TSV629x, TSV629xA Micropower, wide bandwidth CMOS operational amplifiers Features Rail-to-rail input and output Low power consumption: 29 A typ, 36 A max Low supply voltage: 1.5 - 5.5 V High gain bandwidth product: 1.3 MHz typ Stable when used in gain configuration Low power shutdown mode: 5 nA typ Good accuracy: 800 V max (A version) Low input bias current: 1 pA typ Micropackages: MiniSO-8, SOT23-8, MiniSO-10, TSSOP14, TSSOP16 EMI hardened operational amplifiers High tolerance to ESD: 4 kV HBM Extended temperature range: -40 to +125 C SOT23-8 SO-8 MiniSO-8/10 Applications Battery-powered applications Portable devices Signal conditioning Active filtering Medical instrumentation TSSOP-14 TSSOP-16 Description The TSV6292, TSV6293, TSV6294 and TSV6295 dual and quad operational amplifiers offer a high bandwidth of 1.3 MHz while consuming only 29 A. They must be used in a gain configuration (equal or above +4 or -3). The TSV629x series features low voltage, low power operation and rail-to-rail input and output. The devices also offer an ultra-low input bias current and low input offset voltage. These features make the TSV629x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering. Table 1. Device summary Dual version Reference Quad version Without With Without With standby standby standby standby TSV629x TSV6292 TSV6293 TSV6294 TSV6295 TSV629xA TSV6292A TSV6293A TSV6294A TSV6295A The TSV6293 (dual) and TSV6295 (quad) have two shutdown pins for reduced power consumption. March 2010 Doc ID 16882 Rev 2 1/25 www.st.com 25 Contents TSV629x, TSV629xA Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 Shutdown function (TSV6293, TSV6295) . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.7 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.8 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6 TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2/25 Doc ID 16882 Rev 2 TSV629x, TSV629xA 1 Package pin connections Package pin connections Figure 1. Pin connections for each package (top view) Out1 1 In1- 2 _ In1+ 3 + VCC- 4 Out1 1 In1- 2 _ In2- In1+ 3 + In2+ VCC- 4 SHDN1 5 8 VCC+ 7 Out2 _ 6 + 5 TSV6292IDT/IST/ILT 10 VCC+ SO8/Mini-SO8/SOT23-8 1 In1- 2 _ _ 13 In4- In1+ 3 + + 12 In4+ VCC+ 4 In2+ 5 In2- 6 Out2 7 + _ In3- 8 Out3 8 In2- + 7 In2+ 6 SHDN2 16 Out4 1 In1- 2 _ _ 15 In4- In1+ 3 + + 14 In4+ VCC+ 4 In2+ 5 In2- 6 Out2 7 10 Out3 SHDN1/2 8 9 10 In3+ 9 _ Out1 11 VCC+ _ Out2 TSV6293IST MiniSO-10 14 Out4 Out1 9 TSV6294IPT 13 VCC+ _ + _ 12 In3+ 11 In3- SHDN3/4 TSV6295IPT TSSOP16 TSSOP14 Doc ID 16882 Rev 2 3/25 Absolute maximum ratings and operating conditions 2 TSV629x, TSV629xA Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin SHDN Parameter (1) Supply voltage Differential input voltage Input voltage (3) Input current (4) (2) (3) Shutdown voltage Value Unit 6 V VCC V VCC- - 0.2 to VCC++ 0.2 V 10 mA VCC- - 0.2 to VCC++ 0.2 V -65 to +150 C Tstg Storage temperature Rthja Thermal resistance junction to ambient(5)(6) SOT23-8 MiniSO-8 SO-8 Mini-SO10 TSSOP14 TSSOP16 105 190 125 113 100 95 Maximum junction temperature 150 C 4 kV 200 V 1.5 kV 200 mA Tj HBM: human body ESD MM: machine model(7) model(8) CDM: charged device model(9) Latch-up immunity C/W 1. All voltage values, except differential voltages are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. Table 3. Operating conditions Symbol 4/25 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Doc ID 16882 Rev 2 Value Unit 1.5 to 5.5 V VCC- - 0.1 to VCC+ + 0.1 V -40 to +125 C