February 2010 Doc ID 4948 Rev 4 1/17
17
TS512, TS512A
Precision dual operational amplifier
Features
Low input offset voltage: 500 µV max.
(A version)
Low power consumption
Short-circuit protection
Low distortion, low noise
High gain-bandwidth product: 3 MHz
High channel separation
ESD protection 2 kV
Macromodel included in this specification
Description
The TS512 is a high-performance dual
operational amplifier with frequency and phase
compensation built into the chip. The internal
phase compensation allows stable operation in
voltage follower configurations, in spite of its high
gain-bandwidth product.
The circuit presents very stable electrical
characteristics over the entire supply voltage
range and is particularly intended for professional
and telecom applications (such as active filtering).
N
DIP8
(Plastic package)
D
SO-8
(Plastic micropackage)
Inverting Input 2
Non-inverting Input 2
Non-inverting Input 1
-
CC
V
1
2
3
4
8
5
6
7
CC
V
+
-
+
-
+
Output 1
Inverting Input 1 Output
Pin connections
(Top view)
www.st.com
Absolute maximum ratings and operating conditions TS512, TS512A
2/17 Doc ID 4948 Rev 4
1 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage ±18 V
Vin Input voltage ±VCC
Vid Differential input voltage ±(VCC - 1)
Rthja
Thermal resistance junction to ambient (1)
DIP8
SO-8
1. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
85
125
°C/W
Rthjc
Thermal resistance junction to case (1)
DIP8
SO-8
41
40
°C/W
TjJunction temperature + 150 °C
Tstg Storage temperature range -65 to +150 °C
ESD
HBM: human body model(2)
2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
2kV
MM: machine model(3)
3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
200 V
CDM: charged device model(4)
4. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
1.5 kV
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. Value with respect to VCC- pin.
6 to 30V V
Vicm Common mode input voltage range VCC-+1.5 to VCC+-1.5 V
Toper Operating free air temperature range -40 to +125 °C
TS512, TS512A Schematic diagram
Doc ID 4948 Rev 4 3/17
2 Schematic diagram
Figure 1. Schematic diagram (1/2 TS512)
R1
2kΩ
R16
4kΩ
R2
2kΩ
R5
4kΩ
Q25
Q11 Q2
Q3
R6
4kΩ
Q12
Q13
R11
1kΩ
Q14 Q35
R18
2kΩ
R12
812Ω
V
CC
V
CC
Q29
Q27
Q21
Q37
Q38
Q28
Q30
Q22
Q36
Q17
R17
4kΩR14
27Ω
R13
27Ω
Output
Q20
Q19
Q23
Q34Q33
R10
45kΩ
R9
15kΩ
R8
150kΩ
R7
15kΩ
Q18
C1
43pF
C2
23pF
Non-inverting
Input
Inverting
Input
Q15
Q32
Q31
Q10
Q9
R4
1.2kΩ
R3
60kΩ
R15
150k
Ω
Q8
Q4
Q6
Q7
Q5
Electrical characteristics TS512, TS512A
4/17 Doc ID 4948 Rev 4
3 Electrical characteristics
Table 3. VCC = ±15 V, Tamb = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
ICC
Supply current (per operator)
Tmin T
amb T max
0.5 0.6
0.75 mA
Iib
Input bias current
Tmin T
amb T max
50 150
300 nA
