
voltage amplification
VIC = 2.5 V,
VO = 1 V to 4 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
VO = 1 V to 4 V
RL = 1 M25°C 1700 1700
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode rejection
ratio
VIC = 0 to 2.7 V,
V
O
= 2.5 V, 25°C 70 83 70 83
dB
CMRR
Common-mode rejection
ratio
VIC = 0 to 2.7 V,
RS = 50
VO = 2.5 V,
Full range 70 70
dB
Full range is − 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
kSVR
Supply voltage rejection
VDD = 4.4 V to 8 V,
25°C 80 95 80 95
dB
k
SVR
Supply voltage rejection
ratio (VDD/VIO)
VDD = 4.4 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO = 2.5 V,
No load
25°C 70 125 70 125
µA
I
DD
Supply current
V
O
= 2.5 V,
No load
Full range 150 150 µ
A
Full range is − 40°C to 125°C.
TLV2252I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2252I TLV2252AI
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
25°C
0.07
0.12
0.07
0.12
VO = 1.5 V to 3.5 V,
RL = 100 k,
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain VO = 1.5 V to 3.5 V
,
CL = 100 pF
RL = 100 k
,
Full
0.05
0.05
V/µs
SR
Slew rate at unity gain
CL = 100 pF
Full
range 0.05 0.05
V/µs
Vn
Equivalent input noise
f = 10 Hz 25°C 36 36
nV/Hz
Vn
Equivalent input noise
voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
VN(PP)
equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD + N
Total harmonic
VO = 0.5 V to 2.5 V
,
f = 20 kHz,
AV = 1
25°C
0.2% 0.2%
THD + N
Total harmonic
distortion plus noise
O
f = 20 kHz,
R
L
= 50 kAV = 10 25°C1% 1%
Gain-bandwidth
f = 50 kHz,
RL = 50 k
,
25°C
0.2
0.2
MHz
Gain-bandwidth
product
f = 50 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.2 0.2 MHz
BOM
Maximum output-swing
VO(PP) = 2 V,
‡,
AV = 1,
25°C
30
30
kHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 2 V,
R
L
= 50 k‡,
AV = 1,
C
L
= 100 pF25°C30 30 kHz
φmPhase margin at unity
gain
RL = 50 k
,
CL = 100 pF
25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is − 40°C to 125°C.
Referenced to 2.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature
coefficient of input
25
°
C
0.5
0.5
µV/°C
αVIO
coefficient of input
offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-term drift
(see Note 4)
VDD± =
±
1.5 V,
VIC = 0,
25°C 0.003 0.003 µV/mo
VDD± = ±1.5 V,
V
O
= 0,
VIC = 0,
R
S
= 50 25°C0.5 60 0.5 60
IIO Input offset current
VO = 0,
RS = 50
−40°C
to 85°C150 150 pA
Full range 1000 1000
25°C 1 60 1 60
IIB Input bias current −40°C
to 85°C150 150 pA
Full range 1000 1000
25°C
0
0.3
0
0.3
VICR
Common-mode input
RS = 50
Ω,
|VIO |≤5 mV
25
°
C
0
to 2
0.3
to 2.2
0
to 2
0.3
to 2.2
V
V
ICR
Common-mode input
voltage range
RS = 50
,|
V
IO
| ≤
5 mV
Full range
0
0
V
voltage range
Full range
0
to 1.7
0
to 1.7
IOH = −20 µA 25°C 2.98 2.98
VOH
High-level output
IOH = −75 µA
25°C 2.9 2.9
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 2.8 2.8
V
voltage
IOH = −150 µA 25°C 2.8 2.8
VIC = 1.5 V,
IOL = 50 µA
25°C 10 10
V
IC
= 1.5 V,
I
OL
= 50
µ
A
Full range 80 80
VOL
Low-level output
VIC = 1.5 V,
IOL = 500 µA
25°C 100 100
mV
V
OL
Low-level output
voltage
V
IC
= 1.5 V,
I
OL
= 500
µ
A
Full range 150 150
mV
voltage
VIC = 1.5 V,
IOL = 1 A
25°C 200 200
V
IC
= 1.5 V,
I
OL
= 1
A
Full range 300 300
Large-signal
VIC = 1.5 V,
RL = 100 k
25°C 100 225 100 225
A
VD
Large-signal
differential voltage VIC = 1.5 V,
VO = 1 V to 2 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
differential voltage
amplification
VO = 1 V to 2 V
RL = 1 M25°C 800 800
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 220 220
CMRR
Common-mode V
IC
= 0 to 1.7 V
,
VO = 1.5 V,
25°C 65 75 65 77
dB
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
RS = 50
VO = 1.5 V,
Full range 60 60
dB
Full range is − 40°C to 125°C.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
kSVR
Supply voltage
rejection ratio
VDD = 2.7 V to 8 V,
25°C 80 95 80 100
dB
k
SVR
rejection ratio
(VDD/VIO)
VDD = 2.7 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO = 1.5 V,
No load
25°C 135 250 135 250
µA
I
DD
Supply current
(four amplifiers)
V
O
= 1.5 V,
No load
Full range 300 300 µ
A
Full range is − 40°C to 125°C.
TLV2254I operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
VO = 0.7 V to 1.7 V,
25 C
0.07
0.1
0.07
0.1
SR
Slew rate at unity gain
V
O
= 0.7 V to 1.7 V,
RL = 100 k,
25°C0.07 0.1 0.07 0.1
V/ s
SR Slew rate at unity gain
O
R
L
= 100 k
,
C = 100 pF
Full range
0.05
0.05
V/µs
SR
Slew rate at unity gain
RL = 100 k ,
C
L
= 100 pF
Full range 0.05 0.05
V/µs
Vn
Equivalent input noise voltage
f = 10 Hz 25°C 35 35
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
V
VN(PP)
Peak-to-peak equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise current 25°C 0.6 0.6 fA/Hz
Gain-bandwidth product
f = 1 kHz,
RL = 50 k,
25°C
0.187
0.187
MHz
Gain-bandwidth product
R
L
= 50 k
,
CL = 100 pF25°C 0.187 0.187 MHz
BOM
Maximum output-swing
VO(PP) = 1 V,
A
V
= 1,
25°C
60
60
kHz
BOM
Maximum output-swing
bandwidth
AV = 1,
RL = 50 k,
CL = 100 pF25°C 60 60 kHz
φmPhase margin at unity gain R
L
= 50 k,
25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF25°C 15 15 dB
Full range is − 40°C to 85°C.