TSV629x, TSV629xA Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV629x TSV629xA TSV6293AIST - MiniSO-10 4 0.8 1 mV TSV629x -Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV6293AIST - Tmin < Top < Tmax 6 2 2.2 DC performance Vio DVio Iio Iib CMR Offset voltage Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (Vic/Vio) Tmin < Top < Tmax Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V 53 Tmin < Top < Tmax 51 RL= 10 k, Vout= 0.5 V to 1.3 V 78 Tmin < Top < Tmax 73 35 50 Avd Large signal voltage gain VOH High level output voltage RL = 10 k Tmin < Top < Tmax VOL Low level output voltage RL = 10 k Tmin < Top < Tmax Isink Iout Isource ICC Supply current (per operator) V/C 2 10 pA 1 100 pA 1 10 (1) pA 1 100 pA 74 6 Tmin < Top < Tmax 4 Vout = 0 V 6 Tmin < Top < Tmax 4 dB dB 95 dB dB 5 4 Vout = 1.8 V No load, Vout=VCC/2 1 (1) mV 35 50 mV 12 mA 10 25 Tmin < Top < Tmax 31 A 33 A AC performance GBP Gain bandwidth product RL = 10 k, CL = 100 pF 1.1 MHz Gain Minimum gain for stability Phase margin = 60, Rf = 10k, RL = 10 k, CL = 20 pF, Top = 25 C +4 -3 V/V Slew rate RL = 10 k, CL = 100 pF, Vout = 0.5 V to 1.3V 0.33 V/s SR 1. Guaranteed by design. Doc ID 16882 Rev 2 5/25 Electrical characteristics Table 5. TSV629x, TSV629xA Shutdown characteristics VCC = 1.8 V (TSV6293, TSV6295) Symbol Parameter Conditions Min. Typ. Max. Unit 2.5 50 nA Tmin < Top < 85 C 200 nA Tmin < Top < 125 C 1.5 A DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) ton Amplifier turn-on time RL = 5 k, Vout = VCC- to VCC- + 0.2 V 200 ns toff Amplifier turn-off time RL = 5 k, Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 20 ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 pA IIL SHDN current low SHDN = VCC- 10 pA Output leakage in shutdown mode SHDN = VCC- 50 pA Tmin < Top < 125 C 1 nA IOLeak 6/25 1.35 V 0.6 Doc ID 16882 Rev 2 V TSV629x, TSV629xA Table 6. Electrical characteristics VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio DVio TSV629x TSV629xA TSV6293AIST - MiniSO-10 4 0.8 1 TSV629x -Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV6293AIST - Tmin < Top < Tmax 6 2 2.2 Offset voltage mV Input offset voltage drift Input offset current Iio Iib CMR Tmin < Top < Tmax 1 10(1) pA 1 100 pA 1 10(1) pA 1 100 pA Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (Vic/Vio) 0 V to 3.3 V, Vout = 1.65 V 57 Tmin < Top < Tmax 53 RL=10 k, Vout= 0.5 V to 2.8 V 81 Tmin < Top < Tmax 76 35 50 Avd Large signal voltage gain VOH High level output voltage RL = 10 k Tmin < Top < Tmax VOL Low level output voltage RL = 10 k Tmin < Top < Tmax Isink Iout Isource ICC V/C 2 Supply current (per operator) 23 Tmin < Top < Tmax 20 Vo = 0 V 23 Tmin < Top < Tmax 20 dB dB 98 dB dB 5 4 Vo = 5 V No load, Vout= 2.5 V 79 mV 35 50 mV 45 mA 38 mA 26 Tmin < Top < Tmax 33 A 35 A AC performance GBP Gain bandwidth product RL = 10 k, CL = 100 pF 1.2 MHz Gain Minimum gain for stability Phase margin = 60, Rf = 10k, RL = 10 k, CL = 20 pF, Top = 25 C +4 -3 V/V Slew rate RL = 10 k, CL = 100 pF, Vout = 0.5 V to 2.8 V 0.4 V/s SR 1. Guaranteed by design. Doc ID 16882 Rev 2 7/25 Electrical characteristics Table 7. TSV629x, TSV629xA VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio DVio Iio Iib CMR TSV629x TSV629xA TSV6293AIST - MiniSO-10 4 0.8 1 TSV629x - Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax 6 2 2.2 Offset voltage mV Input offset voltage drift Tmin < Top < Tmax Tmin < Top < Tmax Common mode rejection ratio 20 log (Vic/Vio) 0 V to 5 V, Vout = 2.5 V 60 Tmin < Top < Tmax 