Rin Input resistance, f = 1 kHz 1 MΩ
Vio
Input offset voltage
TS512
TS512A
Tmin T
amb T
max
TS512
TS512A
0.5 2.5
0.5
3.5
1.5
mV
ΔVio
Input offset voltage drift
Tmin T
amb T
max
V/°C
Iio
Input offset current
Tmin T
amb T
max
520
40 nA
ΔIio
Input offset current drift
Tmin T
amb T
max
0.08
Ios Output short-circuit current 23 mA
Avd
Large signal voltage gain
RL = 2 kΩ, VCC = ±15 V, Tmin T
amb T max
VCC = ± 4 V
90 100
95
dB
GBP Gain-bandwidth product, f = 100 kHz 1.8 3 MHz
en
Equivalent input noise voltage, f = 1 kHz
Rs = 50 Ω
Rs = 1 kΩ
Rs = 10 kΩ
8
10
18
THD
Total harmonic distortion
Av = 20 dB, RL = 2 kΩ
Vo = 2 Vpp, f = 1 kHz
0.03 %
±Vopp
Output voltage swing
RL = 2 kΩ, VCC = ±15 V, Tmin T
amb T max
VCC = ± 4 V
±13
±3
V
Vopp
Large signal voltage swing
RL = 10 kΩ, f = 10 kHz 28 Vpp
SR Slew rate
Unity gain, RL = 2 kΩ0.8 1.5 V/µs
CMR Common mode rejection ratio
Vic = ±10 V 90 dB
nA
°C
--------
nV
Hz
------------
TS512, TS512A Electrical characteristics
Doc ID 4948 Rev 4 5/17
SVR Supply voltage rejection ratio 90 dB
Vo1/Vo2 Channel separation, f = 1 kHz 120 dB
Table 3. VCC = ±15 V, Tamb = 25°C (unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
Electrical characteristics TS512, TS512A
6/17 Doc ID 4948 Rev 4
Figure 2. Vio distribution at VCC = ±15 V and
T=25°C
Figure 3. Vio distribution at VCC = ±15 V and
T = 125°C
-400 -200 0 200 400
0
5
10
15
20
25
30
Vio distribution at T = 25 °C
Population %
Input offset voltage (µV)
-400 -200 0 200 400
0
5
10
15
20
Vio distribution at T = 125 °C
Population %
Input offset voltage (µV)
Figure 4. Input offset voltage vs. input
common mode voltage at VCC =10 V
Figure 5. Input offset voltage vs. input
common mode voltage at VCC =30 V
112233445566778899
-0.8-0.8
-0.6-0.6
-0.4-0.4
-0.2-0.2
0.00.0
0.20.2
0.40.4
T=-40°C
Vcc = 10 V
T=125°C
T=25°C
Input Offset Voltage (mV)
Input Common Mode Voltage (V)
00551010 1515 2020 2525 3030
-0.6-0.6
-0.4-0.4
-0.2-0.2
0.00.0
0.20.2
0.40.4
T=-40°C
Vcc = 30 V
T=125°C
T=25°C
Input Offset Voltage (mV)
Input Common Mode Voltage (V)
Figure 6. Supply current (per operator) vs.
supply voltage at Vicm =V
CC/2
Figure 7. Supply current (per operator) vs.
input common mode voltage at
VCC =6 V
66991212 1515 1818 2121 2424 2727 3030
0.1
0.20.2
0.3
0.40.4
0.5
0.60.6
T=-40°C
Vicm = Vcc/2
T=125°C
T=25°C
Supply Current (mA)
Supply voltage (V)
1.01.0 1.51.5 2.02.0 2.52.5 3.03.0 3.53.5 4.04.0 4.54.5 5.05.0 5.55.5 6.06.0
0.200.20
0.25
0.300.30
0.35
0.400.40
0.45
0.500.50
T=-40°C
Follower configuration
Vcc = 6 V
T=125°C
T=25°C
Supply Current (mA)
Input Common Mode Voltage (V)
TS512, TS512A Electrical characteristics
Doc ID 4948 Rev 4 7/17
Figure 8. Supply current (per operator) vs.
input common mode voltage at
VCC = 10 V
Figure 9. Supply current (per operator) vs.
