AW5005A 2016 1 V1.1 SLT AW5005A GPS 0.65dB (GNSS) 17.0dB , IIP3oob+4.5dBm , IIP2oob-1.0dBm PCB AW5005A SLT, 1.5V 3.6V 50 ; 1.5V~3.6V; 1550~1615MHz; 1.5mmX1.0mmX 0.55mm DFN 6L AW5005A GNSS GNSS 3kV HBM RFIN RFOUT AW5005A 1.5mm x 1.0 mm x 0.55 mm DFN-6L -40 85 GPS 1 3 CXY 2 6 6 1 5 5 2 4 4 3 Pin No. Pin Name 1 GND 2 GND 3 RFIN 4 VCC 5 EN 6 RFOUT C---AW5005ADNRXY--- 1. AW5005A (c) 2016 1 20 AW5005A datasheet Jan 2016 V1.1 Ultra-Low Noise Amplifier for Global Navigation Satellite Systems (GNSS) FEATURES INTRODUCTION The AW5005A is a Low Noise Amplifier designed for Global Navigation Satellite Systems (GNSS) as GPS, GLONASS, Galileo and Compass. The AW5005ADNR requires only one external input matching inductor, reduces assembly complexity and the PCB area, enabling a cost-effective solution. Reduce RF environment Interference with patented Smart-Linearity-Technology (SLT); Ultra low noise figure(NF)=0.65dB; High power gain=17.0dB; High linearity IIP3oob=+4.5dBm; High linearity IIP2oob=-1.0dBm; Requires only one input matching inductor; RF output internally matched to 50 ohm; Supply voltage: 1.5V to 3.6V; Operating frequencies: 1550~1615MHz; Slim DFN-6L package:1.5mmX1.0mmX 0.55mm 3kV HBM ESD protection (including RFIN and RFOUT pin) The AW5005A with patented Smart Linearity Technology (SLT) achieves ultra low noise figure, high linearity, high gain, over a wide range of supply voltages from 1.5V up to 3.6V. All these features make AW5005A an excellent choice for GNSS LNA as it improves sensitivity with low noise figure and high gain, provide better immunity against out-of-band jammer signals with high linearity, reduces filtering requirement of preceding stage and hence reduces the overall cost of the GNSS receiver. APPLICATIONS Smart phones, feature phones, Tablet PCs, Personal Navigation Devices, Digital Still Cameras, Digital Video Cameras; RF Front End modules; Complete GPS chipset modules; Theft protection(laptop, ATM); The AW5005A is available in a small lead-free, RoHS-Compliant, 1.5mm x 1.0mm x 0.55mm 6-pin DFN package PIN CONFIGURATION AND MARKING Bottom View Top View 1 3 CXY 2 6 6 1 5 5 2 4 4 3 Pin No. Pin Name 1 GND 2 GND 3 RFIN 4 VCC 5 EN 6 RFOUT C---AW5005ADNRXY---Manufactory trace No. Figure 1. AW5005A Pin Configuration and Marking Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 2 of 20 AW5005A datasheet Jan 2016 V1.1 TYPICAL APPLICATION AW5005A GND GND RF INPUT 1 6 2 5 RFIN RF OUTPUT RFOUT EN LOGIC CONTROL VCC 3 SUPPLY VOLTAGE 4 BIAS L1 C1 (optional) L1=9.1nH C1=1nF Figure 2. Application Schematic AW5005A For a list of components see Table 6 and Table 7. ORDER INFORMATION Table 1 Order Information Part Number Temperature Package RoHS Mark SPQ AW5005ADNR -4085 1.5mm x 1.0 mm x 0.55mm DFN-6L Yes C Tape and Reel 3000pcs/Reel AW5005A R : Tape& Reel DN: DFN Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 3 of 20 AW5005A datasheet Jan 2016 V1.1 ABSOLUTE MAXIMUM RATINGS 1) Table 2 . Limiting Values Values Parameter Symbol Unit Min. Typ. Max. VCC -0.3 - 5.0 V Voltage at pin EN VEN -0.3 - 5.0 V Current into pin VCC ICC - - 30 mA PIN - - 10 dBm Package thermal resistance JA - 148.2 Junction temperature TJ - - 150 Storage temperature range TSTG -65 - 150 Ambient temperature range Tamb -40 - 85 - 260 - Supply Voltage at pin VCC 2) RF input power 3) Solder temperature(10s) /W ESD range HBM MM 4) 5) 3000 V 150 V Latch-up +IT: +400 mA -IT: -400 mA Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. StandardJEDEC STANDARD NO.78D NOVEMBER 2011 Note2: Warning: due to internal ESD diode protection, the applied DC voltage should not exceed 5.0V in order to avoid excess current. Note3: The RF input and RF output are AC coupled through internal DC blocking capacitor. Note4: HBM standard: MIL-STD-883H Method 3015.8. Note5: MM standard: JEDEC EIA/JESD22-A115. Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 4 of 20 AW5005A datasheet Jan 2016 V1.1 ELECTRICAL CHARACTERISTICS Table 3 . AW5005A EVB 1 Electrical Characteristics ; VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at VCC=2.8V and Tamb=+25, f=1575.42MHz, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS 1.5 - 3.6 V 1 A 9 mA DC ELECTRICAL CHARACTERISTICS VCC Supply Voltage ISD Shut-Down Current EN=Low ICC Supply Current EN=High VEN Digital Input-Logic High VEN Digital Input-Logic Low 5.8 0.80 V 0.45 V AC ELECTRICAL CHARACTERISTICS Gp Power Gain 17.0 dB RLin Input Return Loss 7.5 dB ISL Reverse Isolation 26 dB RLout Output Return Loss 18 dB NF Noise Figure 0.65 dB Kf Stability factor NFj Noise Figure with jammer Pjam=-20dBm; fjam=850MHz 1.05 dB Pjam=-20dBm; fjam= 1850MHz 0.75 dB Zs=50 ohm; No jammer 2) f=20MHz...10GHz 1.0 IP1dB Inband input 1dB-compression point f=1575.42MHz; -12 dBm IIP3oob Out-of-band input rd 3 -order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-20dBm +4.3 dBm IIP3oob Out-of-band input rd 3 -order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-30dBm +4.5 dBm IIP2oob Out-of-band input nd 2 -order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-20dBm -1.2 dBm IIP2oob Out-of-band input nd 2 -order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-30dBm -1.2 dBm H2-input referred LTE band-13 2 monic -72.4 dBm ton Turn-on time 2.2 s toff Turn-off time 1.7 s nd Har- f=787.76MHz; Pin=-25dBm; fH2=1575.52MHz 3) 3) Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 5 of 20 AW5005A datasheet Jan 2016 V1.1 Table 4 . Electrical Characteristics 1) (AW5005A EVB ; VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at VCC=1.8V and Tamb=+25, f=1575.42MHz, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS 1.5 - 3.6 V 1 A 9 mA DC ELECTRICAL CHARACTERISTICS VCC Supply Voltage ISD Shut-Down Current EN=Low ICC Supply Current EN=High VEN Digital Input-Logic High VEN Digital Input-Logic Low 5.4 0.80 V 0.45 V AC ELECTRICAL CHARACTERISTICS Gp Power Gain 16.8 dB RLin Input Return Loss 7.2 dB ISL Reverse Isolation 25.6 dB RLout Output Return Loss 18.2 dB NF Noise Figure 0.66 dB Kf Stability factor Pjam=-20dBm; fjam=850MHz 1.05 dB Pjam=-20dBm; fjam= 1850MHz 0.73 dB NFj Zs=50 ohm; No jammer 2 f=20MHz...10GHz Noise Figure with jammer 1.0 IP1dB Inband input 1dB-compression point f=1575.42MHz -12 dBm IIP3oob Out-of-band input rd 3 -order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-20dBm; +4.3 dBm IIP3oob Out-of-band input rd 3 -order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-30dBm; +4.5 dBm IIP2oob Out-of-band input nd 2 -order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-20dBm; -1.4 dBm IIP2oob Out-of-band input nd 2 -order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-30dBm; -1.2 dBm H2-input referred LTE band-13 2 monic -72.6 dBm ton Turn-on time 2.2 s toff Turn-off time 1.7 s nd Har- f=787.76MHz; Pin=-25dBm; fH2=1575.52MHz 3) 3) Note1: input matched to 50 ohm using a high quality-factor 9.1nH inductor. Note2: 0.08dB PCB losses are subtracted. Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 6 of 20 AW5005A datasheet Jan 2016 V1.1 Note3: Within 10% of the final gain. TYPICAL OPERATING CHARACTERISTICS AW5005A EVB; Typical values are at VCC=2.8V and TA=+25, fRFIN=1575.42MHz, unless otherwise noted. Noise Figure ICC 2.5 10 9 (3) 2 8 (2) 7 (1) 1.5 NF (dB) ICC (mA) 6 5 (3) 1 4 (2) 3 0.5 2 (1) 1 0 0 1 1.5 2 2.5 3 VCC (V) 1 3.5 1.5 2 2.5 3 VCC (V) 3.5 f1=1575.42MHz, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Pi=-45dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 3. Supply current as a function of supply voltage; typical values Figure 4. Noise Figure as a function of supply voltage; typical values Power Gain Noise Figure 3.5 20 3 19 (1) 2.5 (2) NF (dB) PG (dB) 18 17 (3) 2 1.5 (3) 16 1 15 (2) 0.5 14 1 1.5 2 2.5 3 VCC (V) 3.5 Pi=-45dBm, f1=1575.42MHz, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 5. Power Gain as a function of supply voltage; typical values 0 1000 (1) 1200 1400 1600 1800 2000 f(MHz) VCC=1.8V, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 6. Noise Figure as a function of frequency; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 7 of 20 AW5005A datasheet Jan 2016 V1.1 Output Return Loss Noise Figure 20 3 (1) 18 2.5 14 RLout (dB) NF (dB) 2 1.5 (3) 1 (3) 12 10 8 6 (2) 0.5 0 1000 (2) 16 4 (1) 2 1200 1400 1600 1800 2000 0 1000 f(MHz) 1200 1400 1600 VCC=1.8V, Pi=-45dBm,no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 VCC=2.8V, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 7. Noise Figure as a function of frequency; typical values Figure 8. Power Gain as a function of frequency; typical values Power Gain Output Return Loss 20 20 (1) 18 (2) 18 (1) 16 (2) 14 16 (3) 12 PG (dB) RLout (dB) 1800 2000 f(MHz) 10 (3) 14 8 12 6 4 10 2 0 1000 8 1200 1400 1600 1800 2000 f(MHz) VCC=2.8V, Pi=-45dBm,no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 9. Power Gain as a function of frequency; typical values -35 -31 -27 -23 -20 -16 -12 -8 -4 Pi(dBm) VCC=1.8V, f1=1575.42MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 10. Power Gain as a function of input power; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 8 of 20 AW5005A datasheet Jan 2016 V1.1 Power Gain Power Gain 19 20 (1) (2) (3) (1) 18 (2) 18 (3) 17 PG (dB) PG (dB) 16 16 15 14 (5) 12 (4) 14 10 13 8 12 -35 -31 -27 -23 -20 -16 -12 -35 -8 -4 Pi(dBm) -31 -27 -23 -20 -16 -12 TA=+25, f1=1575.42MHz. (1) VCC=3.6V (2) VCC=3.1V (3) VCC=2.8V (4) VCC=1.8V (5) VCC=1.5V VCC=2.8V, f1=1575.42MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 -8 -4 Pi(dBm) Figure 11. Power Gain as a function of input power; typical values Figure 12. Power Gain as a function of input power; typical values out-of-band IIP3 out-of-band IIP3 7 12 6.5 10 (3) 6 8 (2) 5 IIP3(dBm) IIP3(dBm) 5.5 4.5 4 (1) (3) 6 (2) (1) 4 3.5 3 2 2.5 2 0 -30 -25 -20 -15 Pi(dBm) -10 VCC=1.8V, f1=1713MHz, f2=1851MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 13. out-of-band input IP3 as a function of input power; typical values -30 -25 -20 -15 Pi(dBm) -10 VCC=2.8V, f1=1713MHz, f2=1851MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 14. out-of-band input IP3 as a function of input power; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 9 of 20 AW5005A datasheet Jan 2016 V1.1 out-of-band IIP2 out-of-band IIP2 4 4 (3) 3 2 2 1 1 IIP2 (dBm) IIP2 (dBm) (3) 3 0 -1 (2) 0 (2) -1 -2 (1) -3 -2 (1) -3 -4 -4 -5 -30 -25 -20 -15 Pi(dBm) -30 -10 Figure 15. out-of-band input IP2 as a function of input power; typical values -15 Pi(dBm) -10 Figure 16. out-of-band input IP2 as a function of input power; typical values; Input Return Loss Input Return Loss -3 -2 -4 -3 -5 -4 (3) -5 (2) (1) (3) (2) (1) -6 RLin (dB) RLin (dB) -20 VCC=2.8V, f1=824.6MHz, f2=2400MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 VCC=1.8V, f1=824.6MHz, f2=2400MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 -6 -7 -7 -8 -8 -9 -9 -10 1385 -25 -10 1585 1785 1985 f(MHz) VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 17. Input Return Loss as a function of frequency; typical values -11 1385 1585 1785 f(MHz) 1985 VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 18. Input Return Loss as a function of frequency; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 10 of 20 AW5005A datasheet Jan 2016 V1.1 Input Return Loss Output Return Loss -3 0 (1) (1) -4 -5 (2) (3) (4) -10 (5) (2) -15 RLout(dB) RLin(dB) -5 (3) -6 (4) -20 (5) -7 -25 -8 -30 -9 1385 1585 1785 f(MHz) 1985 -35 1000 TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V 1200 1400 1600 1800 f(MHz) TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V Figure 19. Input Return Loss as a function of frequency; typical values 2000 Figure 20. Output Return Loss as a function of frequency; typical values Output Return Loss Output Return Loss 0 0 -5 -5 -10 -10 -20 (1) -15 (1) -25 RLout (dB) RLout (dB) -15 -30 -40 (2) -25 (2) -35 -20 (3) -30 (3) -45 -35 -50 1000 1200 1400 1600 1800 2000 f(MHz) VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 -40 1000 1200 1400 1600 1800 2000 f(MHz) VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 21. Output Return Loss as a function of frequency; typical values Figure 22. Output Return Loss as a function of frequency; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 11 of 20 AW5005A datasheet Jan 2016 V1.1 Reverse Isolation Reverse Isolation -15 -15 -20 -20 -25 -25 (2) -30 (2) -30 (3) (3) -35 -40 1000 (1) ISL (dB) ISL (dB) (1) -35 1200 1400 1600 1800 2000 f(MHz) VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 -40 1000 1200 Reverse Isolation -17 -19 -21 ISL (dB) -23 (1) (2) (3) (4) (5) -29 -31 -33 -35 1000 1200 1400 1800 2000 f(MHz) Figure 24. Reverse Isolation as a function of frequency; typical values; -15 -27 1600 VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 23. Reverse Isolation as a function of frequency; typical values; -25 1400 1600 1800 2000 f(MHz) TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V Figure 25. Reverse Isolation as a function of frequency; typical values Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 12 of 20 AW5005A datasheet Jan 2016 V1.1 AW5005A APPLICATION BOARD Figure 26. Drawing of Application Board Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 13 of 20 AW5005A datasheet Jan 2016 V1.1 Vias Copper 35um FR4 AW5005ADNR_application_board_sideview Figure 27. Application Board Cross-Section TEST CIRCUITS 1. DC Characteristics test: including power supply, pin voltage, supply current, standby current AW5005A GND GND RF INPUT 1 6 2 5 RFIN RF OUTPUT RFOUT EN LOGIC CONTROL SUPPLY VOLTAGE VCC 3 BIAS 4 A L1 C1 (optional) V L1=9.1nH C1=1nF Figure 28. Circuit for DC test 2. S Parameter test: including input return loss, output return loss, reverse isolation, forward gain, 1dB gain compression. Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 14 of 20 AW5005A datasheet Jan 2016 V1.1 RF INPUT RF OUTPUT AW5005A EVB NetWork Analyzer Figure 29. Circuit for S Parameter test 3. Noise Figure test: including noise figure, power gain. RF INPUT AW5005A EVB Noise Source RF OUTPUT NF Analyzer Figure 30. Circuit for Noise Figure test 4. Intermodulation distortion test: including third-order intercept point. Signal Generator Power Combiner RF INPUT AW5005A EVB RF OUTPUT Signal Analyzer Signal Generator Figure 31. Circuit for intermodulation distortion test Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 15 of 20 AW5005A datasheet Jan 2016 V1.1 APPLICATION INFORMATIONS 2. The output of AW5005A is internally matched to 50 ohm and a DC blocking capacitor is integrated on-chip, thus no external component is required at the output. 