55 RL=10 k, Vout = 0.5 V to 4.5 V 85 Tmin < Top < Tmax 80 Supply voltage rejection ratio VCC = 1.8 to 5 V 20 log (VCC/Vio) Tmin < Top < Tmax 75 SVR 1 100 pA 1 10(1) pA 1 100 pA 80 dB 98 dB 102 dB 73 VRF = 100 mVrms, f = 400 MHz 61 EMI rejection ratio VRF = 100 mVrms, f = 900 MHz 85 EMIRR = -20 log (VRFpeak/Vio) VRF = 100 mVrms, f = 1800 MHz 92 VRF = 100 mVrms, f = 2400 MHz 83 VOH High level output voltage VOL Low level output voltage dB RL = 10 k 35 Tmin < Top < Tmax 50 7 mV RL = 10 k 6 Iout Isource Supply current (per operator) 50 Vo = 5 V 40 Tmin < Top < Tmax 35 Vo = 0 V 40 Tmin < Top < Tmax 35 No load, Vout = 2.5 V Tmin < Top < Tmax Doc ID 16882 Rev 2 35 mV Tmin < Top < Tmax Isink 8/25 pA Input bias current Large signal voltage gain ICC 1 10(1) Input offset current Avd EMIRR V/C 2 69 mA 74 mA 29 36 A 38 A TSV629x, TSV629xA Table 7. Electrical characteristics VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit AC performance GBP Gain bandwidth product RL = 10 k, CL = 100 pF 1.3 MHz Gain Minimum gain for stability Phase margin = 60, Rf = 10k, RL = 10 k, CL = 20 pF, Top = 25 C +4 -3 V/V SR Slew rate RL = 10 k, CL = 100 pF, Vout = 0.5 V to 4.5 V 0.5 V/s en Equivalent input noise voltage f = 1 kHz 77 nV -----------Hz Total harmonic distortion + noise Av = -10, fin = 1 kHz, RL= 100 k, Vicm = Vcc/2, Vout = 1 Vrms, BW = 22 kHz 0.03 % THD+N 1. Guaranteed by design. Table 8. Shutdown characteristics at VCC = 5 V (TSV6293, TSV6295) Symbol Parameter Conditions Min. Typ. Max. Unit 5 50 nA Tmin < Top < 85 C 200 nA Tmin < Top < 125 C 1.5 A DC performance SHDN = VIL ICC Supply current in shutdown mode (all operators) ton Amplifier turn-on time RL = 5 k, Vout = VCC- to VCC- + 0.2 V 200 ns toff Amplifier turn-off time RL = 5 k, Vout = VCC+ - 0.5 V to VCC + - 0.7 V 20 ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 pA IIL SHDN current low SHDN = VCC- 10 pA 50 pA 1 nA IOLeak 2 V 0.8 Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125 C Doc ID 16882 Rev 2 V 9/25 Electrical characteristics TSV629x, TSV629xA Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Figure 3. Output current vs. output voltage at VCC = 1.5 V Figure 4. Output current vs. output voltage at Figure 5. VCC = 5 V Closed loop frequency response, gain = -10 at VCC = 1.5 V & VCC = 5 V 20 VCC=5V Gain (dB) 15 VCC=1.5V 10 Closed loop gain=-10 CLoad=100pF, Vicm=VCC/2, Iout giving minimum stability on a typical part at T=25 C, RLoad=10k 5 0 10000 100000 1000000 Frequency (Hz) Figure 6. Closed loop frequency response, gain = -3, VCC = 1.5 V Figure 7. Closed loop frequency response, gain = -3, VCC = 5 V 12 12 RLoad=10k RLoad=10k 10 10 6 4 RLoad=100k to VCC/2 RLoad=10k for Iout giving minimum stability on a typical part 6 2 100000 1000000 0 10000 100000 Frequency (Hz) Frequency (Hz) 10/25 RLoad=100k to VCC/2 RLoad=10k for Iout giving minimum stability on a typical part 4 2 0 10000 RLoad=100k 8 Gain (dB) Gain (dB) 8 RLoad=100k Doc ID 16882 Rev 2 1000000 TSV629x, TSV629xA Figure 8. Electrical characteristics Positive slew rate vs. supply voltage in closed loop Figure 9. Negative slew rate vs. supply voltage in closed loop RLoad=10k, CLoad=100pF, ACL=-10 Vin: from VCC+-0.5V to 0.5V SR calculated from 10% to 90% Vicm=VCC/2 Slew rate (V/ s) Slew rate (V/ s) T=125C T=25C T=-40C T=125C T=-40C RLoad=10k, CLoad=100pF, ACL=-10 Vin: from 0.5V to VCC+-0.5V SR calculated from 10% to 90% Vicm=VCC/2 T=25C Supply voltage (V) Supply voltage (V) Amplitude (V) Slew rate (V/ s) Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop loop Open loop configuration, T = 25 C RLoad=10k, CLoad=100pF, Vin=1VPP, Vicm=VCC/2 SR calculated from 0.5V to VCC-0.5V Open loop,RLoad=10k CLoad=100pF, Vicm=VCC/2 T=25C, VCC=5V, Vin = 1VPP Supply voltage (V) Time (s) Amplitude (V) RLoad=10k, CLoad=100pF, Vicm=VCC/2, ACL=-10 T=25C, VCC=5V Vout Vin Figure 13. Noise at VCC = 5 V Input equivalent noise density (nV/VHz) Figure 12. Slew rate timing in closed loop Time (s) Vicm=2.5V Vicm=4.5V VCC=5V T=25C Frequency (Hz) Doc ID 16882 Rev 2 11/25 Electrical characteristics TSV629x, TSV629xA Figure 15. Distortion + noise vs. output voltage at VCC = 5 V THD + N (%) THD + N (%) Figure 14. Distortion + noise vs. output voltage at VCC = 1.8 V Ouput voltage (Vrms) Output voltage (Vrms) THD + N (%) THD + N (%) Figure 16. Distortion + noise vs. frequency at Figure 17. Distortion + noise vs. frequency at VCC = 1.8 V VCC = 5 V Frequency (Hz) Frequency (Hz) Figure 18. EMIRR vs. frequency at Vcc = 5 V, T = 25 C 120 EMIRR Vpeak (dB) 100 80 60 40 20 0 1 10 12/25 2 10 3 10 Doc ID 16882 Rev 2 TSV629x, TSV629xA Application information 4 Application information 4.1 Operating voltages The TSV629x can operate from 1.5 to 5.5 V. The devices' parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV629x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 C to +125 C. 4.2 Rail-to-rail input The TSV629x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V. In the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and THD is slightly degraded. Figure 19. Input offset voltage vs input common mode at VCC = 1.5 V Figure 20. Input offset voltage vs input common mode at VCC = 5 V The devices are guaranteed without phase reversal. 4.3 Rail-to-rail output The operational amplifiers' output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k resistive load to VCC/2. Doc ID 16882 Rev 2 13/25 Application information 4.4 TSV629x, TSV629xA Optimization of DC and AC parameters These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 A typical, min/max at 17%). Parameters linked to the current consumption value, such as GBP, SR and Avd benefit from this narrow dispersion. 4.5 Shutdown function (TSV6293, TSV6295) The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of 200 mV (Figure 21 and Figure 22 show the test configurations). Figure 21. Test configuration for turn-on time (Vout pulled down) + VCC Figure 22. Test configuration for turn-off time (Vout pulled down) + VCC VCC - 0.5 V 2 K GND 2 K GND + VCC - 0.5 V + DUT DUT - - GND GND Figure 23. Turn-on time, VCC = 5 V, Vout pulled down, T = 25 C Figure 24. Turn-off time, VCC = 5 V, Vout pulled down, T = 25 C Shutdown pulse Voltage (V) Vout Output voltage (V) Vcc = 5V T = 25C Vcc = 5V T = 25C RL connected to GND Shutdown pulse Time (s) Time (s) 14/25 Vout Doc ID 16882 Rev 2 TSV629x, TSV629xA 4.6 Application information Driving resistive and capacitive loads These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k. For lower resistive loads, the THD level may significantly increase. The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions: IGainI 3 in an inverting configuration (CL = 20 pF, RL = 100 k) or IgainI 10 (CL = 100 pF, RL = 100 k) Gain +4 in a non-inverting configuration (CL = 20 pF, RL = 100k) or gain +11 (CL = 100 pF, RL= 100 k) As these operational amplifiers are not unity gain stable, the TSV62x (29 A, 420 kHz) or TSV63x (60 A, 880 kHz) - which are unity gain stable - might be a solution for your application. Table 