input common mode voltage at
VCC =30 V
1122334455667788991010
0.25
0.300.30
0.35
0.400.40
0.45
0.500.50
T=-40°C
Follower configuration
Vcc = 10 V
T=125°C
T=25°C
Supply Current (mA)
Input Common Mode Voltage (V)
00551010 1515 2020 2525 3030
0.25
0.300.30
0.35
0.400.40
0.45
0.500.50
0.55
T=-40°C
Follower configuration
Vcc = 30 V
T=125°C
T=25°C
Supply Current (mA)
Input Common Mode Voltage (V)
Figure 10. Output current vs. supply voltage at
Vicm =V
CC/2
Figure 11. Output current vs. output voltage at
VCC =5 V
10.010.0 15.015.0 20.020.0 25.025.0 30.030.0
-40-40
-30
-20-20
-10
00
10
2020
30
4040
T=125°C
T=25°C
T=-40°C
Sink
Vid = -1V
Source
Vid = 1V T=-40°C
T=25°C
T=125°C
Vicm = Vcc/2
Output Current (mA)
Supply voltage (V)
Figure 12. Output current vs. output voltage at
VCC = 30 V
Figure 13. Voltage gain and phase for different
capacitive loads at VCC =6 V,
Vicm = 3 V and T = 25°C
103104105106
-20-20
-10
00
10
2020
30
4040
50
-270
-225
-180
-135
-90
-45
0
45
CL=100pF
CL=600pF
Vcc = 6 V, Vicm = 3 V, G = -100
RL = 2 kΩ connected to the ground
Tamb = 25 °C
CL=330pF
Phase
Gain
Gain (dB)
Frequency (Hz)
Phase (°)
Electrical characteristics TS512, TS512A
8/17 Doc ID 4948 Rev 4
Figure 14. Voltage gain and phase for different
capacitive loads at VCC =10 V,
Vicm = 5 V and T = 25°C
Figure 15. Voltage gain and phase for different
capacitive loads at VCC =30 V,
Vicm = 15 V and T = 25°C
103104105106
-20-20
-10
00
10
2020
30
4040
50
-270
-225
-180
-135
-90
-45
0
45
CL=100pF
CL=600pF
Vcc = 10 V, Vicm = 5 V, G = -100
RL = 2 kΩ connected to the ground
Tamb = 25 °C
CL=330pF
Phase
Gain
Gain (dB)
Frequency (Hz)
Phase (°)
103104105106
-20-20
-10
00
10
2020
30
4040
50
-270
-225
-180
-135
-90
-45
0
45
CL=100pF
CL=600pF
Vcc = 30 V, Vicm = 15 V, G = -100
RL = 2 kΩ connected to the ground
Tamb = 25 °C
CL=330pF
Phase
Gain
Gain (dB)
Frequency (Hz)
Phase (°)
Figure 16. Frequency response for different
capacitive loads at VCC =6 V,
Vicm = 3 V and T = 25°C
Figure 17. Frequency response for different
capacitive loads at VCC =10 V,
Vicm = 5 V and T = 25°C
10k 100k 1M 10M
-40-40
-30
-20-20
-10
00
10
2020
V
cc
= 6 V, V
icm
= 3 V
R
L
= 2 k
Ω
connected to the ground
T
amb
= 25 C
Gain with C
L
=330 pF
Gain with C
L
=600 pF
Gain with C
L
=100 pF
Gain (dB)
Frequency (Hz)
10k 100k 1M 10M
-40-40
-30
-20-20
-10
00
10
2020
V
cc
= 10 V, V
icm
= 5 V
R
L
= 2 k
Ω
connected to the ground
T
amb
= 25 C
Gain with C
L
=330 pF
Gain with C
L
=600 pF
Gain with C
L
=100 pF
Gain (dB)
Frequency (Hz)
Figure 18. Frequency response for different
capacitive loads at VCC =30 V,
Vicm = 15 V and T = 25°C
Figure 19. Phase margin vs. output current, at
VCC =6V, V
icm = 3 V and T = 25°C
10k 100k 1M 10M
-40-40
-30
-20-20
-10
00
10
2020
V
cc
= 30 V, V
icm
= 15 V
R
L
= 2 k
Ω
connected to the ground
T
amb
= 25 C
Gain with C
L
=330 pF
Gain with C
L
=600 pF
Gain with C
L
=100 pF
Gain (dB)
Frequency (Hz)
-3 -2-2 -1 001223
-40-40
-30
-20-20
-10
00
10
2020
30
4040
50
6060
70
Recommended area
CL=100 pF
CL=330 pF CL=600 pF
Vcc = 6 V
Vicm = 3 V
Tamb = 25 °C
RL = 2 kΩ
Phase Margin (°)
Out
p
ut Current
(
mA
)
TS512, TS512A Electrical characteristics
Doc ID 4948 Rev 4 9/17
Figure 20. Phase margin vs. output current, at
VCC =10V, V
icm = 5 V and T = 25°C
Figure 21. Phase margin vs. output current, at
VCC =30V, V
icm = 15 V and T = 25°C
-3 -2-2 -1 001223
-30
-20-20
-10
00
10
2020
30
4040
50
6060
70
Recommended area
CL=100 pF
CL=330 pF CL=600 pF
Vcc = 10 V
Vicm = 5 V
Tamb = 25 °C
RL = 2 kΩ
Phase Margin (°)
Output Current (mA)
-3 -2-2 -1 001223
-20-20
-10
00
10
2020
30
4040
50
6060
70
Recommended area
CL=100 pF
CL=330 pF
CL=600 pF
Vcc = 30 V
Vicm = 15 V
Tamb = 25 °C
RL = 2 kΩ
Phase Margin (°)
Output Current (mA)
Macromodels TS512, TS512A
10/17 Doc ID 4948 Rev 4
4 Macromodels
4.1 Important notes concerning this macromodel
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature,
for example) or even worse, outside of the device operating conditions (VCC, Vicm, for
example), is not reliable in any way.