Referenced to 1.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature
coefficient of input
25
°
C
0.5
0.5
µV/°C
αVIO
coefficient of input
offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-term drift
(see Note 4)
VDD± =
±
2.5 V,
VIC = 0,
25°C 0.003 0.003 µV/mo
VDD± = ±2.5 V,
V
O
= 0,
VIC = 0,
R
S
= 50 25°C0.5 60 0.5 60
IIO Input offset current
VO = 0,
RS = 50
−40°C
to 85°C150 150 pA
Full range 1000 1000
25°C 1 60 1 60
IIB Input bias current −40°C
to 85°C150 150 pA
Full range 1000 1000
25°C
0
0.3
0
0.3
VICR
Common-mode input
|VIO |≤5 mV,
RS = 50
25
°
C
0
to 4
0.3
to 4.2
0
to 4
0.3
to 4.2
V
V
ICR
Common-mode input
voltage range |
V
IO
| ≤
5 mV,
R
S
= 50
Full range
0
0
V
voltage range
Full range
0
to 3.5
0
to 3.5
IOH = −20 µA 25°C 4.98 4.98
VOH
High-level output
IOH = −75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 4.8 4.8
V
voltage
IOH = −150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V,
IOL = 50 µA
25°C 0.01 0.01
V
IC
= 2.5 V,
I
OL
= 50
µ
A
Full range 0.06 0.06
VOL
Low-level output
VIC = 2.5 V,
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
V
V
OL
Low-level output
voltage
V
IC
= 2.5 V,
I
OL
= 500
µ
A
Full range 0.15 0.15
V
voltage
VIC = 2.5 V,
IOL = 1 A
25°C 0.2 0.3 0.2 0.3
V
IC
= 2.5 V,
I
OL
= 1
A
Full range 0.3 0.3
Large-signal
VIC = 2.5 V,
RL = 100 k
25°C 100 350 100 350
A
VD
Large-signal
differential voltage VIC = 2.5 V,
VO = 1 V to 4 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
differential voltage
amplification
V
O
= 1 V to 4 V
RL = 1 M25°C 1700 1700
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode
VIC = 0 to 2.7 V,
VO = 2.5 V,
25°C 70 83 70 83
dB
CMRR
Common-mode
rejection ratio
VIC = 0 to 2.7 V,
RS = 50
VO = 2.5 V,
Full range 70 70 dB
Full range is − 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
kSVR
Supply voltage
rejection ratio
VDD = 4.4 V to 8 V,
25°C 80 95 80 95
dB
k
SVR
rejection ratio
(VDD/VIO)
VDD = 4.4 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO = 2.5 V,
No load
25°C 140 250 140 250
A
IDD
Supply current
(four amplifiers) VO = 2.5 V, No load Full range 300 300 µA
Full range is − 40°C to 125°C.
TLV2254I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2254I TLV2254AI
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
Slew rate at unity
VO = 1.4 V to 2.6 V,
RL = 100 k,
25°C0.07 0.12 0.07 0.12
SR Slew rate at unity
gain VO = 1.4 V to 2.6 V,
CL = 100 pFRL = 100 k
,
Full
range 0.05 0.05 V/µs
Vn
Equivalent input
f = 10 Hz 25°C 36 36
nV/Hz
Vn
Equivalent input
noise voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
VN(PP)
equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD + N
Total harmonic
distortion plus
VO = 0.5 V to 2.5 V,
f = 20 kHz,
AV = 1
25°C
0.2% 0.2%
THD + N
distortion plus
noise
O
f = 20 kHz,
R
L
= 50 kAV = 10 25°C1% 1%
Gain-bandwidth
f = 50 kHz,
RL = 50 k
,
25°C
0.2
0.2
MHz
Gain-bandwidth
product
f = 50 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.2 0.2 MHz
BOM
Maximum output-
VO(PP) = 2 V,
AV = 1,
25°C
30
30
kHz
BOM
Maximum output-
swing bandwidth
VO(PP) = 2 V,
R
L
= 50 k,
AV = 1,
C
L
= 100 pF25°C30 30 kHz
φmPhase margin at
unity gain R
L
= 50 k, C
L
= 100 pF25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is − 40°C to 125°C.