9. Related products Part # 4.7 Icc (A) at 5V GBP (MHz) Minimum gain for stability (CLoad = 100 pF) SR (V/s) TSV622-3-4-5 29 0.42 0.14 1 TSV6292-3-4-5 29 1.3 0.5 +11 TSV632-3-4-5 60 0.88 0.34 1 TSV6392-3-4-5 60 2.4 1.1 +11 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 4.8 Macromodel Two accurate macromodels (with or without shutdown feature) of the TSV629x are available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements. Doc ID 16882 Rev 2 15/25 Package information 5 TSV629x, TSV629xA Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. 16/25 Doc ID 16882 Rev 2 TSV629x, TSV629xA 5.1 Package information SOT23-8 package information Figure 25. SOT23-8 package mechanical drawing Table 10. SOT23-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. Inches Max. Min. Typ. Max. A 1.45 0.057 A1 0.15 0.006 A2 0.90 1.30 0.035 0.051 b 0.22 0.38 0.009 0.015 c 0.08 0.22 0.003 0.009 D 2.80 3 0.110 0.118 E 2.60 3 0.102 0.118 E1 1.50 1.75 0.059 0.069 e 0.65 0.026 e1 1.95 0.077 L 0.30 0.60 < 0 8 Doc ID 16882 Rev 2 0.012 0.024 17/25 Package information 5.2 TSV629x, TSV629xA SO-8 package information Figure 26. SO-8 package mechanical drawing Table 11. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 18/25 Inches 1.04 0 0.040 8 0.10 Doc ID 16882 Rev 2 1 8 0.004 TSV629x, TSV629xA 5.3 Package information MiniSO-8 package information Figure 27. MiniSO-8 package mechanical drawing Table 12. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0 0.037 8 0.10 Doc ID 16882 Rev 2 0 0.031 8 0.004 19/25 Package information 5.4 TSV629x, TSV629xA MiniSO-10 package information Figure 28. MiniSO-10 package mechanical drawing Table 13. MiniSO-10 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.10 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.006 A2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.25 0.33 0.40 0.010 0.013 0.016 c 0.15 0.23 0.30 0.006 0.009 0.012 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e L 0.50 0.40 L1 k aaa 20/25 Inches 0.55 0.020 0.70 0.016 0.95 0 3 0.022 0.028 0.037 6 0.10 Doc ID 16882 Rev 2 0 3 6 0.004 TSV629x, TSV629xA 5.5 Package information TSSOP14 package information Figure 29. TSSOP14 package mechanical drawing Table 14. TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0 0.024 0.030 0.039 8 0.10 Doc ID 16882 Rev 2 0 8 0.004 21/25 Package information 5.6 TSV629x, TSV629xA TSSOP16 package information Figure 30. TSSOP16 package mechanical drawing b Table 15. TSSOP16 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0 L 0.45 aaa 1.00 0.65 k L1 22/25 Inches 0.60 0.006 0.039 0.041 0.0256 8 0 0.75 0.018 1.00 8 0.024 0.030 0.039 0.10 Doc ID 16882 Rev 2 0.004 TSV629x, TSV629xA 6 Ordering information Ordering information Table 16. Order codes Part number Temperature range Package Packing SO-8 Tube and tape & reel TSV6292ID/DT V6292I TSV6292AID/DT V6292AI TSV6292IST K114 MiniSO-8 Tape & reel TSV6292AIST K144 TSV6292ILT TSV6293IST Marking SOT23-8 Tape & reel MiniSO-10 Tape & reel -40 C to +125 C K114 K134 TSV6293AIST K135 TSV6294IPT V6294 TSSOP-14 Tape & reel TSV6294AIPT V6294A TSV6295IPT V6295 TSSOP-16 TSV6295AIPT Tape & reel V6295A Doc ID 16882 Rev 2 23/25 Revision history 7 TSV629x, TSV629xA Revision history Table 17. 24/25 Document revision history Date Revision Changes 14-Jan-2010 1 Initial release. 01-Mar-2010 2 Corrected error in Table 16: Order codes: TSV6295 offered in TSSOP-16 package. Doc ID 16882 Rev 2 TSV629x, TSV629xA Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 16882 Rev 2 25/25