AW5005A 产品手册
2016 1 V1.1
版权所有© 2016 上海艾为电子技术有限公司
1 20
极低噪声系数,应用于全球导航卫星系统的低噪声放大器
特性
采用专利的智能线性度增强技术SLT
减轻射频环境干扰;
极低的噪声系数:0.65dB
高功率增益:17.0dB
高线性度 IIP3oob+4.5dBm
高线性度 IIP2oob-1.0dBm
简单的 PCB 应用,只需一个外置的匹配电
感;
输出内部匹配到 50 欧姆;
工作电压:1.5V~3.6V;
工作频率:1550~1615MHz;
纤小的 1.5mmX1.0mmX 0.55mm DFN 6L
封装
3kV HBM 静电保护(包括 RFIN RFOUT
引脚)
应用
手机、平板电脑、数码相机
个人导航设备、射频前模组
完整的 GPS 芯片模组
防盗保护设备
描述
AW5005A是一款适用 GPS,格洛纳
斯,伽利略和北斗全球导航卫星系统
(GNSS)
单,只需要一个外置输入匹配电感,节省占板
面积,是一款经济高效的解决方案。
AW5005A 采用专利的智能线性度增强
技术SLT,具有极低噪声系数,高线性度,
高增益等特性,可支持低至 1.5V高至 3.6V
的供电电压。所有这些特性使得 AW5005A
成为 GNSS 低噪声放大器的最佳选择,极低
的噪声系数大大地改善了灵敏度,高线性度
使得系统能更好地抵抗带外干扰,并且降低
了前级的滤波要求,进而降低了 GNSS 接收
机的总成本。
AW5005A 采用纤小的 1.5mm x 1.0
mm x 0.55 mm DFN-6L 封装,额定的工作
温度范围为-40℃至 85℃。
引脚分布及标记图
Pin No. Pin Name
1
2
3
4
5
6
GND
GND
RFIN
VCC
EN
RFOUT
C---AW5005ADNRXY---生产跟踪码
CXY
1
2
3
6
5
4
顶视图
1
2
3
6
5
4
底视图
1. AW5005A脚分布及标识
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 2 of 20
Ultra-Low Noise Amplifier for Global Navigation
Satellite Systems (GNSS)
FEATURES
Reduce RF environment Interference
with patented Smart-Linearity-Tech-
nology (SLT);
Ultra low noise figure(NF)=0.65dB;
High power gain=17.0dB;
High linearity IIP3oob=+4.5dBm;
High linearity IIP2oob=-1.0dBm;
Requires only one input matching
inductor;
RF output internally matched to 50 ohm;
Supply voltage: 1.5V to 3.6V;
Operating frequencies: 1550~1615MHz;
Slim DFN-6L package:1.5mmX1.0mmX
0.55mm
3kV HBM ESD protection (including
RFIN and RFOUT pin)
APPLICATIONS
Smart phones, feature phones,
Tablet PCs,
Personal Navigation Devices,
Digital Still Cameras, Digital Video
Cameras;
RF Front End modules;
Complete GPS chipset modules;
Theft protection(laptop, ATM);
INTRODUCTION
The AW5005A is a Low Noise Am-
plifier designed for Global Navigation Sa-
tellite Systems (GNSS) as GPS,
GLONASS, Galileo and Compass. The
AW5005ADNR requires only one external
input matching inductor, reduces assembly
complexity and the PCB area, enabling a
cost-effective solution.
The AW5005A with patented Smart
Linearity Technology (SLT) achieves ultra
low noise figure, high linearity, high gain,
over a wide range of supply voltages from
1.5V up to 3.6V. All these features make
AW5005A an excellent choice for GNSS
LNA as it improves sensitivity with low
noise figure and high gain, provide better
immunity against out-of-band jammer sig-
nals with high linearity, reduces filtering
requirement of preceding stage and hence
reduces the overall cost of the GNSS re-
ceiver.
The AW5005A is available in a small
lead-free, RoHS-Compliant, 1.5mm x
1.0mm x 0.55mm 6-pin DFN package
PIN CONFIGURATION AND MARKING
Pin No. Pin Name
1
2
3
4
5
6
GND
GND
RFIN
VCC
EN
RFOUT
C---AW5005ADNRXY---Manufactory trace No.