Referenced to 2.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLV2252Q,
TLV2252M TLV2252AQ,
TLV2252AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±1.5 V
,
VO = 0, VIC = 0,
RS = 50 25°C0.003 0.003 µV/mo
IIO
Input offset current
25°C 0.5 60 0.5 60
pA
I
IO
Input offset current
125°C 1000 1000
pA
IIB
Input bias current
25°C 1 60 1 60
pA
I
IB
Input bias current
125°C 1000 1000
pA
0
0.3
0
0.3
25°C
0
to
0.3
to
0
to
0.3
to
VICR
Common-mode input
voltage range
RS = 50
|VIO |≤5 mV
25 C
to
2
to
2.2
to
2
to
2.2
V
V
ICR
Common-mode input
voltage range
R
S
= 50
Ω, |
V
IO
| ≤
5 mV
0
0
V
voltage range
Full range
0
to
0
to
Full range
to
1.7
to
1.7
IOH = −20 µA 25°C 2.98 2.98
VOH
High-level output
voltage
IOH = −75 µA
25°C 2.9 2.9
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 2.8 2.8
V
voltage
IOH = −150 µA 25°C 2.8 2.8
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
Low-level output
VIC = 1.5 V,
IOL = 500 µA
25°C 100 150 100 150
V
OL
Low-level output
voltage
V
IC
= 1.5 V,
I
OL
= 500
µ
A
Full range 165 165 mV
VOL
voltage
VIC = 1.5 V,
IOL = 1 A
25°C 200 300 200 300
mV
V
IC
= 1.5 V,
I
OL
= 1
A
Full range 300 300
Large-signal differential
VIC = 1.5 V,
RL = 100 k
25°C 100 250 100 250
A
VD
Large-signal differential
voltage amplification
VIC = 1.5 V,
VO = 1 V to 2 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
VO = 1 V to 2 V
RL = 1 M25°C 800 800
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 220 220
CMRR
Common-mode rejection
ratio
VIC = 0 to 1.7 V,
V
O
= 1.5 V, 25°C 65 75 65 77
dB
CMRR
Common-mode rejection
ratio
VIC = 0 to 1.7 V,
RS = 50
VO = 1.5 V,
Full range 60 60
dB
kSVR
Supply voltage rejection
ratio ( V /V)
V
DD
= 2.7 V to 8 V,
V = V /2, No load
25°C 80 95 80 100
dB
k
SVR
Supply voltage rejection
ratio (VDD /VIO)
VDD = 2.7 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO = 1.5 V,
No load
25°C 68 125 68 125
µA
I
DD
Supply current
V
O
= 1.5 V,
No load
Full range 150 150 µ
A
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2252Q,
TLV2252M TLV2252AQ,
TLV2252AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
25°C
0.07
0.1
0.07
0.1
VO = 0.8 V to 1.4 V,
RL = 100 k,
25°C 0.07 0.1 0.07 0.1
SR Slew rate at unity gain VO = 0.8 V to 1.4 V
,
CL = 100 pF
RL = 100 k
,
Full
0.05
0.05
V/µs
SR
Slew rate at unity gain
CL = 100 pF
Full
range 0.05 0.05
V/µs
Vn
Equivalent input noise
f = 10 Hz 25°C 35 35
nV/Hz
Vn
Equivalent input noise
voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
V
VN(PP
)
equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
Gain-bandwidth
f = 1 kHz,
RL = 50 k
,
25°C
0.187
0.187
MHz
Gain-bandwidth
product
f = 1 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.187 0.187 MHz
BOM
Maximum
output-swing
VO(PP) = 1 V,
AV = 1,
25°C
60
60
kHz
BOM
output-swing
bandwidth
VO(PP) = 1 V,
RL = 50 k,
AV = 1,
CL = 100 pF25°C60 60 kHz
φmPhase margin at unity
gain R
L
= 50 k, C
L
= 100 pF25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 1.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLV2252Q,
TLV2252M TLV2252AQ,
TLV2252AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 85°C
0.5
0.5
µ
V/
°
C
Input offset voltage long-
term drift (see Note 4) VDD± = ±2.5 V
,
V
O
= 0, VIC = 0,
R
S
= 50 25°C 0.003 0.003 µV/mo
IIO
Input offset current
VO = 0,
RS = 50
25°C 0.5 60 0.5 60
pA
I
IO
Input offset current
125°C 1000 1000
pA
IIB
Input bias current
25°C 1 60 1 60
pA
I
IB
Input bias current
125°C 1000 1000
pA
VICR
Common-mode input
|VIO |≤5 mV,
RS = 50
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
V
ICR
Common-mode input
voltage range |
V
IO
| ≤
5 mV,
R
S
= 50
Full range 0
to
3.5
0
to
3.5
V
IOH = −20 µA 25°C 4.98 4.98
VOH
High-level output voltage
IOH = −75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
High-level output voltage
I
OH
= −75
µ
A
Full range 4.8 4.8
V
IOH = −150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
VIC = 2.5 V,
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
V
OL
Low-level output voltage
V
IC
= 2.5 V,
I
OL
= 500
µ
A
Full range 0.15 0.15 V
VOL
Low-level output voltage
VIC = 2.5 V,
IOL = 1 A
25°C 0.2 0.3 0.2 0.3
V
V
IC
= 2.5 V,
I
OL
= 1
A
Full range 0.3 0.3
Large-signal differential
VIC = 2.5 V,
RL = 100 k
25°C 100 350 100 350
A
VD
Large-signal differential
voltage amplification
VIC = 2.5 V,
VO = 1 V to 4 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
VO = 1 V to 4 V
RL = 1 M25°C 1700 1700
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode rejection
VIC = 0 to 2.7 V,
25°C 70 83 70 83
dB
CMRR
Common-mode rejection
ratio
VIC = 0 to 2.7 V,
VO = 2.5 V, RS = 50 Full range 70 70
dB
kSVR
Supply voltage rejection
VDD = 4.4 V to 8 V,
25°C 80 95 80 95
dB
k
SVR
Supply voltage rejection
ratio (VDD/VIO)
VDD = 4.4 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2252Q,
TLV2252M TLV2252AQ,
TLV2252AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
IDD
Supply current
VO = 2.5 V,
No load
25°C 70 125 70 125
µA
I
DD
Supply current
V
O
= 2.5 V,
No load
Full range 150 150 µ
A
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2252Q,
TLV2252M TLV2252AQ,
TLV2252AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
V = 1.25 V to 2.75 V,
25 C
0.07
0.12
0.07
0.12
V
O
= 1.25 V to 2.75 V,
25°C0.07 0.12 0.07 0.12
SR Slew rate at unity gain
VO = 1.25 V to 2.75 V,
RL = 100 k,
C = 100 pF
Full
0.05
0.05
V/µs
SR
Slew rate at unity gain
RL = 100 k ,
CL = 100 pF
Full
range 0.05 0.05
V/µs
Vn
Equivalent input noise
f = 10 Hz 25°C 36 36
nV/Hz
Vn
Equivalent input noise
voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
VN(PP)
equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD + N
Total harmonic
VO = 0.5 V to 2.5 V
,
f = 20 kHz,
AV = 1
25°C
0.2% 0.2%
THD + N
Total harmonic
distortion plus noise
O
f = 20 kHz,
R
L
= 50 kAV = 10 25°C1% 1%
Gain-bandwidth product
f = 50 kHz,
RL = 50 k
,
25°C
0.2
0.2
MHz
Gain-bandwidth produc
t
f = 50 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.2 0.2 MHz
BOM
Maximum output-swing
VO(PP) = 2 V,
AV = 1,
25°C
30
30
kHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 2 V,
R
L
= 50 k,
AV = 1,
C
L
= 100 pF25°C30 30 kHz
φmPhase margin at unity
gain
RL = 50 k
,
CL = 100 pF
25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 2.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 125°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-
term drift (see Note 4)
VDD± = ±1.5 V
,
VO = 0, VIC = 0,
RS = 50 25°C0.003 0.003 µV/mo
IIO
Input offset current
25°C 0.5 60 0.5 60
pA
I
IO
Input offset current
125°C 1000 1000
pA
IIB
Input bias current
25°C 1 60 1 60
pA
I
IB
Input bias current
125°C 1000 1000
pA
0
0.3
0
0.3
25°C
0
to
0.3
to
0
to
0.3
to
VICR
Common-mode input
RS = 50
|VIO |≤5 mV
25 C
to
2
to
2.2
to
2
to
2.2
V
V
ICR
Common-mode input
voltage range
R
S
= 50
Ω, |
V
IO
| ≤
5 mV
0
0
V
voltage range
Full range
0
to
0
to
Full range
to
1.7
to
1.7
IOH = −20 µA 25°C 2.98 2.98
VOH
High-level output
IOH = −75 µA
25°C 2.9 2.9
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 2.8 2.8
V
voltage
IOH = −150 µA 25°C 2.8 2.8
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
Low-level output
VIC = 1.5 V,
IOL = 500 µA
25°C 100 150 100 150
V
OL
Low-level output
voltage
V
IC
= 1.5 V,
I
OL
= 500
µ
A
Full range 165 165 mV
VOL
voltage
VIC = 1.5 V,
IOL = 1 A
25°C 200 300 200 300
mV
V
IC
= 1.5 V,
I
OL
= 1
A
Full range 300 300
Large-signal differential
VIC = 1.5 V,
RL = 100 k
25°C 100 225 100 225
A
VD
Large-signal differential
voltage amplification
VIC = 1.5 V,
VO = 1 V to 2 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
V
O
= 1 V to 2 V
RL = 1 M25°C 800 800
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 220 220
CMRR
Common-mode
VIC = 0 to 1.7 V,
VO = 1.5 V,
25°C 65 75 65 77
dB
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
RS = 50
VO = 1.5 V,
Full range 60 60
dB
kSVR
Supply voltage
rejection ratio
V
DD
= 2.7 V to 8 V, 25°C 80 95 80 100
dB
k
SVR
rejection ratio
(VDD/VIO)
VDD = 2.7 V to 8 V,
VIC = VDD/2, No load Full range 80 80
dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
PARAMETER
TEST CONDITIONS
TA
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
IDD
Supply current
VO = 1.5 V,
No load
25°C 135 250 135 250
µA
I
DD
Supply current
(four amplifiers)
V
O
= 1.5 V,
No load
Full range 300 300 µ
A
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
SR
Slew rate at unity gain
VO = 0.5 V to 1.7 V,
RL = 100 k,
25°C0.07 0.1 0.07 0.1
V/µs
SR
Slew rate at unity gain
R
L
= 100 k
,
CL = 100 pF
Full range
0.05
0.05
V/
µ
s
L
CL = 100 pF
Full range 0.05 0.05
Vn
Equivalent input noise voltage
f = 10 Hz 25°C 35 35
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
V
VN(PP)
Peak-to-peak equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input noise current 25°C 0.6 0.6 fA/Hz
Gain-bandwidth product
f = 1 kHz,
RL = 50 k,
25°C
0.187
0.187
MHz
Gain-bandwidth product
R
L
= 50 k
,
CL = 100 pF25°C 0.187 0.187 MHz
BOM
Maximum output-swing
VO(PP) = 1 V,
A
V
= 1,
25°C
60
60
kHz
BOM
Maximum output-swing
bandwidth
AV = 1,
RL = 50 k,
CL = 100 pF25°C 60 60 kHz
φmPhase margin at unity gain R
L
= 50 k,
25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF25°C 15 15 dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 1.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 200 1500 200 850
µV
V
IO
Input offset voltage
Full range 1750 1000 µ
V
αVIO
Temperature coefficient
25
°
C
0.5
0.5
µV/°C
αVIO
Temperature coefficient
of input offset voltage
25 C
to 125°C
0.5
0.5
µ
V/
°
C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±2.5 V
,
VO = 0, VIC = 0,
RS = 50 25°C0.003 0.003 µV/mo
IIO
Input offset current
25°C 0.5 60 0.5 60
pA
I
IO
Input offset current
125°C 1000 1000
pA
IIB
Input bias current
25°C 1 60 1 60
pA
I
IB
Input bias current
125°C 1000 1000
pA
0
0.3
0
0.3
25°C
0
to
0.3
to
0
to
0.3
to
VICR
Common-mode input
|VIO |≤5 mV,
RS = 50
25 C
to
4
to
4.2
to
4
to
4.2
V
V
ICR
Common-mode input
voltage range |
V
IO
| ≤
5 mV,
R
S
= 50
0
0
V
voltage range
Full range
0
to
0
to
Full range
to
3.5
to
3.5
IOH = −20 µA 25°C 4.98 4.98
VOH
High-level output
IOH = −75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
High-level output
voltage
I
OH
= −75
µ
A
Full range 4.8 4.8
V
voltage
IOH = −150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low-level output
VIC = 2.5 V,
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
V
OL
Low-level output
voltage
V
IC
= 2.5 V,
I
OL
= 500
µ
A
Full range 0.15 0.15 V
VOL
voltage
VIC = 2.5 V,
IOL = 1 A
25°C 0.2 0.3 0.2 0.3
V
V
IC
= 2.5 V,
I
OL
= 1
A
Full range 0.3 0.3
Large-signal differential
VIC = 2.5 V,
RL = 100 k
25°C 100 350 100 350
A
VD
Large-signal differentia
l
voltage amplification
VIC = 2.5 V,
VO = 1 V to 4 V
R
L
= 100 k
Full range 10 10 V/mV
AVD
voltage amplification
V
O
= 1 V to 4 V
RL = 1 M25°C 1700 1700
V/mV
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode
VIC = 0 to 2.7 V,
VO = 2.5 V,
25°C 70 83 70 83
dB
CMRR
Common-mode
rejection ratio
VIC = 0 to 2.7 V,
R
S
= 50
VO = 2.5 V,
Full range 70 70
dB
kSVR
Supply voltage
rejection ratio
VDD = 4.4 V to 8 V,
25°C 80 95 80 95