4.2 Macromodel code
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS512 1 3 2 4 5
********************************************************
.MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 1.061852E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 12.47E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 1.500000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.500000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 1.000000E-02
TS512, TS512A Macromodels
Doc ID 4948 Rev 4 11/17
FIBN 5 1 VOFP 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 9.000000E+02
FIN 5 19 VOFN 9.000000E+02
RG1 19 5 1.727221E+06
RG2 19 4 1.727221E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.521739E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 6.521739E+03
VINM 5 27 1.500000E+02
GCOMP 5 4 4 5 6.485084E-04
RPM1 5 80 1E+06
RPM2 4 80 1E+06
GAVPH 5 82 19 80 2.59E-03
RAVPHGH 82 4 771
RAVPHGB 82 5 771
RAVPHDH 82 83 1000
RAVPHDB 82 84 1000
CAVPHH 4 83 0.331E-09
CAVPHB 5 84 0.331E-09
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 6.498455E+01
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 1.742230E+00
DON 24 19 MDTH 400E-12
VON 24 5 1.742230E+00
.ENDS
Table 4. VCC = ±15 V, Tamb = 25°C (unless otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 2 kΩ100 V/mV
ICC No load, per operator 350 µA
Vicm -13.4 to 14 V
VOH RL = 2 kΩ+14 V
VOL RL = 2 kΩ-14 V
Isink Vo = 0 V 27.5 mA
Isource Vo = 0 V 27.5 mA
GBP RL = 2 kΩ, CL = 100 pF 2.5 MHz
SR RL = 2 kΩ1.4 V/μs
mR
L = 2 kΩ, CL = 100 pF 55 Degrees
Package information TS512, TS512A
12/17 Doc ID 4948 Rev 4
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
TS512, TS512A Package information
Doc ID 4948 Rev 4 13/17
Figure 22. DIP8 package mechanical drawing
Table 5. DIP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A5.330.210
A1 0.38 0.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.045 0.060 0.070
c 0.20 0.25 0.36 0.008 0.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
Package information TS512, TS512A
14/17 Doc ID 4948 Rev 4
Figure 23. SO-8 package mechanical drawing
Table 6. SO-8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0
ccc 0.10 0.004
TS512, TS512A Ordering information
Doc ID 4948 Rev 4 15/17
6 Ordering information
Table 7. Order codes
Order code Temperature
range Package Packaging Marking
TS512IN
-40°C, + 125°C
DIP8 Tube 512IN
TS512AIN 512AIN
TS512ID
TS512IDT SO-8 Tube or
tape & reel
512I
TS512AID
TS512AIDT 512AI
TS512IYD(1)
TS512IYDT(1)
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
SO-8
(Automotive grade)
Tube or
tape & reel 512IY
TS512AIYDT(1) Tape & reel 512AIY
Revision history TS512, TS512A
16/17 Doc ID 4948 Rev 4
7 Revision history
Table 8. Document revision history
Date Revision Changes
21-Nov-2001 1 Initial release.
23-Jun-2005 2 PPAP references inserted in the datasheet, see Table 7: Order
codes.
05-May-2008 3
AC and DC performance characteristics curves added for VCC=6V,
VCC= 10V and VCC= 30V.
Modified ICC typ, added parameters over temperature range in
electrical characteristics table.
Corrected macromodel information.
04-Feb-2010 4
Updated document format.
Added TS512A and related parameters.
Modified footnote 1 under Ta b l e 2 .
Removed Figure 11.
Modified Figure 12 and Figure 13.
Removed TS512AIYD order code from Ta bl e 7 .
TS512, TS512A
Doc ID 4948 Rev 4 17/17
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com