1
2
3
6
5
4
Bottom View
CXY
1
2
3
6
5
4
Top View
Figure 1. AW5005A Pin Configuration and Marking
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 3 of 20
TYPICAL APPLICATION
1
2
3
6
5
4
AW5005A
BIAS
GND
GND
RFIN VCC
EN
RFOUT
RF
INPUT
RF
OUTPUT
LOGIC
CONTROL
SUPPLY
VOLTAGE
L1 C1
L1=9.1nH
C1=1nF
(optional)
Figure 2. Application Schematic AW5005A
For a list of components see Table 6 and Table 7.
ORDER INFORMATION
Table 1 Order Information
Part Number
Temperature
Package
RoHS
Mark
SPQ
AW5005ADNR
-40℃~85
1.5mm x 1.0 mm x 0.55mm
DFN-6L
Yes
C
Tape and Reel
3000pcs/Reel
R : Tape & Reel
DN: DFN
AW5005A
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 4 of 20
ABSOLUTE MAXIMUM RATINGS 1)
Table 2 . Limiting Values
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Supply Voltage at pin VCC
VCC
-0.3
-
5.0
V
Voltage at pin EN2)
VEN
-0.3
-
5.0
V
Current into pin VCC
ICC
-
-
30
mA
RF input power3)
PIN
-
-
10
dBm
Package thermal resistance
θJA
-
148.2
/W
Junction temperature
TJ
-
-
150
Storage temperature range
TSTG
-65
-
150
Ambient temperature range
Tamb
-40
-
85
Solder temperature(10s)
-
260
-
ESD range
HBM 4)
±3000
V
MM 5)
±150
V
Latch-up
StandardJEDEC STANDARD NO.78D NOVEMBER 2011
+IT: +400
-IT: -400
mA
mA
Note1: Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.
These are stress ratings only and functional operation of the device at these or any other conditions beyond those
indicated under recommended operating conditions is not implied. Exposure to absolute maximum rated condi-
tions for extended periods may affect device reliability.
Note2: Warning: due to internal ESD diode protection, the applied DC voltage should not exceed 5.0V in order to
avoid excess current.
Note3: The RF input and RF output are AC coupled through internal DC blocking capacitor.
Note4: HBM standard: MIL-STD-883H Method 3015.8.
Note5: MM standard: JEDEC EIA/JESD22-A115.
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 5 of 20
ELECTRICAL CHARACTERISTICS
Table 3 . Electrical Characteristics
AW5005A EVB
1; VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at VCC=2.8V and
Tamb=+25, f=1575.42MHz, unless otherwise noted.
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
DC ELECTRICAL CHARACTERISTICS
VCC
Supply Voltage
1.5
-
3.6
V
ISD
Shut-Down Current
EN=Low
1
μA
ICC Supply Current
EN=High
5.8
9
mA
VEN
Digital Input-Logic High
0.80
V
VEN
Digital Input-Logic Low
0.45
V
AC ELECTRICAL CHARACTERISTICS
Gp
Power Gain
17.0
dB
RLin
Input Return Loss
7.5
dB
ISL
Reverse Isolation
26
dB
RLout
Output Return Loss
18
dB
NF
Noise Figure2)
Zs=50 ohm;
No jammer
0.65
dB
Kf
Stability factor
f=20MHz10GHz
1.0
NFj Noise Figure with jam-
mer
Pjam=-20dBm;
fjam=850MHz
1.05
dB
Pjam=-20dBm;
fjam= 1850MHz
0.75
dB
IP1dB
Inband input
1dB-compression point
f=1575.42MHz;
-12
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-20dBm
+4.3
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-30dBm
+4.5
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-20dBm
-1.2
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-30dBm
-1.2
dBm
H2-input
referred
LTE band-13 2nd Har-
monic
f=787.76MHz;
Pin=-25dBm;
fH2=1575.52MHz
-72.4
dBm
ton
Turn-on time3)
2.2
µs
toff
Turn-off time3)
1.7
µs
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 6 of 20
Table 4 . Electrical Characteristics
(AW5005A EVB1); VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at
VCC=1.8V and Tamb=+25, f=1575.42MHz, unless otherwise noted.