dB
kSVR
rejection ratio
(V
DD
/V
IO
)
VDD = 4.4 V to 8 V,
VIC = VDD/2, No load Full range 80 80 dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER TEST CONDITIONS T
A
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
IDD
Supply current
VO = 2.5 V,
No load
25°C 140 250 140 250
A
IDD
Supply current
(four amplifiers) VO = 2.5 V, No load Full range 300 300 µA
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2254Q,
TLV2254M TLV2254AQ,
TLV2254AM
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX MIN TYP MAX
UNIT
Slew rate at unity
VO = 0.5 V to 3.5 V,
RL = 100 k,
25°C0.07 0.12 0.07 0.12
SR
Slew rate at unity
gain
V
O
= 0.5 V to 3.5 V,
CL = 100 pF
R
L
= 100 k
,
Full
0.05
0.05
V/µs
SR
gain
CL = 100 pF
Full
range 0.05 0.05
V/µs
Vn
Equivalent input
f = 10 Hz 25°C 36 36
nV/Hz
Vn
Equivalent input
noise voltage f = 1 kHz 25°C 19 19
nV/Hz
VN(PP)
Peak-to-peak
equivalent input
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
VN(PP)
equivalent input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µV
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD + N
Total harmonic
distortion plus
VO = 0.5 V to 2.5 V,
f = 20 kHz,
AV = 1
25°C
0.2% 0.2%
THD + N
distortion plus
noise
O
f = 20 kHz,
R
L
= 50 kAV = 10 25°C1% 1%
Gain-bandwidth
f = 50 kHz,
RL = 50 k
,
25°C
0.2
0.2
MHz
Gain-bandwidth
product
f = 50 kHz,
C
L
= 100 pF
RL = 50 k,
25°C 0.2 0.2 MHz
BOM
Maximum output-
VO(PP) = 2 V,
AV = 1,
25°C
30
30
kHz
BOM
Maximum output-
swing bandwidth
VO(PP) = 2 V,
R
L
= 50 k,
AV = 1,
C
L
= 100 pF25°C30 30 kHz
φmPhase margin at
unity gain
RL = 50 k
,
CL = 100 pF
25°C 63°63°
Gain margin
RL = 50 k,
CL = 100 pF
25°C 15 15 dB
Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.
Referenced to 2.5 V
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution
vs Common-mode voltage 2 − 5
6, 7
αVIO Input offset voltage temperature coefficient Distribution 8 − 11
IIB/IIO Input bias and input offset currents vs Free-air temperature 12
VIInput voltage vs Supply voltage
vs Free-air temperature 13
14
VOH High-level output voltage vs High-level output current 15, 18
VOL Low-level output voltage vs Low-level output current 16, 17, 19
VO(PP) Maximum peak-to-peak output voltage vs Frequency 20
IOS Short-circuit output current vs Supply voltage
vs Free-air temperature 21
22
VID Differential input voltage vs Output voltage 23, 24
AVD Differential voltage amplification vs Load resistance 25
AVD Large-signal differential voltage amplification vs Frequency
vs Free-air temperature 26, 27
28, 29
zoOutput impedance vs Frequency 30, 31
CMRR Common-mode rejection ratio vs Frequency
vs Free-air temperature 32
33
kSVR Supply-voltage rejection ratio vs Frequency
vs Free-air temperature 34, 35
36
IDD Supply current vs Supply voltage 37, 38
SR Slew rate vs Load capacitance
vs Free-air temperature 39
40
VOInverting large-signal pulse response 41, 42
VOVoltage-follower large-signal pulse response 43, 44
VOInverting small-signal pulse response 45, 46
VOVoltage-follower small-signal pulse response 47, 48
VnEquivalent input noise voltage vs Frequency 49, 50
Input noise voltage Over a 10-second period 51
Integrated noise voltage vs Frequency 52
THD + N Total harmonic distortion plus noise vs Frequency 53
Gain-bandwidth product vs Supply voltage
vs Free-air temperature 54
55
φmPhase margin vs Frequency
vs Load capacitance 26, 27
56
Gain margin vs Load capacitance 57
B1Unity-gain bandwidth vs Load capacitance 58
Overestimation of phase margin vs Load capacitance 59
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
Precentage of Amplifiers − %
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
VIO − Input Offset Voltage − mV
10
5
0
20
15
1.6 0.8 0 0.8 1.6
1020 Amplifiers From 1 Wafer Lot
VDD = ±1.5 V
TA = 25°C
Figure 3
Precentage of Amplifiers − %
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
VIO − Input Offset Voltage − mV
10
5
0
20
15
1.6 0.8 0 0.8 1.6
1020 Amplifiers From 1 Wafer Lot
VDD = ±2.5 V
TA = 25°C
Figure 4
Percentage of Amplifiers − %
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
VIO − Input Offset Voltage − mV
15
10
5
0
20
35
1.6 0.8 0 0.8 1.6
25
30
682 Amplifiers From 1 Wafer Lot
VDD±= ±1.5 V
TA = 25°C
Figure 5
Percentage of Amplifiers − %
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
VIO − Input Offset Voltage − mV
20
10
5
0
25
35
1.6 0.8 0 0.8 1.6
682 Amplifiers From 1 Wafer Lot
VDD±= ±2.5 V
TA = 25°C
15
30
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
− Input Offset Voltage − mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁ
ÁÁ
VIO
VIC − Common-Mode Input Voltage − V
1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
−1−1 0 1 2
VDD = 3 V
RS = 50
TA = 25°C
3
Figure 7
− Input Offset Voltage − mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁ
ÁÁ
VIO
VIC − Common-Mode Input Voltage − V
1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
−1
1012345
VDD = 5 V
RS = 50
TA = 25°C
Figure 8
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers − %
αVIO − Temperature Coefficient µV/°C
15
10
5
0
20
25
−2 −1 0 1 2
62 Amplifiers From 1 Wafer Lot
VDD± = ±1.5 V
P Package
TA = 25°C to 85°C
Figure 9
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers − %
αVIO − Temperature Coefficient µV/°C
15
10
5
0
20
25
−2 −1 0 1 2
62 Amplifiers From 1 Wafer Lot
VDD± = ±2.5 V
P Package
TA = 25°C to 85°C
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers − %
αVIO − Temperature Coefficient
of Input Offset Voltage − µV/°C
10
5
0
20
15
25
−2 −1 0 1 2