1.1 EN control The AW5005A includes an internal switch to turn off the entire chip: apply logic high to EN to turn on, and a logic low to shut down. 1.2 List of components 1. The AW5005A requires only one external inductor for input matching. If the device/phone manufacturers implement very good power supply filtering on their boards, the bypass capacitor mentioned in this application circuit may be optional. With the capacitor we can get better performance like a little higher gain etc. The value is optimized for the best gain, noise figure, return loss performance. Typical value of inductor is 9.1nH, capacitor is 1nF. For schematics see Figure2. 3. The AW5005A should be placed close to the GPS antenna with the input-matching inductor. Use 50ohm microstrip lines to connect RF INPUT and RF OUTPUT. Bypass capacitor should be located close to the device. For long Vcc lines, it may be necessary to add more decoupling capacitors. Proper grounding of the GND pins is very important. Table6 lists the recommended inductor types and values; Table 7 lists the recommended capacitor types and values. Table6: list of inductor Part Number Inductance Q(min) Units nH LQW15A 9.1 25 SDWL1005C 9.1 HQ1005C 9.1 Q Test Frequency Supplier Size 250 Murata 0402 24 250 Sunlord 0402 22 250 Sunlord 0402 MHz Table7: list of capacitor Part Number Capacitance Rated Voltage Units pF V GRM155 1000 50 Supplier Size Murata 0402 Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 16 of 20 AW5005A datasheet Jan 2016 V1.1 PACKAGE INFORMATION A D aaa C A bbb C E A2 A1 B SEATING PLANE LASER MARK FOR PIN 1 IDENTIFICATION IN THIS AREA TOP VIEW C SIDE VIEW 0.10 M e * CAB SYMBOL L b MILLIMETER NOM MAX MIN NOM A 0.50 0.55 0.60 0. 02 0.022 0.024 A1 --- --- 0.05 --- L2 b 0.15 Figure 32. 0.20 --- 0.25 0.002 0.006 0.008 1. 50 bsc 0. 060 bsc E 1. 00 bsc 0. 040 bsc E2 1.000REF D MAX 0.006REF 0.152 REF 0.010 0.040REF L 0.30 0.35 0.40 0.012 0.014 0.016 L2 0.35 0.40 0.45 0.014 0.018 0. 50 bsc e BOTTOM VIEW INCH MIN A2 PIN1 ID E2 CONTROLLING DIEMENSION : MM 0.016 0. 020 bsc TOLERANCES OF FORM AND POSITION aaa bbb 0.05 0.05 Package Outline Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 17 of 20 0.002 0.002 AW5005A datasheet Jan 2016 V1.1 TAPE&REEL DESCRIPTION 2.00.05 1.550.05 B 4.00.1 4.00.1 1.720.05 A A REF 5 1.120.05 B 0.550.05 0.70.05 Section A-A Figure 33. 8.00.3 3.50.05 1.750.1 0.250.05 Tape and Reel Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 18 of 20 Section B-B AW5005A datasheet Jan 2016 V1.1 FOOTPRINT INFORMATION 1.250mm 0.370mm 0.675mm 0.500mm 1.700mm 0.270mm 0.500mm Solder resist Solder paste Occupied area 0.325mm 0.425mm Figure 34. Footprint Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 19 of 20 AW5005A datasheet Jan 2016 V1.1 REVISION HISTORY Table 8. Revision history Document ID Release date Change notice Supersedes AW5005A_V1.1 2016-01 Added Tape & Reel Description and corrected the marking location of Pin1 AW5005A_V1.0 AW5005A_V1.0 2015-12 Product data sheet AW5005A_V0.9 AW5005A_V0.9 2015-11 Added typical operating characteristics Preliminary data sheet - NoticeShanghai Awinic Technology Co. ltd cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Awinic product. No circuit patent licenses are implied. Awinic reserves the right to change the circuitry and specifications without notice at any time. Copyright (c) 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 20 of 20