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
DC ELECTRICAL CHARACTERISTICS
VCC
Supply Voltage
1.5
-
3.6
V
ISD
Shut-Down Current
EN=Low
1
μA
ICC Supply Current
EN=High
5.4
9
mA
VEN
Digital Input-Logic High
0.80
V
VEN
Digital Input-Logic Low
0.45
V
AC ELECTRICAL CHARACTERISTICS
Gp
Power Gain
16.8
dB
RLin
Input Return Loss
7.2
dB
ISL
Reverse Isolation
25.6
dB
RLout
Output Return Loss
18.2
dB
NF
Noise Figure2
Zs=50 ohm;
No jammer
0.66
dB
Kf
Stability factor
f=20MHz10GHz
1.0
NFj Noise Figure with jam-
mer
Pjam=-20dBm;
fjam=850MHz
1.05
dB
Pjam=-20dBm;
fjam= 1850MHz
0.73
dB
IP1dB
Inband input
1dB-compression point
f=1575.42MHz
-12
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-20dBm;
+4.3
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-30dBm;
+4.5
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-20dBm;
-1.4
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-30dBm;
-1.2
dBm
H2-input
referred
LTE band-13 2nd Har-
monic
f=787.76MHz;
Pin=-25dBm;
fH2=1575.52MHz
-72.6
dBm
ton
Turn-on time3)
2.2
µs
toff
Turn-off time3)
1.7
µs
Note1: input matched to 50 ohm using a high quality-factor 9.1nH inductor.
Note2: 0.08dB PCB losses are subtracted.
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 7 of 20
Note3: Within 10% of the final gain.
TYPICAL OPERATING CHARACTERISTICS
AW5005A EVB; Typical values are at VCC=2.8V and TA=+25, fRFIN=1575.42MHz, unless otherwise noted.
0
1
2
3
4
5
6
7
8
9
10
1
1.5
2
2.5
3
3.5
ICC (mA)
ICC
(1)
(2)
Pi=-45dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
VCC (V)
(3)
Figure 3. Supply current as a function of supply
voltage; typical values
0
0.5
1
1.5
2
2.5
1
1.5
2
2.5
3
3.5
NF (dB)
Noise Figure
(1)
(2)
(3)
f1=1575.42MHz, no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
VCC (V)
Figure 4. Noise Figure as a function of supply
voltage; typical values
14
15
16
17
18
19
20
1
1.5
2
2.5
3
3.5
PG (dB)
Power Gain
(1)
(2)
(3)
Pi=-45dBm, f1=1575.42MHz, no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
VCC (V)
Figure 5. Power Gain as a function of supply
voltage; typical values
0
0.5
1
1.5
2
2.5
3
3.5
1000
1200
1400
1600
1800
2000
NF (dB)
Noise Figure
(1)
(2)
(3)
VCC=1.8V, no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 6. Noise Figure as a function of frequen-
cy; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 8 of 20
0
0.5
1
1.5
2
2.5
3
1000
1200
1400
1600
1800
2000
NF (dB)
Noise Figure
(1)
(2)
(3)
VCC=2.8V, no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 7. Noise Figure as a function of frequen-
cy; typical values
0
2
4
6
8
10
12
14
16
18
20
1000
1200
1400
1600
1800
2000
RLout (dB)
Output Return Loss
(1)
(2)
(3)
VCC=1.8V, Pi=-45dBm,no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 8. Power Gain as a function of frequency;
typical values
0
2
4
6
8
10
12
14
16
18
20
1000
1200
1400
1600
1800
2000
RLout (dB)
Output Return Loss
(1)
(2)
(3)
VCC=2.8V, Pi=-45dBm,no jammer.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 9. Power Gain as a function of frequency;
typical values
8
10
12
14
16
18
20
-35
-31
-27
-23
-20
-16
-12
-8
-4
PG (dB)
Power Gain
(1)
(2)
(3)
VCC=1.8V, f1=1575.42MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 10. Power Gain as a function of input
power; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 9 of 20
12
13
14
15
16
17
18
19
-35
-31
-27
-23
-20
-16
-12
-8
-4
PG (dB)
Power Gain
(1)
(2)
(3)
VCC=2.8V, f1=1575.42MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 11. Power Gain as a function of input
power; typical values
8
10
12
14
16
18
20
-35
-31
-27
-23
-20
-16
-12
-8
-4
PG (dB)
Power Gain
(1)
(2)
(3)
TA=+25, f1=1575.42MHz.
(1) VCC=3.6V
(2) VCC=3.1V
(3) VCC=2.8V
(4) VCC=1.8V
(5) VCC=1.5V
Pi(dBm)
(4)
(5)
Figure 12. Power Gain as a function of input
power; typical values
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
-30
-25
-20
-15
-10
IIP3(dBm)
out-of-band IIP3
(1)
(2)
(3)
VCC=1.8V, f1=1713MHz, f2=1851MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 13. out-of-band input IP3 as a function of
input power; typical values
0
2
4
6
8
10
12
-30
-25
-20
-15
-10
IIP3(dBm)
out-of-band IIP3
(1)
(2)
(3)
VCC=2.8V, f1=1713MHz, f2=1851MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 14. out-of-band input IP3 as a function of
input power; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 10 of 20
-5
-4
-3
-2
-1
0
1
2
3
4
-30
-25
-20
-15
-10
IIP2 (dBm)
out-of-band IIP2
(1)
(2)
(3)
VCC=1.8V, f1=824.6MHz, f2=2400MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 15. out-of-band input IP2 as a function of
input power; typical values
-4
-3
-2
-1
0
1
2
3
4
-30
-25
-20
-15
-10
IIP2 (dBm)
out-of-band IIP2
(1)
(2)
(3)
VCC=2.8V, f1=824.6MHz, f2=2400MHz.