62 Amplifiers From 1 Wafer Lot
VDD± = ±1.5 V
P Package
TA = 25°C to 85°C
Figure 11
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers − %
αVIO − Temperature Coefficient
of Input Offset Voltage − µV/°C
10
5
0
20
15
25
−2 −1 0 1 2
62 Amplifiers From 1 Wafer Lot
VDD± = ±2.5 V
P Package
TA = 25°C to 85°C
Figure 12
IIB and IIO − Input Bias and Input Offset Currents − pA
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
IIB IIO
TA − Free-Air Temperature − °C
20
15
25 45 65
25
30
35
85
IIB IIO
10
5
0105 125
VDD± = ±2.5 V
VIC = 0
VO = 0
RS = 50
Figure 13
0
2
1 1.5 2 2.5
− Input Voltage − V
1
0.5
1.5
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
2.5
3 3.5 4
0.5
−1
1.5
−2
2.5
RS = 50
TA = 25°C
| VIO | 5 mV
ÁÁ
ÁÁ
VI
| VDD± | − Supply Voltage − V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
− Input Voltage − V
INPUT VOLTAGE†‡
vs
FREE-AIR TEMPERATURE
ÁÁ
VI
TA − Free-Air Temperature − °C
2
1
0
3
4
5
−1
55 35 15 5 25 45 65 85
| VIO | 5 mV
VDD = 5 V
105 125
Figure 15
− High-Level Output Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOH
| IOH | − High-Level Output Current − µA
2
1.5
1
00 200 400
2.5
3
600 800
VDD = 3 V
TA = −40°C
TA = 25°C
TA = 85°C
0.5
TA = 125°C
Figure 16
0.6
0.4
0.2
00123
− Low-Level Output Voltage − V
0.8
1
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
45
ÁÁ
ÁÁ
VOL
IOL − Low-Level Output Current − mA
VDD = 3 V
TA = 25°C
VIC = 0
VIC = 0.75 V
VIC = 1.5 V
Figure 17
− Low-Level Output Voltage − V
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOL
IOL − Low-Level Output Current − mA
0.4
0.2
1.2
0012 3
0.8
0.6
1
1.4
45
TA = 85°C
TA = − 40°C
TA = 25°C
TA = 125°C
VDD = 3 V
VIC = 1.5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
− High-Level Output Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
VOH
| IOH | − High-Level Output Current − µA
3
2
1
00 200 400
4
5
600 800
VDD = 5 V
TA = −40°C
TA = 25°C
TA = 125°C
TA = 85°C
Figure 19
− Low-Level Output Voltage − V
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
VOL
IOL − Low-Level Output Current − mA
0.6
0.4
0.2
001 2 3
1
1.2
1.4
456
0.8
VDD = 5 V
VIC = 2.5 V
TA = −40°C
TA = 85°C
TA = 25°C
TA = 125°C
Figure 20
− Maximum Peak-to-Peak Output Voltage − V
f − Frequency − Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VO(PP)
4
2
1
5
3
0102103104105
RI = 50 k
TA = 25°C
VDD = 5 V
VDD = 3 V
Figure 21
− Short-Circuit Output Current − mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
IOS
VDD − Supply Voltage − V
5
3
1
2345
7
8
10
678
9
6
4
2
0
−1
VID = −100 mV
VID = 100 mV
VO = VDD/2
TA = 25°C
VIC = VDD/2
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
− Short-Circuit Output Current − mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS
TA − Free-Air Temperature − °C
11
10
9
8
7
6
5
4
3
2
1
0
−1 50 25 0 25 50 75 100
VID = −100 mV
VID = 100 mV
VO = 2.5 V
VDD = ±5 V
75 125
Figure 23
0
800
0 0.5 1 1.5
− Differential Input Voltage −
400
200
600
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
2 2.5 3
200
400
600
800
1000
VDD = 3 V
RI = 50 k
VIC = 1.5 V
TA = 25°C
VID Vµ
VO − Output Voltage − V
Figure 24
0
800
01 3
− Differential Input Voltage −
400
200
600
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
245
200
400
600
800
1000
VID Vµ
VO − Output Voltage − V
VDD = 5 V
VIC = 2.5 V
RL = 50 k
TA = 25°C
Figure 25
DIFFERENTIAL VOLTAGE AMPLIFICATION†‡
vs
LOAD RESISTANCE
RL − Load Resistance − k
− Differential Voltage Amplification − V/mV
ÁÁ
ÁÁ
AVD
110
1102103
102
101
1
103
104VO(PP) = 2 V
TA = 25°C
VDD = 5 V
VDD = 3 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
om − Phase Margin
φm
f − Frequency − Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification − dB
20
80
60
40
0
−20
−40
103104105106107
180°
135°
90°
45°
0°
−45°
−90°
Gain
VDD = 5 V
RL = 50 k
CL= 100 pF
TA = 25°C
Phase Margin
Figure 26
om − Phase Margin
φm
f − Frequency − Hz
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification − dB
20
80
60
40
0
−20
−40
103104105106107
180°
135°
90°
45°
0°
−45°
−90°
Gain
VDD = 3 V
RL= 50 k
CL= 100 pF
TA = 25°C
Phase Margin
Figure 27
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 28
LARGE-SIGNAL DIFFERENTIAL†‡
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
TA − Free-Air Temperature − °C
− Large-Signal Differential Voltage
AVD Amplification − V/mV
50 25 0 25 50 75 100
RL = 50 k
RL = 1 M
104
103
102
101
VDD = 3 V
VIC = 1.5 V
VO = 0.5 V to 2.5 V
75 125
Figure 29
LARGE-SIGNAL DIFFERENTIAL†‡
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
TA − Free-Air Temperature − °C
− Large-Signal Differential Voltage
AVD Amplification − V/mV
50 25 0 25 50 75 100 125
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 50 k
RL = 1 M
104
103
102
101
−75
Figure 30
− Output Impedance −
f− Frequency − Hz
OUTPUT IMPEDANCE
vs
FREQUENCY
zo
10
1
0.1
1000
100
102103104105106
AV = 100
AV = 10
AV = 1
VDD = 3 V
TA = 25°C
Figure 31
− Output Impedance −
f− Frequency − Hz
OUTPUT IMPEDANCE
vs
FREQUENCY
zo
10
1
0.1
1000
100
102103104105106
AV = 100
AV = 10
AV = 1
VDD = 5 V
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 32
CMRR − Common-Mode Rejection Ratio − dB
f − Frequency − Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
80
40
20
0
100
60
101102103104105106
VDD = 5 V
VIC = 2.5 V
VDD = 3 V
VIC = 1.5 V
TA = 25°C
Figure 33
CMMR − Common-Mode Rejection Ratio − dB
COMMON-MODE REJECTION RATIO†‡
vs
FREE-AIR TEMPERATURE
TA − Free-Air Temperature − °C
86
82
80
92
84
90
88
94
VDD = 5 V
VDD = 3 V
− 50 − 25 0 25 50 75 100− 75 125
Figure 34