(1) TA=-25
(2) TA=+25
(3) TA=+85
Pi(dBm)
Figure 16. out-of-band input IP2 as a function of
input power; typical values;
-10
-9
-8
-7
-6
-5
-4
-3
-2
1385
1585
1785
1985
RLin (dB)
Input Return Loss
(1)
(2)
(3)
VCC=1.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 17. Input Return Loss as a function of
frequency; typical values
-11
-10
-9
-8
-7
-6
-5
-4
-3
1385
1585
1785
1985
RLin (dB)
Input Return Loss
(1)
(2)
(3)
VCC=2.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 18. Input Return Loss as a function of
frequency; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 11 of 20
-9
-8
-7
-6
-5
-4
-3
1385
1585
1785
1985
RLin(dB)
Input Return Loss
f(MHz)
(1)
(2)
(3)
(4)
(5)
TA=+25; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
Figure 19. Input Return Loss as a function of
frequency; typical values
-35
-30
-25
-20
-15
-10
-5
0
1000
1200
1400
1600
1800
2000
RLout(dB)
Output Return Loss
f(MHz)
(1)
(2)
(3)
(4)
(5)
TA=+25; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
Figure 20. Output Return Loss as a function of
frequency; typical values
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
1000
1200
1400
1600
1800
2000
RLout (dB)
Output Return Loss
(1)
(2)
(3)
VCC=1.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 21. Output Return Loss as a function of
frequency; typical values
-40
-35
-30
-25
-20
-15
-10
-5
0
1000
1200
1400
1600
1800
2000
RLout (dB)
Output Return Loss
(1)
(2)
(3)
VCC=2.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 22. Output Return Loss as a function of
frequency; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 12 of 20
-40
-35
-30
-25
-20
-15
1000
1200
1400
1600
1800
2000
ISL (dB)
Reverse Isolation
(1)
(2)
(3)
VCC=1.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 23. Reverse Isolation as a function of
frequency; typical values;
-40
-35
-30
-25
-20
-15
1000
1200
1400
1600
1800
2000
ISL (dB)
Reverse Isolation
(1)
(2)
(3)
VCC=2.8V, Pi=-35dBm.
(1) TA=-25
(2) TA=+25
(3) TA=+85
f(MHz)
Figure 24. Reverse Isolation as a function of
frequency; typical values;
-35
-33
-31
-29
-27
-25
-23
-21
-19
-17
-15
1000
1200
1400
1600
1800
2000
ISL (dB)
Reverse Isolation
f(MHz)
(1)
(2)
(3)
(4)
(5)
TA=+25; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
Figure 25. Reverse Isolation as a function of
frequency; typical values
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 13 of 20
AW5005A APPLICATION BOARD
Figure 26. Drawing of Application Board
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 14 of 20
FR4
Copper
35um
Vias
AW5005ADNR_application_board_sideview
Figure 27. Application Board Cross-Section
TEST CIRCUITS
1. DC Characteristics test: including power supply, pin voltage, supply current, standby current
1
2
3
6
5
4
AW5005A
BIAS
GND
GND
RFIN VCC
EN
RFOUT
RF
INPUT
RF
OUTPUT
LOGIC
CONTROL
SUPPLY
VOLTAGE
L1 C1
L1=9.1nH
C1=1nF
(optional) V
A
Figure 28. Circuit for DC test
2. S Parameter test: including input return loss, output return loss, reverse isolation, forward
gain, 1dB gain compression.
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 15 of 20
NetWork Analyzer
AW5005A
EVB
RF
INPUT RF
OUTPUT
Figure 29. Circuit for S Parameter test
3. Noise Figure test: including noise figure, power gain.
NF Analyzer
AW5005A
EVB
RF
INPUT RF
OUTPUT
Noise
Source
Figure 30. Circuit for Noise Figure test
4. Intermodulation distortion test: including third-order intercept point.
Signal
Generator
Signal
Generator
Power
Combiner AW5005A
EVB
RF
INPUT RF
OUTPUT Signal Analyzer
Figure 31. Circuit for intermodulation distortion test
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 16 of 20
APPLICATION INFORMATIONS
1.1 EN control
The AW5005A includes an internal
switch to turn off the entire chip:
apply logic high to EN to turn on,
and a logic low to shut down.
1.2 List of components
1. The AW5005A requires only one
external inductor for input matching.
If the device/phone manufacturers
implement very good power supply
filtering on their boards, the bypass
capacitor mentioned in this applica-
tion circuit may be optional. With
the capacitor we can get better
performance like a little higher gain
etc. The value is optimized for the
best gain, noise figure, return loss
performance. Typical value of in-
ductor is 9.1nH, capacitor is 1nF.
For schematics see Figure2.
2. The output of AW5005A is internally
matched to 50 ohm and a DC
blocking capacitor is integrated
on-chip, thus no external compo-
nent is required at the output.
3. The AW5005A should be placed
close to the GPS antenna with the
input-matching inductor. Use 50-
ohm microstrip lines to connect RF
INPUT and RF OUTPUT. Bypass
capacitor should be located close to
the device. For long Vcc lines, it
may be necessary to add more
decoupling capacitors. Proper
grounding of the GND pins is very
important.
Table6 lists the recommended inductor types and values; Table 7 lists the recommended
capacitor types and values. Table6: list of inductor
Part Number
Inductance
Q(min)
Q Test
Frequency
Supplier
Size
Units
nH
MHz
LQW15A
9.1
25
250
Murata
0402
SDWL1005C
9.1
24
250
Sunlord
0402
HQ1005C
9.1
22
250
Sunlord
0402
Table7: list of capacitor
Part Number
Capacitance
Rated Voltage
Supplier
Size
Units
pF
V
GRM155
1000
50
Murata
0402
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 17 of 20
PACKAGE INFORMATION
ADaaa C
bbbC
B
TOP VIEW
LASER MARK FOR PIN 1
IDENTIFICATION IN THIS AREA
E
A
A2
A1
C
SEATING
PLANE
BOTTOM VIEW
SIDE VIEW
0.10
L
MC A B
E2 PIN1 ID
b
e
* CONTROLLING DIEMENSION : MM
A
A1
A2
SYMBOL MILLIMETER INCH
MIN NOM MAX MIN NOM MAX
0.50 0.55 0.60
--- --- 0.05
0.15 0.20 0.25
0.30 0.35 0.40
0. 02 0. 022 0. 024
--- --- 0.002
0.006 0. 008 0.010
0.012 0. 014 0.016
0.152 REF 0.006REF
1. 50 bsc
1. 00 bsc
0. 060 bsc
0. 040 bsc
0. 50 bsc 0. 020 bsc
TOLERANCES OF FORM AND POSITION
0.05
0.05
0.002
0.002
b
D
E
E2
L
e
aaa
bbb
1.000REF 0.040REF
L2
L2 0.40 0.450.35 0.014 0.016 0.018
Figure 32. Package Outline
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 18 of 20
TAPE&REEL DESCRIPTION
4.0±0.1
4.0±0.1
Φ1.55±0.05
AA
BΦ0.55±0.05
B
2.0±0.05
8.0±0.3
3.5±0.05 1.75±0.1
1.72±0.05
0.25±0.05
1.12±0.05 0.7±0.05
REF 5° Section B-B
Section A-A
Figure 33. Tape and Reel
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 19 of 20
FOOTPRINT INFORMATION
1.250mm
1.700mm
0.675mm
0.370mm
0.270mm
0.325mm 0.425mm
0.500mm
0.500mm
Solder resist
Solder paste
Occupied area
Figure 34. Footprint
AW5005A datasheet
Jan 2016 V1.1
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 20 of 20
REVISION HISTORY
Table 8. Revision history
Document ID
Release
date
Change notice
Supersedes
AW5005A_V1.1
2016-01
Added Tape & Reel Description and cor-
rected the marking location of Pin1
AW5005A_V1.0
AW5005A_V1.0
2015-12
Product data sheet
Added typical operating characteristics
AW5005A_V0.9
AW5005A_V0.9
2015-11
Preliminary data sheet
-
Notice
Shanghai Awinic Technology Co. ltd cannot assume responsibility for use of any
circuitry other than circuitry entirely embodied in an Awinic product. No circuit patent
licenses are implied. Awinic reserves the right to change the circuitry and specifications
without notice at any time.