− Supply-Voltage Rejection Ratio − dB
f − Frequency − Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
kSVR
60
40
20
100
80
0
−20
kSVR
kSVR+
101102103104105106
VDD = 3 V
TA = 25°C
Figure 35
− Supply-Voltage Rejection Ratio − dB
f − Frequency − Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
kSVR
100
80
60
40
20
0
−20
101102103104105106
VDD = 5 V
TA = 25°C
kSVR
kSVR+
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 36
− Supply-Voltage Rejection Ratio − dB
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
Á
Á
kSVR
TA − Free-Air Temperature − °C
100
95
90
105
110
50 25 0 25 50 75 100
VDD = 2.7 V to 8 V
VIC = VO = VDD /2
125−75
Figure 37
− Supply Current − Aµ
ÁÁ
ÁÁ
IDD
60
40
20
0012345
80
100
120
678
VDD − Supply Voltage − V
VO = 0
No Load
TA = 25°C
TA = 85°C
TA = −40°C
TLV2252
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 38
− Supply Current − Aµ
ÁÁ
ÁÁ
ÁÁ
IDD
120
80
40
0012345
160
200
240
678
| VDD± | − Supply Voltage − V
VO = 0
No Load
TA = 25°C
TA = 85°C
TA = −40°C
TLV2254
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 39
SR − Slew Rate −
SLEW RATE
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
sµ
V/
0.16
0.08
0.04
0
0.2
0.12
101102103104
VDD = 5 V
AV = −1
TA = 25°C
SR
0.18
0.14
0.1
0.06
0.02
SR+
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 40
SR − Slew Rate −
SLEW RATE†‡
vs
FREE-AIR TEMPERATURE
sµ
V/
TA − Free-Air Temperature − °C
0.08
0.04
0
0.12
0.16
0.2
50 25 0 25 50 75 100
SR
SR+
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
75 125
Figure 41
− Output Voltage − V
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VO
t − Time − µs
1.5
1
0.5
00 102030405060
2
2.5
3
70 80 90 100
AV = −1
TA = 25°C
VDD = 3 V
RL = 50 k
CL = 100 pF
Figure 42
INVERTING LARGE-SIGNAL PULSE
RESPONSE
t − Time − µs
− Output Voltage − V
VO
2
1
00 102030405060
3
4
5
70 80 90 100
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = −1
TA = 25°C
Figure 43
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
− Output Voltage − V
VO
t − Time − µs
1.5
1
0.5
00 102030405060
2
2.5
3
70 80 90 100
AV = 1
TA = 25°C
VDD = 3 V
RL = 50 k
CL = 100 pF
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 44
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
− Output Voltage − V
VO
t − Time − µs
2
1
00 102030405060
3
4
5
70 80 90 100
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 45
INVERTING SMALL-SIGNAL
PULSE RESPONSE
− Output Voltage − V
VO
t − Time − µs
0.7
0.65
0.9
0.60102030
0.8
0.75
0.85
0.95
40 50
VDD = 3 V
RL = 50 k
CL = 100 pF
AV = −1
TA = 25°C
Figure 46
VO − Output Voltage − V
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VO
t − Time − µs
2.5
2.45
2.4 0102030
2.55
2.6
2.65
40 50
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = −1
TA = 25°C
Figure 47
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
t − Time − µs
0.8
0.75
0.6 0102030
0.85
0.9
0.95
40 50
0.7
0.65
VDD = 3 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 48
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
t − Time − µs
2.5
2.45
2.4 0102030
2.55
2.6
2.65
40 50
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 49
− Equivalent Input Noise Voltage −
f − Frequency − Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VnnV/ Hz
40
30
20
0
60
50
10
101102103104
VDD = 3 V
RS = 20
TA = 25°C
Figure 50
− Equivalent Input Noise Voltage −
f − Frequency − Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VnnV/ Hz
40
20
10
0
60
30
50
101102103104
VDD = 5 V
RS = 20
TA = 25°C
Figure 51
Noise Voltage − nV
t − Time − s
INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
0246
0
750
1000
810
500
250
500
750
1000
250
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 52
Integrated Noise Voltage −
f − Frequency − Hz
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
Vµ
0.1
1
10
100
110
1102103104105
Calculated Using Ideal Pass-Band Filter
Low Frequency = 1 Hz
TA = 25°C
Figure 53
THD + N − Total Harmonic Distortion Plus Noise − %
f − Frequency − Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
1
0.001
101102103104105
AV = 10
AV = 1 VDD = 5 V
RL = 50 k
TA = 25°C
0.1
AV = 100
Figure 54
Gain-Bandwidth Product − kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
VDD − Supply Voltage − V
200
190
180
170 0235
210
220
78
146
Figure 55
Gain-Bandwidth Product − kHz
GAIN-BANDWIDTH PRODUCT†‡
vs
FREE-AIR TEMPERATURE
TA − Free-Air Temperature − °C
220
140
100
260
300
50 25 0 25 50 10075
180
VDD = 5 V
f = 10 kHz
RL = 50 kHz
CL = 100 pF
125−75
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 56
om − Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
m
φ
101102103104
75°
60°
45°
30°
15°
0°
Rnull = 200
Rnull = 500
Rnull = 50
Rnull = 0
TA = 25°C
Rnull = 100
Rnull = 10
50 k
50 k
VDD
VDD+ Rnull
CL
VI+
Figure 57
Gain Margin − dB
GAIN MARGIN
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
20
10
5
0
15
101102103105
Rnull = 100
TA = 25°C
Rnull = 50
104
Rnull = 500
Rnull = 200
Rnull = 0
Rnull = 10
Figure 58
− Unity-Gain Bandwidth − kHz
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
ÁÁ
ÁÁ
B1
150
25
100
0
200
125
175
50
75
10110210310410
5
TA = 25°C
See application information
Figure 59
Overestimation of Phase Margin
OVERESTIMATION OF PHASE MARGIN
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
15
10
5
0
20
25
101102103104105
TA = 25°C
Rnull = 100
Rnull = 50
Rnull = 10
Rnull = 500
Rnull = 200
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
driving large capacitive loads
The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins
(Rnull = 0).
A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins
when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of
10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects: the first adds a zero
to the transfer function and the second reduces the frequency of the pole associated with the output load in the
transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation 1 can be used.
∆φm1 +tan–1 ǒ2×π×UGBW×Rnull ×CLǓ
∆φm1 +improvement in phase margin
UGBW +unity-gain bandwidth frequency
Rnull +output series resistance
CL+load capacitance
(1)
Where :
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To
use equation 1, UGBW must be approximated from Figure 58.
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing
additional phase shift and reducing the overall improvement in phase margin.
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to
optimize the design of circuits driving large capacitance loads.
50 k
50 k
VDD/GND
VDD+
Rnull
CL
VI+
Figure 60. Series-Resistance Circuit
 
  
   
SLOS185D − FEBRUAR Y 1997 − REVISED AUGUST 2006
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using
the TLV2252 typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLV225x 1 2 3 4 5
C1 11 12 6.369E−12
C2 6 7 25.00E−12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 43DX
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 57.62E6 −60E6 60E6 60E6 −60E6
GA 6 0 11 12 26.86E−6
GCM 0 6 10 99 2.686E−9
ISS 3 10 DC 3.1E−6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 60 11 37.23E3
RD2 60 12 37.23E3
R01 8 5 84
R02 7 99 84
RP 3 4 71.43E3
RSS 10 99 64.52E6
VAD 60 4 −.5
VB 9 0 DC 0
VC 3 53 DC .605
VE 54 4 DC .605
VLIM 7 8 DC 0
VLP 91 0 DC −0.235
VLN 0 92 DC 7.5
.MODEL DX D (IS=800.0E−18)
.MODEL JX PJF (IS=500.0E−15 BETA=139E−6
+ VTO=−.05)
.ENDS
VCC+
RP
IN 2
IN+ 1
VCC
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2 6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5RO1
RO2
HLIM
90 DLP
91
DLN
92
VLNVLP
99
7
Figure 61. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9550401Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9550401QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9550401QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9550403Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9550403QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9550403QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9566601Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9566601QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9566601QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9566602Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9566602QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9566602QDA ACTIVE CFP W 14 1 TBD Call TI Call TI
5962-9566603Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9566603QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9566603QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9566604Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9566604QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9566604QDA ACTIVE CFP W 14 1 TBD Call TI Call TI
TLV2252AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2252AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2252AIPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2252AIPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLV2252AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2252AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2252AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLV2252AQD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AQDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AQDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252CP ACTIVE PDIP P 8 TBD Call TI Call TI
TLV2252ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2252IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2252MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2252MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2252MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLV2252QD ACTIVE SOIC D 8 TBD Call TI Call TI
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2252QDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2252QDR ACTIVE SOIC D 8 TBD Call TI Call TI
TLV2252QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2254AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2254AIPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI
TLV2254AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2254AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLV2254AMWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type
TLV2254AQD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AQDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254AQDR ACTIVE SOIC D 14 TBD Call TI Call TI
TLV2254AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2254ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2254INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2254MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2254MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLV2254MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type
TLV2254QD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254QDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254QDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2254QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2262AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2262AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2262AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLV2262MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2262MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2262MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 5
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV2252, TLV2252A, TLV2252AM, TLV2252M, TLV2254, TLV2254A, TLV2254AM, TLV2254M, TLV2262AM, TLV2262M :
Catalog: TLV2252A, TLV2252, TLV2254A, TLV2254, TLV2262A, TLV2262
Automotive: TLV2252-Q1, TLV2252A-Q1, TLV2252A-Q1, TLV2252-Q1, TLV2254-Q1, TLV2254A-Q1, TLV2254A-Q1, TLV2254-Q1, TLV2262A-Q1, TLV2262-Q1
Enhanced Product: TLV2252-EP, TLV2252A-EP, TLV2252A-EP, TLV2252-EP, TLV2254-EP, TLV2254A-EP, TLV2254A-EP, TLV2254-EP
Military: TLV2252M, TLV2252AM, TLV2254M, TLV2254AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLV2252AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2252AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLV2252IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2254AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2254AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2254IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2254QDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLV2252AIDR SOIC D 8 2500 340.5 338.1 20.6
TLV2252AIPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLV2252IDR SOIC D 8 2500 340.5 338.1 20.6
TLV2254AIDR SOIC D 14 2500 367.0 367.0 38.0
TLV2254AIPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2254IDR SOIC D 14 2500 367.0 367.0 38.0
TLV2254QDR SOIC D 14 2500 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated