Publication#
17466
Rev:
J
Amendment/
0
Issue Date:
May 1999
MACH 4 CPLD Family
High Performance EE CMOS
Programmable Logic
FEATURES
High-performance, EE CMOS 3.3-V & 5-V CPLD families
Flexible architecture for rapid logic designs
Excellent First-Time-Fit
TM
and refit feature
SpeedLocking
TM
performance for guaranteed fixed timing
Central, input and output switch matrices for 100% routability and 100% pin-out retention
High speed
5.0ns t
PD
Commercial and 7.5ns t
PD
Industrial
182MHz f
CNT
32 to 512 macrocells; 32 to 768 registers
44 to 352 pins in PLCC, PQFP, TQFP, BGA, or fpBGA packages
Advanced capabilities for easy system integration
3.3-V & 5-V JEDEC-compliant operations
JTAG (IEEE 1149.1) compliant for boundary scan testing
3.3-V & 5-V JTAG in-system programming
PCI compliant (-5/-55/-6/-65/-7/-10/-12 speed grades)
Safe for mixed supply voltage system designs
Programmable pull-up or Bus-Friendly
TM
inputs and I/Os
Hot-socketing
Programmable security bit
Individual output slew rate control
Flexible architecture for a wide range of design styles
D/T registers and latches
Synchronous or asynchronous mode
Dedicated input registers
Programmable polarity
Reset/ preset swapping
Advanced EE CMOS process provides high-performance, cost-effective solutions
Supported by Vantis DesignDirect
TM
software for rapid logic development
Supports HDL design methodologies with results optimized for Vantis
Flexibility to adapt to user requirements
Software partnerships that ensure customer success
Lattice/Vantis and third-party hardware programming support
Lattice/VantisPRO
TM
(formerly known as MACHPRO
®
) software for in-system programmability
support on PCs and automated test equipment
Programming support on all major programmers including Data I/O, BP Microsystems, Advin,
and System General
Includes
MACH 4A Family
Advance Information
2 MACH 4 Family
Notes:
1. For information on the M4-96/96 device, please refer to the M4-96/96 datasheet at www.vantis.com.
2. “M4-xxx” is for 5-V devices. “M4LV-xxx” is for 3.3-V devices.
Table 1. MACH 4 Device Features
1,2
Feature M4-32/32
M4LV-32/32 M4-64/32
M4LV-64/32 M4-96/48
M4LV-96/48 M4-128/64
M4LV-128/64 M4-128N/64
M4LV-128N/64 M4-192/96
M4LV-192/96 M4-256/128
M4LV-256/128
Macrocells
32 64 96 128 128 192 256
Maximum User I/O Pins
32 32 48 64 64 96 128
t
PD
(ns)
7.5 7.5 7.5 7.5 7.5 7.5 7.5
f
CNT
(MHz)
111 111 111 111 111 111 111
t
COS
(ns)
5.5 5.5 5.5 5.5 5.5 5.5 5.5
t
SS
(ns)
5.5 5.5 5.5 5.5 5.5 5.5 5.5
Static Power (mA)
25 25 50 70 70 85 100
JTAG Compliant
Yes Yes Yes Yes No Yes Yes
PCI Compliant
Yes Yes Yes Yes Yes Yes Yes
MACH 4 Family 3
Notes:
1. All information on MACH 4A devices is Advance Information. Please contact a Lattice/Vantis sales representative for details on
availability.
Table 2. MACH 4A Device Features
1
3.3 V Devices
Feature M4A3-32 M4A3-64 M4A3-96 M4A3-128 M4A3-192 M4A3-256 M4A3-384 M4A3-512
Macrocells
32 64 96 128 192 256 384 512
User I/O options
32 32/64 48 64/96/128 68/96/128 128/192 132/160/192 132/160/192/
256
t
PD
(ns)
5.0 5.0 5.0 5.0 5.0 5.0 6.5 6.5
f
CNT
(MHz)
182 182 182 182 182 182 154 154
t
COS
(ns)
4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5
t
SS
(ns)
3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0
Static Power (mA)
TBD TBD TBD TBD TBD TBD TBD TBD
JTAG Compliant
Yes Yes Yes Yes Yes Yes Yes Yes
PCI Compliant
Yes Yes Yes Yes Yes Yes Yes Yes
5 V Devices
Feature M4A5-32 M4A5-64 M4A5-96 M4A5-128 M4A5-192 M4A5-256
Macrocells
32 64 96 128 192 256
User I/O options
32 32 48 64 96 128
t
PD
(ns)
5.0 5.0 5.0 5.0 5.0 6.5
f
CNT
(MHz)
182 182 182 182 182 154
t
COS
(ns)
4.0 4.0 4.0 4.0 4.0 4.5
t
SS
(ns)
3.0 3.0 3.0 3.0 3.0 4.0
Static Power (mA)
TBD TBD TBD TBD TBD TBD
JTAG Compliant
Yes Yes Yes Yes Yes Yes
PCI Compliant
Yes Yes Yes Yes Yes Yes
4 MACH 4 Family
GENERAL DESCRIPTION
The MACH
®
4 family from Lattice/V antis offers an exceptionally flexible architecture and delivers
a superior Complex Programmable Logic Device (CPLD) solution of easy-to-use silicon products
and software tools. The overall benefits for users are a guaranteed and predictable CPLD
solution, faster time-to-market, greater flexibility and lower cost. The MACH 4 devices offer
densities ranging from 32 to 512 macrocells with 100% utilization and 100% pin-out retention.
Both the MACH 4 and the MACH 4A families offer 5-V (M4-xxx and M4A5-xxx) and 3.3-V (M4L V-
xxx and M4A3-xxx) operation.
MACH 4 products are 5-V or 3.3-V in-system programmable through the JT AG (IEEE Std. 1149.1)
interface. JTAG boundary scan testing capability also allows product testability on automated test
equipment for device connectivity.
All MACH 4 family members deliver First-Time Fit and easy system integration with pin-out
retention after any design change and refit. With multi-tiered central switch matrices, enhanced
logic arrays, intelligent logic allocators with an XOR gate and multi-clocking, the MACH 4 family
has D or T-type registers and latches as well as synchronous/asynchronous logic and flexible
set/reset capabilities. For both 3.3-V and 5-V operations, MACH 4 products can deliver
guaranteed fixed timing as fast as 5.0 ns t
PD
and 182 MHz f
CNT
through the SpeedLocking feature
when using up to 20 product terms per output (Tables 3 and 4).
Note:
1. C = Commercial, I = Industrial
Table 3. MACH 4 Speed Grades
Device
Speed Grade
1
-7 -10 -12 -14 -15 -18
M4-32/32
M4LV-32/32
C C, I C, I I C I
M4-64/32
M4LV-64/32
C C, I C, I I C I
M4-96/48
M4LV-96/48
C C, I C, I I C I
M4-128/64
M4LV-128/64
C C, I C, I I C I
M4-128N/64
M4LV-128N/64
C C, I C, I I C I
M4-192/96
M4LV-192/96
C C, I C, I I C I
M4-256/128
M4LV-256/128
C C, I C, I I C I
MACH 4 Family 5
Notes:
1. C = Commercial, I = Industrial
2. All information on MACH 4A devices is Advance Information. Please contact a Lattice/Vantis sales representative for details on
availability.
The MACH 4 family offers 20 density-I/O combinations in Thin Quad Flat Pack (TQFP), Plastic
Quad Flat Pack (PQFP), Plastic Leaded Chip Carrier (PLCC), Ball Grid Array (BGA), and fine-
pitch BGA (fpBGA) packages ranging from 44 to 352 pins (Tables 5 and 6). It also offers I/O
safety features for mixed-voltage designs so that the 3.3-V devices can accept 5-V inputs, and 5-
V devices do not overdrive 3.3-V inputs. Additional features include Bus-Friendly inputs and I/
Os, a programmable power-down mode for extra power savings and individual output slew rate
control for the highest speed transition or for the lowest noise transition.
Table 4. MACH 4A Speed Grades
Device
Speed Grade
1, 2
-5 -55 -6 -65 -7 -10 -12 -14
M4A3-32
M4A5-32
CCCCC, IC, IC, II
M4A3-64
M4A5-64
CCCCC, IC, IC, II
M4A3-96
M4A5-96
CCCCC, IC, IC, II
M4A3-128
M4A5-128
CCCCC, IC, IC, II
M4A3-192
M4A5-192
CCCCC, I C, I C, II
M4A3-256
CCCCC, IC, IC, II
M4A5-256
C C C, I C, I I
M4A3-384
C C C, I C, I I
M4A3-512
C C C, I C, I I
Table 5. MACH 4 Package and I/O Options (Number of I/Os and dedicated inputs in Table)
Package M4-32/32
M4LV-32/32 M4-64/32
M4LV-64/32 M4-96/48
M4LV-96/48 M4-128/64
M4LV-128/64 M4-128N/64
M4LV-128N/64 M4-192/96
M4LV-192/96 M4-256/128
M4LV-256/128
44-pin PLCC
32+2 32+2
44-pin TQFP
32+2 32+2
48-pin TQFP
32+2 32+2
84-pin PLCC
64+6
100-pin TQFP
48+8 64+6
100-pin PQFP
64+6
144-pin TQFP
96+16
208-pin PQFP
128+14
256-ball BGA
128+14
6 MACH 4 Family
Note:
1. All information on MACH 4A devices is Advance Information. Please contact a Lattice/Vantis sales representative for details on
availability.
Table 6. MACH 4A Package and I/O Options
1
(Number of I/Os and dedicated inputs in Table)
3.3 V Devices
Package M4A3-32 M4A3-64 M4A3-96 M4A3-128 M4A3-192 M4A3-256 M4A3-384 M4A3-512
44-pin PLCC
32+2 32+2
44-pin TQFP
32+2 32+2
48-pin TQFP
32+2 32+2
100-pin TQFP
64+6 48+8 64+6 68+2
100-pin PQFP
64+6
100-ball
fpBGA
64+6 64+6 68+2
144-pin TQFP
96+16 96+16
144-ball
fpBGA
96+16 96+16
176-pin TQFP
128+4 128+4 128+4 132 132
200-ball
fpBGA
128+4 128+4 128+4
208-pin PQFP
128+14, 160 160 160
320-ball
fpBGA
192
256-ball BGA
128+14 192 192
352-ball BGA
256
5 V Devices
Package M4A5-32 M4A5-64 M4A5-96 M4A5-128 M4A5-192 M4A5-256
44-pin PLCC
32+2 32+2
44-pin TQFP
32+2 32+2
48-pin TQFP
32+2 32+2
100-pin TQFP
48+8 64+6
100-pin PQFP
64+6
144-pin TQFP
96+16
208-pin PQFP
128+14
256-ball BGA
128+14
MACH 4 Family 7
Lattice/Vantis of fers software design support for MACH devices in both the MACHXL
®
and
DesignDirect development systems. The DesignDirect development system is Vantis’
implementation software that includes support for all V antis CPLD, FPGA and SPLD devices. This
system is supported under Windows ’95, ’98 and NT as well as Sun Solaris and HPUX.
DesignDirect software is designed for use with design entry, simulation and verification software
from leading-edge tool vendors such as Cadence, Exemplar Logic, Mentor Graphics, Model
Technology , Synopsys, Synplicity, Viewlogic and others. It accepts EDIF 2 0 0 input netlists,
generates JEDEC files for Vantis PLDs and creates industry-standard EDIF, Verilog, VITAL-
compliant VHDL and SDF simulation netlist for design verification.
DesignDirect software is also available in product configurations that include VHDL and Verilog
synthesis from Exemplar Logic and VHDL, Verilog R TL and gate level timing simulation from
Model T echnology. Schematic capture and ABEL entry, as well as functional simulation, are also
provided.
8 MACH 4 Family
FUNCTIONAL DESCRIPTION
The fundamental architecture of MACH 4 devices (Figure 1) consists of multiple optimized PAL
®
blocks interconnected by a central switch matrix. The central switch matrix allows
communication between PAL blocks and routes inputs to the PAL blocks. Together, the PAL
blocks and central switch matrix allow the logic designer to create large designs in a single
device instead of having to use multiple devices.
The key to being able to make effective use of these devices lies in the interconnect schemes.
In MACH 4 architecture, the macrocells have been decoupled from the product terms through
the logic allocator , and the I/O pins have been decoupled from the macrocells due to the output
switch matrix. In addition, more input routing options are provided by the input switch matrix.
These resources provide the flexibility needed to fit designs efficiently.
Notes:
1. 16 for MACH 4 and MACH 4A devices with 1:1 macrocell-I/O cell ratio (see next page).
2. Block clocks do not go to I/O cells in M4(LV)-32/32 or M4A(3,5)-32/32.
3. M4(LV)-192/96, M4(LV)-256/128, M4A(3,5)-192, M4A(3,5)-256, M4A3-384, and M4A3-512 have dedicated clock pins which
cannot be used as inputs and do not connect to the central switch matrix.
I/O
Pins
Clock/Input
Pins
Central Switch Matrix
I/O
Pins
I/O
Pins
Dedicated
Input Pins
PAL Block
PAL Block
Logic
Allocator
with XOR
Output/
Buried
Macrocells
33/
34/
36 1616
Clock
Generator
Logic
Array
Output Switch Matrix
Input
Switch
Matrix
I/O Cells
16
16
8
Note 1
Note 2
Note 3
4
PAL Block
17466G-001
Figure 1. MACH 4 Block Diagram and PAL Block Structure
MACH 4 Family 9
Table 7. Architectural Summary of MACH 4 devices
Table 8. Architectural Summary of MACH 4A devices
The Macrocell-I/O cell ratio is defined as the number of macrocells versus the number of I/O
cells internally in a PAL block (Tables 7 and 8).
The central switch matrix takes all dedicated inputs and signals from the input switch matrices
and routes them as needed to the P AL blocks. Feedback signals that return to the same P AL block
still must go through the central switch matrix. This mechanism ensures that P AL blocks in MACH
4 devices communicate with each other with consistent, predictable delays.
The central switch matrix makes a MACH 4 device more advanced than simply several PAL
devices on a single chip. It allows the designer to think of the device not as a collection of
blocks, but as a single programmable device; the software partitions the design into PAL blocks
through the central switch matrix so that the designer does not have to be concerned with the
internal architecture of the device.
MACH 4A Devices
M4-64/32, M4LV-64/32
M4-96/48, M4LV-96/48
M4-128/64, M4LV-128/64
M4-128N/64, M4LV-128N/64
M4-192/96, M4LV-192/96
M4-256/128, M4LV-256/128
M4-32/32
M4LV-32/32
Macrocell-I/O Cell
Ratio 2:1 1:1
Input Switch Matrix Yes Yes
Input Registers Yes No
Central Switch Matrix Yes Yes
Output Switch Matrix Yes Yes
MACH 4A Devices
M4A3-64/32, M4A5-64/32
M4A3-96/48, M4A5-96/48
M4A3-128/64, M4A5-128/64
M4A3-192/96, M4A5-192/96
M4A3-256/128, M4A5-256/128
M4A3-384
M4A3-512
M4A3-32/32
M4A5-32/32
M4A3-64/64
M4A3-128/96, M4A3-128/128
M4A3-256/160
M4A3-256/192
M4A3-192/68, M4A3-192/128
Macrocell-I/O Cell
Ratio 2:1 1:1
Input Switch Matrix Yes Yes
Input Registers Yes No
Central Switch Matrix Yes Yes
Output Switch Matrix Yes Yes
10 MACH 4 Family
Each PAL block consists of:
Product-term array
Logic allocator
Macrocells
Output switch matrix
I/O cells
Input switch matrix
Clock generator
Product-Term Array
The product-term array consists of a number of product ter ms that form the basis of the logic
being implemented. The inputs to the AND gates come from the central switch matrix (T able 9),
and are provided in both true and complement forms for ef ficient logic implementation.
Because the number of product terms available for a given logic function is not fixed, the full
sum of products is not realized in the array. The product terms drive the logic allocator, which
allocates the appropriate number of product terms to generate the function.
Logic Allocator
Within the logic allocator, product terms are allocated to macrocells in “product term clusters.”
The availability and distribution of product term clusters are automatically considered by the
software as it fits functions within a PAL block. The size of a product term cluster has been
optimized to provide high utilization of product terms, making complex functions using many
product terms possible. Yet when few product terms are used, there will be a minimal number
Table 9. PAL Block Inputs
Device Number of Inputs to PAL Block
M4-32/32 and M4LV-32/32
M4-64/32 and M4LV-64/32
M4-96/48 and M4LV-96/48
M4-128/64 and M4LV-128/64
M4-128N/64 and M4LV-128N/64
33
33
33
33
33
M4-192/96 and M4LV-192/96
M4-256/128 and M4LV-256/128 34
34
M4A3-32/32 and M4A5-32/32
M4A3-64/32 and M4A5-64/32
M4A3-96/48 and M4A5-96/48
M4A3-128/64 and M4A5-128/64
33
33
33
33
M4A3-192/96 and M4A5-192/96
M4A3-256/128 and M4A5-256/128 34
34
M4A3-64/64
M4A3-128/96 and M4A3-128/128
M4A3-192/68 and M4A3-192/128
M4A3-256/160 and M4A3-256/192
M4A3-384
M4A3-512
36
36
36
36
36
36
MACH 4 Family 11
of unused—or wasted—product terms left over. The product term clusters available to each
macrocell within a PAL block are shown in Tables 10 and 11.
Each product term cluster is associated with a macrocell. The size of a cluster depends on the
configuration of the associated macrocell. When the macrocell is used in synchronous mode
(Figure 2a), the basic cluster has 4 product terms. When the associated macrocell is used in
asynchronous mode (Figure 2b), the cluster has 2 product terms. Note that if the product ter m
cluster is routed to a different macrocell, the allocator configuration is not deter mined by the
mode of the macrocell actually being driven. The configuration is always set by the mode of the
macrocell that the cluster will drive if not routed away, regardless of the actual routing.
In addition, there is an extra product term that can either join the basic cluster to give an
extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included
with the basic cluster, this provides for up to 20 product ter ms on a synchronous function that
uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18
product terms.
When the extra product term is used to extend the cluster, the value of the second XOR input
can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic
allocator are shown in Figures 3 and 4.
12 MACH 4 Family
Table 10. Logic Allocator for All MACH 4 and MACH 4A Devices (except M4(LV)-32/32 and M4A(3,5)-32/32)
Output Macrocell Available Clusters Output Macrocell Available Clusters
M0C0, C1, C2M8C7, C8, C9, C10
M1C0, C1, C2, C3M9C8, C9, C10, C11
M2C1, C2, C3, C4M10 C9, C10, C11, C12
M3C2, C3, C4, C5M11 C10, C11, C12, C13
M4C3, C4, C5, C6M12 C11, C12, C13, C14
M5C4, C5, C6, C7M13 C12, C13, C14, C15
M6C5, C6, C7, C8M14 C13, C14, C15
M7C6, C7, C8, C9M15 C14, C15
Table 11. Logic Allocator for M4(LV)-32/32 and M4A(3,5)-32/32
Output Macrocell Available Clusters Output Macrocell Available Clusters
M0C0, C1, C2M8C8, C9, C10
M1C0, C1, C2, C3M9C8, C9, C10, C11
M2C1, C2, C3, C4M10 C9, C10, C11, C12
M3C2, C3, C4, C5M11 C10, C11, C12, C13
M4C3, C4, C5, C6M12 C11, C12, C13, C14
M5C4, C5, C6, C7M13 C12, C13, C14, C15
M6C5, C6, C7M14 C13, C14, C15
M7C6, C7M15 C14, C15
0 Default
0 Default
Prog. Polarity
To n-1
To n-2
From n-1
To n+1
From n+1
From n+2
Basic Product
Term Cluster
Extra
Product
Term
Logic Allocator
nn
To Macrocell
n
0 Default
0 Default
Prog. Polarity
To n-1
To n-2
From n-1
To n+1
From n+1
From n+2
Basic Product
Term Cluster
Extra
Product
Term
Logic Allocator
nn
To Macrocell
n
17466G-006
Figure 2. Logic Allocator: Configuration of Cluster “n” Set by Mode of Macrocell “n”
17466G-005
a. Synchronous Mode
b. Asynchronous Mode
MACH 4 Family 13
Note that the configuration of the logic allocator has absolutely no impact on the speed of the
signal. All configurations have the same delay. This means that designers do not have to decide
between optimizing resources or speed; both can be optimized.
If not used in the cluster, the extra product term can act in conjunction with the basic cluster to
provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flip-
flop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to
another macrocell, the extra product term is still available for logic. In this case, the first XOR
input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without
giving up the use of the macrocell.
Product term clusters do not “wrap” around a PAL block. This means that the macrocells at the
ends of the block have fewer product terms available.
0
17466G-007
Figure 3. Logic Allocator Configurations: Synchronous Mode
a. Basic cluster with XOR b. Extended cluster, active high c. Extended cluster, active low
d. Basic cluster routed away;
single-product-term, active high e. Extended cluster routed away
0
17466G-008
Figure 4. Logic Allocator Configurations: Asynchronous Mode
b. Extended cluster, active high c. Extended cluster, active low
e. Extended cluster routed away
d. Basic cluster routed away;
single-product-term, active high
a. Basic cluster with XOR
14 MACH 4 Family
Macrocell
The macrocell consists of a storage element, routing resources, a clock multiplexer, and
initialization control. The macrocell has two fundamental modes: synchronous and
asynchronous (Figure 5). The mode chosen only affects clocking and initialization in the
macrocell.
In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous
mode will generally be used, since it provides more product terms in the allocator.
SWAP
D/T/L Q
AP AR
Power-Up
Reset
PAL-Block
Initialization
Product Terms
From Logic Allocator
Block CLK0
Block CLK1
Block CLK2
Block CLK3
To Output and Input
Switch Matrices
Common PAL-block resource
Individual macrocell resources
From
PAL-Clock
Generator
D/T/L Q
AP AR
Power-Up
Reset
Individual
Initialization
Product Term
From Logic
Allocator
Block CLK0
Block CLK1
To Output and Input
Switch Matrices
Individual Clock
Product Term
From PAL-Block
Clock Generator
17466G-010
Figure 5. Macrocell
17466G-009
a. Synchronous mode
b. Asynchronous mode
MACH 4 Family 15
The flip-flop can be configured as a D-type or T-type latch. J-K or S-R registers can be
synthesized. The primary flip-flop configurations are shown in Figure 6, although others are
possible. Flip-flop functionality is defined in Table 12. Note that a J-K latch is inadvisable as it
will cause oscillation if both J and K inputs are HIGH.
DQ
AP AR DQ
AP AR
LQ
AP AR LQ
AP AR
G
G
TQ
AP AR
17466G-011
Figure 6. Primary Macrocell Configurations
g. Combinatorial with programmable polarity
a. D-type with XOR b. D-type with programmable D polarity
c. Latch with XOR d. Latch with programmable D polarity
e. T-type with programmable T polarity
f. Combinatorial with XOR
16 MACH 4 Family
Note:
1. Polarity of CLK/LE can be programmed
Although the macrocell shows only one input to the register , the XOR gate in the logic allocator
allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product
terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the
extra product term must be used on the XOR gate input for flip-flop emulation. In any register
type, the polarity of the inputs can be programmed.
The clock input to the flip-flop can select any of the four P AL block clocks in synchronous mode,
with the additional choice of either polarity of an individual product term clock in the
asynchronous mode.
The initialization circuit depends on the mode. In synchronous mode (Figure 7), asynchronous
reset and preset are provided, each driven by a product term common to the entire PAL block.
Table 12. Register/Latch Operation
Configuration Input(s) CLK/LE 1Q+
D-type Register D=X
D=0
D=1
0,1, ↓ (↑)
↑ (↓)
↑ (↓)
Q
0
1
T-type Register T=X
T=0
T=1
0, 1, ↓ (↑)
↑ (↓)
↑ (↓)
Q
Q
Q
D-type Latch D=X
D=0
D=1
1(0)
0(1)
0(1)
Q
0
1
Power-Up
Reset
AP
D/T/L AR
Q
PAL-Block
Initialization
Product Terms
a. Power-up reset
Power-Up
Preset
AP
D/L
PAL-Block
Initialization
Product Terms
AR
Q
17466G-012 17466G-013
Figure 7. Synchronous Mode Initialization Configurations
b. Power-up preset
MACH 4 Family 17
A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged,
providing flexibility. In asynchronous mode (Figure 8), a single individual product term is
provided for initialization. It can be selected to control reset or preset.
Note that the reset/preset swapping selection feature effects power-up reset as well. The
initialization functionality of the flip-flops is illustrated in T able 13. The macrocell sends its data
to the output switch matrix and the input switch matrix. The output switch matrix can route this
data to an output if so desired. The input switch matrix can send the signal back to the central
switch matrix as feedback.
Note:
1. Transparent latch is unaffected by AR, AP
Output Switch Matrix
The output switch matrix allows macrocells to be connected to any of several I/O cells within a
PAL block. This provides high flexibility in determining pinout and allows design changes to
occur without effecting pinout.
In MACH 4 and MACH 4A devices with 2:1 Macrocell-I/O cell ratio, each PAL block has twice as
many macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells
to drive I/O cells within a PAL block, in combinations according to Figure 9. Each I/O cell can
choose from eight macrocells; each macrocell has a choice of four I/O cells. The MACH 4 and
MACH 4A devices with 1:1 Macrocell-I/O cell ratio allow each macrocell to drive one of eight I/
O cells (Figure 9).
Table 13. Asynchronous Reset/Preset Operation
AR AP CLK/LE1Q+
0 0 X See Table 12
01X1
10X0
11X0
Power-Up
Reset
AP
D/L/T AR
Q
Individual
Reset
Product Term
a. Reset
Power-Up
Preset
AP
D/L/T AR
Q
Individual
Preset
Product Term
b. Preset
17466G-014 17466G-015
Figure 8. Asynchronous Mode Initialization Configurations
18 MACH 4 Family
Table 14. Output Switch Matrix Combinations for MACH 4 and MACH 4A
Devices with 2:1 Macrocell-I/O Cell Ratio
Macrocell Routable to I/O Cells
M0, M1 I/O0, I/O5, I/O6, I/O7
M2, M3 I/O0, I/O1, I/O6, I/O7
M4, M5 I/O0, I/O1, I/O2, I/O7
M6, M7 I/O0, I/O1, I/O2, I/O3
M8, M9 I/O1, I/O2, I/O3, I/O4
M10, M11 I/O2, I/O3, I/O4, I/O5
M12, M13 I/O3, I/O4, I/O5, I/O6
M14, M15 I/O4, I/O5, I/O6, I/O7
I/O Cell Available Macrocells
I/O0 M0, M1, M2, M3, M4, M5, M6, M7
I/O1 M2, M3, M4, M5, M6, M7, M8, M9
I/O2 M4, M5, M6, M7, M8, M9, M10, M11
I/O3 M6, M7, M8, M9, M10, M11, M12, M13
I/O4 M8, M9, M10, M11, M12, M13, M14, M15
I/O5 M0, M1, M10, M11, M12, M13, M14, M15
Figure 9. MACH 4 Output Switch Matrix
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
Each macrocell can drive
one of 4 I/O cells in MACH 4
and MACH 4A devices with
2:1 macrocell-I/O cell ratio.
Each I/O cell can
choose one of 8
macrocells in
all MACH 4 and
MACH 4A devices.
macrocells
MUX
I/O cell
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
Each macrocell can drive
one of 8 I/O cells in MACH
4A devices with 1:1
macrocell-I/O cell ratio except
M4A(3, 5)-32/32 devices.
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
Each macrocell can drive
one of 8 I/O cells in
M4(LV)-32/32 and
M4A(3, 5)-32/32 devices.
MACH 4 Family 19
I/O6 M0, M1, M2, M3, M12, M13, M14, M15
I/O7 M0, M1, M2, M3, M4, M5, M14, M15
Table 15. Output Switch Matrix Combinations for MACH 4 and MACH 4A Devices with 1:1 Macrocell-I/O Cell
Ratio except M4(LV)-32/32 and M4A(3,5)-32/32
Macrocell Routable to I/O Cells
M0 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M1 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M2 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M3 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M4 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M5 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M6 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M7 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
M8 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M9 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M10 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M11 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M12 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M13 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M14 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
M15 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15
I/O Cell Available Macrocells
I/O0 M0 M1 M2 M3 M4 M5 M6 M7
I/O1 M0 M1 M2 M3 M4 M5 M6 M7
I/O2 M0 M1 M2 M3 M4 M5 M6 M7
I/O3 M0 M1 M2 M3 M4 M5 M6 M7
I/O4 M0 M1 M2 M3 M4 M5 M6 M7
I/O5 M0 M1 M2 M3 M4 M5 M6 M7
I/O6 M0 M1 M2 M3 M4 M5 M6 M7
I/O7 M0 M1 M2 M3 M4 M5 M6 M7
I/O8 M8 M9 M10 M11 M12 M13 M14 M15
I/O9 M8 M9 M10 M11 M12 M13 M14 M15
I/O10 M8 M9 M10 M11 M12 M13 M14 M15
I/O11 M8 M9 M10 M11 M12 M13 M14 M15
I/O12 M8 M9 M10 M11 M12 M13 M14 M15
I/O13 M8 M9 M10 M11 M12 M13 M14 M15
I/O14 M8 M9 M10 M11 M12 M13 M14 M15
I/O15 M8 M9 M10 M11 M12 M13 M14 M15
Table 14. Output Switch Matrix Combinations for MACH 4 and MACH 4A
Devices with 2:1 Macrocell-I/O Cell Ratio
Macrocell Routable to I/O Cells
20 MACH 4 Family
Table 16. Output Switch Matrix Combinations for M4(LV)-32/32 and M4A(3,5)-32/32
Macrocell Routable to I/O Cells
M0, M1, M2, M3, M4, M5, M6, M7 I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7
M8, M9, M10, M11, M12, M13, M14, M15 I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15
I/O Cell Available Macrocells
I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7 M0, M1, M2, M3, M4, M5, M6, M7
I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15 M8, M9, M10, M11, M12, M13, M14, M15
MACH 4 Family 21
I/O Cell
The I/O cell (Figures 10 and 11) simply consists of a programmable output enable, a feedback
path, and flip-flop (except MACH 4 and MACH 4A devices with 1:1 macrocell-I/O cell ratio.) An
individual output enable product term is provided for each I/O cell. The feedback signal drives
the input switch matrix.
The I/O cell (Figure 10) contains a flip-flop, which provides the capability for storing the input
in a D-type register or latch. The clock can be any of the PAL block clocks. Both the direct and
registered versions of the input are sent to the input switch matrix. This allows for such functions
as “time-domain-multiplexed” data comparison, where the first data value is stored, and then the
second data value is put on the I/O pin and compared with the previous stored value.
Note that the flip-flop used in the MACH 4 I/O cell is independent of the flip-flops in the
macrocells. It powers up to a logic low.
Zero-Hold-Time Input Register
The MACH 4 devices have a zero-hold-time (ZHT) fuse which controls the time delay associated
with loading data into all I/O cell registers and latches. When programmed, the ZHT fuse
increases the data path setup delays to input storage elements, matching equivalent delays in
the clock path. When the fuse is erased, the setup time to the input storage element is minimized.
This feature facilitates doing worst-case designs for which data is loaded from sources which
have low (or zero) minimum output propagation delays from clock edges.
Input Switch Matrix
The input switch matrix (Figures 12 and 13) optimizes routing of inputs to the central switch
matrix. Without the input switch matrix, each input and feedback signal has only one way to
enter the central switch matrix. The input switch matrix provides additional ways for these
signals to enter the central switch matrix.
D/L
Q
Block CLK3
Block CLK2
Block CLK1
Block CLK0
To
Input
Switch
Matrix
Individual
Output Enable
Product Term
From Output
Switch Matrix
17466G-017 17466G-018
Figure 10. I/O Cell for MACH 4 and MACH 4A Devices
with 2:1 Macrocell-I/O Cell Ratio Figure 11. I/O Cell for MACH 4 and MACH 4A Devices
with 1:1 Macrocell-I/O Cell Ratio
To
Input
Switch
Matrix
Individual
Output Enable
Product Term
From Output
Switch Matrix
Power-up reset
22 MACH 4 Family
PAL Block Clock Generation
Each MACH 4 device has four clock pins that can also be used as inputs. These pins drive a
clock generator in each PAL block (Figure 14). The clock generator provides four clock signals
that can be used anywhere in the PAL block. These four PAL block clock signals can consist of
a large number of combinations of the true and complement edges of the global clock signals.
Table 17 lists the possible combinations.
Note:
1. M4(L V)-32/32, M4A(3,5)-32/32, M4(L V)-64/32 and M4A(3,5)-64/32 have only two clock pins, GCLK0 and GCLK1. GCLK2 is tied
to GCLK0, and GCLK3 is tied to GCLK1.
To Central Switch Matrix
From Macrocell 2
From Input Cell
Direct
From Macrocell 1
Registered/Latched
17466G-002 17466G-003
Figure 12. MACH 4 and MACH 4A with 2:1
Macrocell-I/O Cell Ratio - Input Switch Matrix Figure 13. MACH 4 and MACH 4A with 1:1
Macrocell-I/O Cell Ratio - Input Switch Matrix
To Central Switch Matrix
From Macrocell
From I/O Pin
GCLK0
GCLK1
GCLK2
GCLK3
Block CLK0
(GCLK0 or GCLK1)
Block CLK1
(GCLK1 or GCLK0)
Block CLK2
(GCLK2 or GCLK3)
Block CLK3
(GCLK3 or GCLK2)
17466G-004
Figure 14. PAL Block Clock Generator 1
MACH 4 Family 23
Note:
1. Values in parentheses are for the M4(LV)-32/32, M4A(3,5)-32/32, M4(LV)-64/32 and M4A(3,5)-64/32.
This feature provides high flexibility for partitioning state machines and dual-phase clocks. It
also allows latches to be driven with either polarity of latch enable, and in a master-slave
configuration.
Table 17. PAL Block Clock Combinations1
Block CLK0 Block CLK1 Block CLK2 Block CLK3
GCLK0
GCLK1
GCLK0
GCLK1
X
X
X
X
GCLK1
GCLK1
GCLK0
GCLK0
X
X
X
X
X
X
X
X
GCLK2 (GCLK0)
GCLK3 (GCLK1)
GCLK2 (GCLK0)
GCLK3 (GCLK1)
X
X
X
X
GCLK3 (GCLK1)
GCLK3 (GCLK1)
GCLK2 (GCLK0)
GCLK2 (GCLK0)
24 MACH 4 Family
MACH 4 TIMING MODEL
The primary focus of the MACH 4 timing model is to accurately represent the timing in a MACH
4 device, and at the same time, be easy to understand. This model accurately describes all
combinatorial and registered paths through the device, making a distinction between inter nal
feedback and external feedback. A signal uses internal feedback when it is fed back into the
switch matrix or block without having to go through the output buffer. The input register
specifications are also reported as internal feedback. When a signal is fed back into the switch
matrix after having gone through the output buffer, it is using external feedback.
The parameter , tBUF, is defined as the time it takes to go from feedback through the output buffer
to the I/O pad. If a signal goes to the internal feedback rather than to the I/O pad, the parameter
designator is followed by an “i”. By adding tBUF to this internal parameter, the external parameter
is derived. For example, tPD = tPDi + tBUF. A diagram representing the modularized MACH 4
timing model is shown in Figure 15. Refer to the Technical Note entitled MACH 4 Timing and
High Speed Design for a more detailed discussion about the timing parameters.
SPEEDLOCKING FOR GUARANTEED FIXED TIMING
The MACH 4 architecture allows allocation of up to 20 product terms to an individual macrocell
with the assistance of an XOR gate without incurring additional timing delays.
The design of the switch matrix and PAL blocks guarantee a fixed pin-to-pin delay that is
independent of the logic required by the design. Other non-Vantis CPLDs incur serious timing
delays as product terms expand beyond their typical 4 or 5 product ter m limits. Speed and
SpeedLocking combine to give designs easy access to the perfor mance required in today’s
designs.
(External Feedback)
(Internal Feedback)
INPUT REG/
INPUT LATCH
tSIRS
tHIRS
tSIL
tHIL
tSIRZ
tHIRZ
tSILZ
tHILZ
tPDILi
tICOSi
tIGOSi
tPDILZi
Q
tSS(T)
tSA(T)
tH(S/A)
tS(S/A)L
tH(S/A)L
tSRR
tPDi
tPDLi
tCO(S/A)i
tGO(S/A)i
tSRi
COMB/DFF/TFF/
LATCH/SR*/JK*
S/R
IN
BLK CLK
OUT
tPL
tBUF
tEA
tER
tSLW
Q
Central
Switch
Matrix
*emulated
17466G-025
Figure 15. MACH 4 Timing Model
MACH 4 Family 25
IEEE 1149.1-COMPLIANT BOUNDARY SCAN TESTABILITY
All MACH 4 devices, except the M4(LV)-128N/64, have boundary scan cells and are compliant
to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the
device is mounted through a serial scan path that can access all critical logic nodes. Internal
registers are linked internally, allowing test data to be shifted in and loaded directly onto test
nodes, or test node data to be captured and shifted out for verification. In addition, these devices
can be linked into a board-level serial scan path for more complete board-level testing.
IEEE 1149.1-COMPLIANT IN-SYSTEM PROGRAMMING
Programming devices in-system provides a number of significant benefits including: rapid
prototyping, lower inventory levels, higher quality, and the ability to make in-field modifications.
All MACH 4 devices provide In-System Programming (ISP) capability through their Boundary
ScanTest Access Ports. This capability has been implemented in a manner that ensures that the
port remains compliant to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication
interface through which ISP is achieved, customers get the benefit of a standard, well-defined
interface.
MACH 4 devices can be programmed across the commercial temperature and voltage range.
V antis provides its free PC-based Lattice/V antisPRO software to facilitate in-system programming.
Lattice/VantisPRO takes the JEDEC file output produced by Vantis’ design implementation
software, along with information about the JT AG chain, and creates a set of vectors that are used
to drive the JTAG chain. Lattice/VantisPRO software can use these vectors to drive a JTAG chain
via the parallel port of a PC. Alternatively, Lattice/V antisPRO software can output files in formats
understood by common automated test equipment. This equpment can then be used to program
MACH 4 devices during the testing of a circuit board. For more information about in-system
programming, refer to the separate document entitled MACH ISP Manual.
PCI COMPLIANT
MACH 4(A) devices in the -5/-55/-6/-65/-7/-10/-12 speed grades are compliant with the PCI
Local Bus Specification version 2.1, published by the PCI Special Interest Group (SIG). The 5-V
devices are fully PCI-compliant. The 3.3-V devices are mostly compliant but do not meet the PCI
condition to clamp the inputs as they rise above VCC because of their 5-V input tolerant feature.
SAFE FOR MIXED SUPPLY VOLTAGE SYSTEM DESIGNS
Both the 3.3-V and 5-V VCC MACH 4 devices are safe for mixed supply voltage system designs.
The 5-V devices will not overdrive 3.3-V devices above the output voltage of 3.3 V, while they
accept inputs from other 3.3-V devices. The 3.3-V device will accept inputs up to 5.5 V . Both the
5-V and 3.3-V versions have the same high-speed perfor mance and provide easy-to-use mixed-
voltage design capability.
PULL UP OR BUS-FRIENDLY INPUTS AND I/OS
All MACH 4 devices have inputs and I/Os which feature the Bus-Friendly circuitry incorporating
two inverters in series which loop back to the input. This double inversion weakly holds the
input at its last driven logic state. While it is good design practice to tie unused pins to a known
state, the Bus-Friendly input structure pulls pins away from the input threshold voltage where
noise can cause high-frequency switching. At power-up, the Bus-Friendly latches are reset to a
26 MACH 4 Family
logic level “1.” For the circuit diagram, please refer to the Input/Output Equivalent Schematics
(page 393) in the General Information Section of the Vantis 1999 Data Book.
All MACH 4A devices have a programmable bit that configures all inputs and I/Os with either
pull-up or Bus-Friendly characteristics. If the device is configured in pull-up mode, all inputs
and I/O pins are weakly pulled up. For the circuit diagram, please refer to the Input/Output
Equivalent Schematics (page 393) in the General Information Section of the Vantis 1999 Data
Book.
POWER MANAGEMENT
Each individual PAL block in MACH 4 devices features a programmable low-power mode, which
results in power savings of up to 50%. The signal speed paths in the low-power PAL block will
be slower than those in the non-low-power PAL block. This feature allows speed critical paths
to run at maximum frequency while the rest of the signal paths operate in the low-power mode.
PROGRAMMABLE SLEW RATE
Each MACH 4 device I/O has an individually programmable output slew rate control bit. Each
output can be individually configured for the higher speed transition (3 V/ns) or for the lower
noise transition (1 V/ns). For high-speed designs with long, unterminated traces, the slow-slew
rate will introduce fewer reflections, less noise, and keep ground bounce to a minimum. For
designs with short traces or well terminated lines, the fast slew rate can be used to achieve the
highest speed. The slew rate is adjusted independent of power.
POWER-UP RESET/SET
All flip-flops power up to a known state for predictable system initialization. If a macrocell is
configured to SET on a signal from the control generator , then that macrocell will be SET during
device power-up. If a macrocell is configured to RESET on a signal from the control generator
or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee
initialization values, the VCC rise must be monotonic, and the clock must be inactive until the
reset delay time has elapsed.
SECURITY BIT
A programmable security bit is provided on the MACH 4 devices as a deterrent to unauthorized
copying of the array configuration patterns. Once programmed, this bit defeats readback of the
programmed pattern by a device programmer, securing proprietary designs from competitors.
Programming and verification are also defeated by the security bit. The bit can only be reset by
erasing the entire device.
HOT SOCKETING
MACH 4A devices are well-suited for those applications that require hot socketing capability.
Hot socketing a device requires that the device, when powered down, can tolerate active signals
on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the
powered-down MACH devices be minimal on active signals.
MACH 4 Family 27
MACROCELL
M0
C0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
B
89
M0
M4(LV)-64/32, M4A(3, 5)-64/32
M4(LV)-96/48, M4A(3, 5)-96/48
M4(LV)-128/64, M4A(3, 5)-128/64
A
B16
17 17
17
M4(LV)-192/96, M4(3, 5)-192/96
M4(LV)-256/128, M4(3, 5)-256/128 M4A3-384
M4A3-512
18
18
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
O0
O1
O2
O3
O4
O5
O6
O7M15
CLK0
CLK1
CLK2
CLK3
I/O
CELL
I/O0
CLOCK
GENERATOR
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
CENTRAL SWITCH MATRIX
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
24
A
04
16 16
C1
C2
I/O
CELL
I/O1
C3
C4
I/O
CELL
I/O2
C5
C6 I/O
CELL
I/O3
C7
C8 I/O
CELL
I/O4
C9
C10 I/O
CELL
I/O5
C11
C12 I/O
CELL
I/O6
C13
C14 I/O
CELL
INPUT SWITCH
MATRIX
I/O7
C15
LOGIC ALLOCA TOR
OUTPUT SWITCH MATRIX
Figure 16. PAL Block for MACH 4 and MACH 4A with 2:1 Macrocell - I/O Cell Ratio
17466H-40
28 MACH 4 Family
Figure 17. PAL Block for MACH 4A Devices with 1:1 Macrocell-I/O Cell Ratio (except M4A (3,5)-32/32)
17466H-41
MACH 4 Family 29
MACROCELL
M0
C0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
17
97
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
O0
O2
O4
O6
O8
O10
O12
O14
M15
I/O
CELL I/O0
CLOCK
GENERATOR
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
CENTRAL SWITCH MATRIX
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
MACROCELL
O1 I/O
CELL
I/O1
32
16
02
16
16
C1
C2 I/O
CELL
I/O2
O3 I/O
CELL
I/O3
O5 I/O
CELL
I/O5
O7 I/O
CELL
I/O7
C3
C4 I/O
CELL
I/O4
C5
C6 I/O
CELL
I/O6
C7
C8 I/O
CELL
I/O8
O9 I/O
CELL
I/O9
O11 I/O
CELL
I/O11
C0
C0 I/O
CELL
I/O10
C0
C0 I/O
CELL
I/O12
O13 I/O
CELL
I/O13
O15 I/O
CELL
I/O15
C0
C0 I/O
CELL
INPUT
SWITCH
MATRIX
I/O14
C0
LOGIC ALLOCATOR
OUTPUT SWITCH MATRIX
OUTPUT SWITCH MATRIX
CLK0/I0 CLK0/I1
Figure 18. PAL Block for M4(LV)-32/32 and M4A (3,5)-32/32
17466H-042
30 MACH 4 Family
BLOCK DIAGRAM – M4(LV)-32/32 AND M4A(3,5)-32/32
Central Switch Matrix
22
CLK0/I0, CLK1/I1
I/O8–I/O15 I/O0–I/O7
I/O16–I/O23 I/O24–I/O31
I/O Cells
Output Switch
Matrix
Macrocells
8
8
16
8
8
8
33
4
4 4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 98
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
8
8
16
8
8
8
2
8
8
I/O Cells
Output Switch
Matrix
Macrocells
8
8
16
8
8
8
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 98
AND Logic Array
and Logic Allocator
8
8
16
8
8
8
2
8
8
Input Switch
Matrix
Input Switch
Matrix
Input Switch
Matrix
Clock Generator
OE
OE
OE
OE
Block A
Block B
33
17466H-019
MACH 4 Family 31
BLOCK DIAGRAM – M4(LV)-64/32 AND M4A(3,5)-64/32
Central Switch Matrix
22
CLK0/I0, CLK1/I1
I/O0I/O7 I/O24I/O31
I/O16I/O23I/O8I/O15
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
16
16
24
16
16
8
33
4
4
2
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
2
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
2
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
2
8
8
Input Switch
Matrix
Input Switch
Matrix
Input Switch
Matrix
Clock Generator
Clock Generator
OE
OE
OE
OE
Block A
Block B
Block D
Block C
17466H-020
MACH 4 Family 32
BLOCK DIAGRAM – M4(LV)-96/48 AND M4A(3,5)-96/48
444
CLK0/I0, CLK1/I1,
CLK2/I4, CLK3/I5
I2, I3, I6, I7
I/O16–I/O23 I/O8–I/O15 I/O0–I/O7
I/O40–I/O47I/O32–I/O39I/O24–I/O31
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
OE
Input Switch
Matrix Input Switch
Matrix
Input Switch
Matrix
Clock Generator
Clock Generator
Clock Generator
Input Switch
Matrix
OE
OE
OE
OE
OE
Bl
oc
k
CBl
oc
k
BBl
oc
k
A
Block D Block E Block F
Central Switch Matrix
17466G-021
33 MACH 4 Family
Central Switch Matrix
442
CLK0/I0, CLK1/I1,
CLK2/I3, CLK3/I4
I2, I5
I/O0I/O7I/O8I/O15I/O16I/O23I/O24I/031
I/O32I/O39 I/O40I/O47 I/O48I/O55 I/O56I/O63
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
16
16
24
16
16
8
33
4
4
4
8
8
I/O Cells
Output Switch
Matrix
Macrocells
66 X 90
AND Logic Array
and Logic Allocator
OE
16
16
24
16
16
8
33
4
4
4
8
8
Input Switch
Matrix Input Switch
Matrix
Input Switch
Matrix
Clock Generator
Clock Generator
Clock Generator
Input Switch
Matrix
Input Switch
Matrix
Clock Generator
OE
OE
OE
OE
OE
OE
OE
Block ABlock BBlock CBlock D
Block HBlock GBlock FBlock E
BLOCK DIAGRAM – M4(LV)-128N/64, M4(LV)-128/64 AND M4A(3,5)-128/64
17466H-022
MACH 4 Family 34
BLOCK DIAGRAM – M4(LV)-192/96 AND M4A(3,5)-192/96
Central Switch Matrix
Block B
I/O8I/O15 CLK0CLK3
I/O32I/O39
Block E I/O56I/O63
Block H
I/O48I/O55
Block G
I0I15
I/O40I/O47
Block F
Block A
I/O0I/O7 Block K
I/O80I/O87
Block L
I/O88I/O95
Block C I/O16I/O23
Block D I/O24I/O31 I/O72I/O79 Block J
I/O64I/O71 Block I
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
16
4 4
OE
8
16
8
4
16
24
8
16
16
34
4
4
8
24 34
4
8
8
16
16
4
4
16
16
OE
8
24 34
4
8
8
16
16
4
4
16
16
OE
8
16
8
4
16
24
8
16
16
34
34 34 34 34
34 34 34 34
4
4
OE
OE
8
16
8
4
16
24
8
16
16
4
4
8
24
4
8
8
16
16
4
4
16
16
OE
8
24
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
24
16
16
8
16
8
4
16
OE
4
4
24
16
16
8
16
16
4
8
8
OE
4
4
24
16
16
8
16
16
4
8
8
4
4
8
24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
4
4
OE
17466G-064
35 MACH 4 Family
BLOCK DIAGRAM – M4(LV)-256/128 AND M4A(3,5)-256/128
Central Switch Matrix
Block B
I/O8I/O15 CLK0CLK3
I/O48I/O55
Block G I/O72I/O79
Block J
I/O64I/O71
Block I
I0I13
I/O56I/O63
Block H
Block A
I/O0I/O7 Block O
I/O112I/O119
Block P
I/O120I/O127
Block C I/O16I/O23
Block D I/O24I/O31
Block E I/O32I/O39
Block F I/O40I/O47
I/O104I/O111 Block N
I/O96I/O103 Block M
I/O88I/O95 Block L
I/O80I/O87 Block K
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
68 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
14
4 4
OE
8
16
8
4
16
24
8
16
16
34
4
4
8
24 34
4
8
8
16
16
4
4
16
16
OE
8
24 34
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
34 24
16
16
8
16
8
4
16
OE
4
4
34
24
16
16
8
16
16
4
8
8
OE
4
4
34
24
16
16
8
16
16
4
8
8
4
4
8
34 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
34
4
4
OE
OE
8
16
8
4
16
24
8
16
16
34
4
4
8
24 34
4
8
8
16
16
4
4
16
16
OE
8
24 34
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
34 24
16
16
8
16
8
4
16
OE
4
4
34
24
16
16
8
16
16
4
8
8
OE
4
4
34
24
16
16
8
16
16
4
8
8
4
4
8
34 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
34
4
4
OE
17466G-024
MACH 4 Family 36
BLOCK DIAGRAM – M4A3-384/192
Central Switch Matrix
Block B
I/O8I/O15 CLK0CLK3
Block A
I/O0I/O7 Block GX
I/O176I/O183
Block HX
I/O184I/O191
Block C I/O16I/O23
Block F I/O40I/O47 Block D I/O24I/O31
Block E I/O32I/O39 I/O168I/O175 Block FX
I/O144I/O151 Block CX
I/O160I/O167 Block EX
I/O152I/O159 Block DX
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
4 4
4
OE
8
16
8
4
16
24
8
16
16
36
4
4
8
24 36
4
8
8
16
16
4
4
16
16
OE
8
24 36
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
36 24
16
16
8
16
8
4
16
OE
4
4
36
24
16
16
8
16
16
4
8
8
OE
4
4
36
24
16
16
8
16
16
4
8
8
4
4
8
36 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
36
4
4
OE
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
OE
8
16
8
4
16
24
8
16
16
36
4
4
8
24 36
4
8
8
16
16
4
4
16
16
OE
8
24 36
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
36 24
16
16
8
16
8
4
16
OE
4
4
36
24
16
16
8
16
16
4
8
8
OE
4
4
36
24
16
16
8
16
16
4
8
8
4
4
8
36 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
36
4
4
OE
Block G I/O48I/O55
Block J I/O72I/O79 Block H I/O56I/O63
Block I I/O64I/O71 I/O136I/O143 Block BX
I/O112I/O119 Block O
I/O128I/O135 Block AX
I/O120I/O127 Block P
Detail A
Repeat Detail A
I/O88I/O95
Block L
I/O80I/O87
Block K I/O196I/O103
Block M I/O104I/O111
Block N
17466G-067
37 MACH 4 Family
BLOCK DIAGRAM - M4A3-512/256
Central Switch Matrix
Block B
I/O8I/O15 CLK0CLK3
Block A
I/O0I/O7 Block OX
I/O240I/O247
Block PX
I/O248I/O255
Block C I/O16I/O23
Block F I/O40I/O47 Block D I/O24I/O31
Block E I/O32I/O39 I/O232I/O239 Block NX
I/O208I/O215 Block KX
I/O224I/O231 Block MX
I/O216I/O223 Block LX
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
OE
8
16
8
4
16
24
8
16
16
36
4
4
8
24 36
4
8
8
16
16
4
4
16
16
OE
8
24 36
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
36 24
16
16
8
16
8
4
16
OE
4
4
36
24
16
16
8
16
16
4
8
8
OE
4
4
36
24
16
16
8
16
16
4
8
8
4
4
8
36 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
36
4
4
OE
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
I/O Cells
Macrocells
72 X 90
AND Logic Array
and Logic Allocator
Clock Generator
Input Switch
Matrix
Output Switch
Matrix
OE
8
16
8
4
16
24
8
16
16
36
4
4
8
24 36
4
8
8
16
16
4
4
16
16
OE
8
24 36
4
8
8
16
16
4
4
16
16
OE
OE
4
4
8
36 24
16
16
8
16
8
4
16
OE
4
4
36
24
16
16
8
16
16
4
8
8
OE
4
4
36
24
16
16
8
16
16
4
8
8
4
4
8
36 24
16
16
8
16
8
4
16
OE
8
16
8
4
16
24
8
16
16
36
4
4
OE
Block G I/O48I/O55
Block J I/O72I/O79 Block H I/O56I/O63
Block I I/O64I/O71 I/O200I/O207 Block JX
I/O176I/O183 Block GX
I/O192I/O199 Block IX
I/O184I/O191 Block HX
Block K I/O80I/O87
Block N I/O104I/O111 Block L I/O88I/O95
Block M I/O96I/O103 I/O168I/O175 Block FX
I/O144I/O151 Block CX
I/O160I/O167 Block EX
I/O152I/O159 Block DX
Detail A
Repeat Detail A
Repeat Detail A
I/O120I/O127
Block P
I/O112I/O119
Block O I/O128I/O135
Block AX I/O136I/O143
Block BX
4 4
4
17466G-068
MACH 4 Family 38
ABSOLUTE MAXIMUM RATINGS
M4 and M4A5
Storage Temperature. . . . . . . . . . . . . .-65°C to +150°C
Ambient Temperature
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C
Device Junction Temperature . . . . . . . . . . . . . +130°C
Supply Voltage
with Respect to Ground . . . . . . . . . . .-0.5 V to +7.0 V
DC Input Voltage . . . . . . . . . . . . -0.5 V to VCC + 0.5 V
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V
Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA
Stresses above those listed under Absolute Maximum
Ratings may cause permanent device failur e. Functionality at
or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA)
Operating in Free Air. . . . . . . . . . . . . . . 0°C to +70°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V
Industrial (I) Devices
Ambient Temperature (TA)
Operating in Free Air. . . . . . . . . . . . . . -40°C to +85°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . +4.50 V to +5.5 V
Operating ranges define those limits between which the func-
tionality of the device is guaranteed.
Notes:
1. Total IOL for one PAL block should not exceed 64 mA.
2. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.
3. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.
5-V DC CHARACTERISTICS OVER OPERATING RANGES
Parameter
Symbol Parameter Description Test Conditions Min Typ Max Unit
VOH Output HIGH Voltage IOH = –3.2 mA, VCC = Min, VIN = VIH or VIL 2.4 V
IOH = 0 mA, VCC = Max, VIN = VIH or VIL 3.3 V
VOL Output LOW Voltage IOL = 24 mA, VCC = Min, VIN = VIH or VIL (Note 1) 0.5 V
VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all Inputs
(Note 2) 2.0 V
VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all Inputs
(Note 2) 0.8 V
IIH Input HIGH Leakage Current VIN = 5.25 V, VCC = Max (Note 3) 10 µA
IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 3) –10 µA
IOZH Off-State Output Leakage Current HIGH VOUT = 5.25 V, VCC = Max, VIN = VIH or VIL (Note 3) 10 µA
IOZL Off-State Output Leakage Current LOW VOUT = 0 V, VCC = Max , VIN = VIH or VIL (Note 3) –10 µA
ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 4) –30 –160 mA
39 MACH 4 Family
ABSOLUTE MAXIMUM RATINGS
M4LV and M4A3
Storage Temperature. . . . . . . . . . . . . .-65°C to +150°C
Ambient Temperature
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C
Device Junction Temperature . . . . . . . . . . . . . +130°C
Supply Voltage
with Respect to Ground . . . . . . . . . . .-0.5 V to +4.5 V
DC Input Voltage . . . . . . . . . . . . . . . . .-0.5 V to 6.0 V
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V
Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA
Stresses above those listed under Absolute Maximum
Ratings may cause permanent device failur e. Functionality at
or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA)
Operating in Free Air. . . . . . . . . . . . . . . 0°C to +70°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V
Industrial (I) Devices
Ambient Temperature (TA)
Operating in Free Air. . . . . . . . . . . . . . -40°C to +85°C
Supply Voltage (VCC)
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V
Operating ranges define those limits between which the func-
tionality of the device is guaranteed.
Notes:
1. Total IOL for one PAL block should not exceed 64 mA.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
3.3-V DC CHARACTERISTICS OVER OPERATING RANGES
Parameter
Symbol Parameter Description Test Conditions Min Typ Max Unit
VOH Output HIGH Voltage VCC = Min
VIN = VIH or VIL
IOH = –100 µAV
CC – 0.2 V
IOH = –3.2 mA 2.4 V
VOL Output LOW Voltage VCC = Min
VIN = VIH or VIL
(Note 1)
IOL = 100 µA 0.2 V
IOL = 24 mA 0.5 V
VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all
Inputs 2.0 5.5 V
VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all
Inputs –0.3 0.8 V
IIH Input HIGH Leakage Current VIN = 3.6 V, VCC = Max (Note 2) 5 µA
IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 2) –5 µA
IOZH Off-State Output Leakage Current HIGH VOUT = 3.6 V, VCC = Max
VIN = VIH or VIL (Note 2) 5µA
IOZL Off-State Output Leakage Current LOW VOUT = 0 V, VCC = Max
VIN = VIH or VIL (Note 2) –5 µA
ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 3) –15 –160 mA
MACH 4 Family 40
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1
-7 -10 -12 -14 -15 -18
UnitMin Max Min Max Min Max Min Max Min Max Min Max
Combinatorial Delay:
tPDi Internal combinatorial propagation delay 5.5 8.0 10.0 12.0 13.0 16.0 ns
tPD Combinatorial propagation delay 7.5 10.0 12.0 14.0 15.0 18.0 ns
Registered Delays:
tSS Synchronous clock setup time, D-type register 5.5 6.0 7.0 10.0 10.0 12.0 ns
tSST Synchronous clock setup time, T-type register 6.5 7.0 8.0 11.0 11.0 13.0 ns
tSA Asynchronous clock setup time, D-type register 3.5 4.0 5.0 8.0 8.0 10.0 ns
tSAT Asynchronous clock setup time, T-type register 4.5 5.0 6.0 9.0 9.0 11.0 ns
tHS Synchronous clock hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tHA Asynchronous clock hold time 3.5 4.0 5.0 8.0 8.0 10.0 ns
tCOSi Synchronous clock to internal output 3.5 4.5 6.0 8.0 8.0 10.0 ns
tCOS Synchronous clock to output 5.5 6.5 8.0 10.0 10.0 12.0 ns
tCOAi Asynchronous clock to internal output 7.5 10.0 12.0 16.0 16.0 18.0 ns
tCOA Asynchronous clock to output 9.5 12.0 14.0 18.0 18.0 20.0 ns
Latched Delays:
tSSL Synchronous Latch setup time 6.0 7.0 8.0 10.0 10.0 12.0 ns
tSAL Asynchronous Latch setup time 4.0 4.0 5.0 8.0 8.0 10.0 ns
tHSL Synchronous Latch hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tHAL Asynchronous Latch hold time 4.0 4.0 5.0 8.0 8.0 10.0 ns
tPDLi Transparent latch to internal output 8.0 10.0 12.0 15.0 15.0 18.0 ns
tPDL Propagation delay through transparent latch to output 10.0 12.0 14.0 17.0 17.0 20.0 ns
tGOSi Synchronous Gate to internal output 4.0 5.5 8.0 9.0 9.0 10.0 ns
tGOS Synchronous Gate to output 6.0 7.5 10.0 11.0 11.0 12.0 ns
tGOAi Asynchronous Gate to internal output 9.0 11.0 14.0 17.0 17.0 20.0 ns
tGOA Asynchronous Gate to output 11.0 13.0 16.0 19.0 19.0 22.0 ns
Input Register Delays:
tSIRS Input register setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns
tHIRS Input register hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns
tICOSi Input register clock to internal feedback 3.5 4.5 6.0 6.0 6.0 6.0 ns
Input Latch Delays:
tSIL Input latch setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns
tHIL Input latch hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns
tIGOSi Input latch gate to internal feedback 4.0 4.0 4.0 5.0 5.0 6.0 ns
tPDILi Transparent input latch to internal feedback 2.0 2.0 2.0 2.0 2.0 2.0 ns
Input Register Delays with ZHT Option:
tSIRZ Input register setup time - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns
tHIRZ Input register hold time - ZHT 0.0 0.0 0.0 0.0 0.0 0.0 ns
41 MACH 4 Family
Input Latch Delays with ZHT Option:
tSILZ Input latch setup time - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns
tHILZ Input latch hold time - ZHT 0.0 0.0 0.0 0.0 0.0 0.0 ns
tPDILZi Transparent input latch to internal feedback - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns
Output Delays:
tBUF Output buffer delay 2.0 2.0 2.0 2.0 2.0 2.0 ns
tSLW Slow slew rate delay adder 2.5 2.5 2.5 2.5 2.5 2.5 ns
tEA Output enable time 9.5 10.0 12.0 15.0 15.0 17.0 ns
tER Output disable time 9.5 10.0 12.0 15.0 15.0 17.0 ns
Power Delay:
tPL Power-down mode delay adder 2.5 2.5 2.5 2.5 2.5 2.5 ns
Reset and Preset Delays:
tSRi Asynchronous reset or preset to internal register output 10.0 12.0 14.0 18.0 18.0 20.0 ns
tSR Asynchronous reset or preset to register output 12.0 14.0 16.0 20.0 20.0 22.0 ns
tSRR Asynchronous reset and preset register recovery time 8.0 8.0 10.0 15.0 15.0 17.0 ns
tSRW Asynchronous reset or preset width 10.0 10.0 12.0 15.0 15.0 17.0 ns
Clock/LE Width:
tWLS Global clock width low 3.0 5.0 6.0 6.0 6.0 7.0 ns
tWHS Global clock width high 3.0 5.0 6.0 6.0 6.0 7.0 ns
tWLA Product term clock width low 4.0 5.0 8.0 9.0 9.0 10.0 ns
tWHA Product term clock width high 4.0 5.0 8.0 9.0 9.0 10.0 ns
tGWS Global gate width low (for low transparent) or high
(for high transparent) 5.0 5.0 6.0 6.0 6.0 7.0 ns
tGWA Product term gate width low (for low transparent) or
high (for high transparent) 4.0 5.0 6.0 9.0 9.0 11.0 ns
tWIRL Input register clock width low 4.5 5.0 6.0 6.0 6.0 7.0 ns
tWIRH Input register clock width high 4.5 5.0 6.0 6.0 6.0 7.0 ns
tWIL Input latch gate width 5.0 5.0 6.0 6.0 6.0 7.0 ns
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-7 -10 -12 -14 -15 -18
UnitMin Max Min Max Min Max Min Max Min Max Min Max
MACH 4 Family 42
Notes:
1. See “Switching Test Circuit” in the General Information Section of the Vantis 1999 Data Book.
2. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.
Frequency:
fMAXS
External feedback, D-type, Min of 1/(tWLS + tWHS) or
1/(tSS + tCOS)90.9 80.0 66.7 50.0 50.0 41.7 MHz
External feedback, T-type, Min of 1/(tWLS + tWHS) or
1/(tSST + tCOS)83.3 74.1 62.5 47.6 47.6 40.0 MHz
Internal feedback (fCNT), D-type,
Min of 1/(tWLS + tWHS) or 1/(tSS + tCOSi)111.1 95.2 76.9 55.6 55.6 45.5 MHz
Internal feedback (fCNT), T-type,
Min of 1/(tWLS + tWHS) or 1/(tSST + tCOSi)100.0 87.0 71.4 52.6 52.6 43.5 MHz
No feedback2, Min of 1/(tWLS + tWHS), 1/(tSS + tHS) or
1/(tSST + tHS)153.8 100.0 83.3 83.3 83.3 71.4 MHz
fMAXA
External feedback, D-type, Min of 1/(tWLA + tWHA) or
1/(tSA + tCOA)76.9 62.5 52.6 38.5 38.5 33.3 MHz
External feedback, T-type, Min of 1/(tWLA + tWHA) or
1/(tSAT + tCOA)71.4 58.8 50.0 37.0 37.0 32.3 MHz
Internal feedback (fCNTA), D-type,
Min of 1/(tWLA + tWHA) or 1/(tSA + tCOAi)90.9 71.4 58.8 41.7 41.7 35.7 MHz
Internal feedback (fCNTA), T-type,
Min of 1/(tWLA + tWHA) or 1/(tSAT + tCOAi)83.3 66.7 55.6 40.0 40.0 34.5 MHz
No feedback2, Min of 1/(tWLA + tWHA),
1/(tSA + tHA) or 1/(tSAT + tHA)125.0 100.0 62.5 55.6 55.6 50.0 MHz
fMAXI Maximum input register frequency,
Min of 1/(tWIRH + tWIRL) or 1/(tSIRS + tHIRS)111.0 100.0 83.3 83.3 83.3 71.4 MHz
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-7 -10 -12 -14 -15 -18
UnitMin Max Min Max Min Max Min Max Min Max Min Max
MACH 4A TIMING PARAMETERS OVER OPERATING RANGES1
-5 -55 -6 -65 -7 -10 -12 -14
UnitMin Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
Combinatorial Delay:
tPDi Internal combinatorial
propagation delay 3.5 4.0 4.0 4.5 5.0 7.0 9.0 11.0 ns
tPD Combinatorial propagation
delay 5.0 5.5 6.0 6.5 7.5 10.0 12.0 14.0 ns
Registered Delays:
tSS Synchronous clock setup
time, D-type register 3.0 3.5 4.0 4.0 5.5 6.0 7.0 10.0 ns
tSST Synchronous clock setup
time, T-type register 4.0 4.0 4.5 4.5 6.5 7.0 8.0 11.0 ns
tSA Asynchronous clock setup
time, D-type register 2.5 2.5 3.0 3.0 3.5 4.0 5.0 8.0 ns
tSAT Asynchronous clock setup
time, T-type register 3.0 3.0 3.5 3.5 4.5 5.0 6.0 9.0 ns
tHS Synchronous clock hold
time 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns
MACH 4 Family 43
tHA Asynchronous clock hold
time 2.5 2.5 3.0 3.0 3.5 4.0 5.0 8.0 ns
tCOSi Synchronous clock to
internal output 2.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 ns
tCOS Synchronous clock to
output 4.0 4.0 4.5 4.5 5.0 5.5 6.5 6.5 ns
tCOAi Asynchronous clock to
internal output 5.0 5.0 5.0 5.0 6.0 8.0 10.0 12.0 ns
tCOA Asynchronous clock to
output 6.5 6.5 7.0 7.0 8.5 11.0 13.0 15.0 ns
Latched Delays:
tSSL Synchronous latch setup
time 4.0 4.0 4.5 4.5 6.0 7.0 8.0 10.0 ns
tSAL Asynchronous latch setup
time 3.0 3.0 3.5 3.5 4.0 4.0 5.0 8.0 ns
tHSL Synchronous latch hold
time 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns
tHAL Asynchronous latch hold
time 3.0 3.0 3.5 3.5 4.0 4.0 5.0 8.0 ns
tPDLi Transparent latch to
internal output 5.5 5.5 6.0 6.0 7.5 9.0 11.0 12.0 ns
tPDL Propagation delay through
transparent latch to output 7.0 7.0 8.0 8.0 10.0 12.0 14.0 15.0 ns
tGOSi Synchronous gate to
internal output 3.0 3.0 3.0 3.0 3.5 4.5 7.0 8.0 ns
tGOS Synchronous gate to output 4.5 4.5 5.0 5.0 6.0 7.5 10.0 11.0 ns
tGOAi Asynchronous gate to
internal output 6.0 6.0 6.0 6.0 8.5 10.0 13.0 15.0 ns
tGOA Asynchronous gate to
output 7.5 7.5 8.0 8.0 11.0 13.0 16.0 18.0 ns
Input Register Delays:
tSIRS Input register setup time 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 ns
tHIRS Input register hold time 2.5 2.5 3.0 3.0 3.0 3.0 3.0 4.0 ns
tICOSi Input register clock to
internal feedback 3.0 3.0 3.0 3.0 3.5 4.5 6.0 6.0 ns
Input Latch Delays:
tSIL Input latch setup time 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 ns
tHIL Input latch hold time 2.5 2.5 3.0 3.0 3.0 3.0 3.0 4.0 ns
tIGOSi Input latch gate to internal
feedback 3.5 3.5 4.0 4.0 4.0 4.0 4.0 5.0 ns
tPDILi Transparent input latch to
internal feedback 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 ns
MACH 4A TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-5 -55 -6 -65 -7 -10 -12 -14
UnitMin Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
44 MACH 4 Family
Input Register Delays with ZHT Option:
tSIRZ Input register setup time -
ZHT 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns
tHIRZ Input register hold time -
ZHT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns
Input Latch Delays with ZHT Option:
tSILZ Input latch setup time -
ZHT 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns
tHILZ Input latch hold time - ZHT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns
tPDILZi Transparent input latch to
internal feedback - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns
Output Delays:
tBUF Output buffer delay 1.5 1.5 2.0 2.0 2.5 3.0 3.0 3.0 ns
tSLW Slow slew rate delay adder 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ns
tEA Output enable time 7.5 7.5 8.5 8.5 9.5 10.0 12.0 15.0 ns
tER Output disable time 7.5 7.5 8.5 8.5 9.5 10.0 12.0 15.0 ns
Power Delay:
tPL Power-down mode delay
adder 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ns
Reset and Preset Delays:
tSRi
Asynchronous reset or
preset to internal register
output 7.5 7.7 8.0 8.0 9.5 11.0 13.0 16.0 ns
tSR Asynchronous reset or
preset to register output 9.0 9.2 10.0 10.0 12.0 14.0 16.0 19.0 ns
tSRR
Asynchronous reset and
preset register recovery
time 7.0 7.0 7.5 7.5 8.0 8.0 10.0 15.0 ns
tSRW Asynchronous reset or
preset width 7.0 7.0 8.0 8.0 10.0 10.0 12.0 15.0 ns
Clock/LE Width:
tWLS Global clock width low 2.0 2.0 2.5 2.5 3.0 5.0 6.0 6.0 ns
tWHS Global clock width high 2.0 2.0 2.5 2.5 3.0 5.0 6.0 6.0 ns
tWLA Product term clock width
low 3.0 3.0 3.5 3.5 4.0 5.0 8.0 9.0 ns
tWHA Product term clock width
high 3.0 3.0 3.5 3.5 4.0 5.0 8.0 9.0 ns
tGWS
Global gate width low (for
low transparent) or high
(for high transparent) 4.0 4.0 4.5 4.5 5.0 5.0 6.0 6.0 ns
tGWA
Product term gate width
low (for low transparent)
or high (for high
transparent)
4.0 4.0 4.5 4.5 5.0 5.0 6.0 9.0 ns
tWIRL Input register clock width
low 3.0 3.0 3.5 3.5 4.0 5.0 6.0 6.0 ns
MACH 4A TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-5 -55 -6 -65 -7 -10 -12 -14
UnitMin Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
MACH 4 Family 45
Notes:
1. See “Switching Test Circuit” in the General Information Section of the Vantis 1999 Data Book.
2. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.
tWIRH Input register clock width
high 3.0 3.0 3.5 3.5 4.0 5.0 6.0 6.0 ns
tWIL Input latch gate width 4.0 4.0 4.5 4.5 5.0 5.0 6.0 6.0 ns
Frequency:
fMAXS
External feedback, D-type,
Min of 1/(tWLS + tWHS) or
1/(tSS + tCOS)143 133 118 118 95.2 87.0 74.1 60.6 MHz
External feedback, T-type,
Min of 1/(tWLS + tWHS) or
1/(tSST + tCOS)125 125 111 111 87.0 80.0 69.0 57.1 MHz
Internal feedback (fCNT),
D-type, Min of 1/(tWLS +
tWHS) or 1/(tSS + tCOSi)182 167 154 154 125 100 83.3 74.1 MHz
Internal feedback (fCNT),
T-type, Min of 1/(tWLS +
tWHS) or 1/(tSST + tCOSi)154 154 143 143 111 105 87.0 69.0 MHz
No feedback2, Min of 1/
(tWLS + tWHS), 1/(tSS + tHS)
or 1/(tSST + tHS)250 250 200 200 154 125 100 83.3 MHz
fMAXA
External feedback, D-type,
Min of 1/(tWLA + tWHA) or
1/(tSA + tCOA)111 111 100 100 83.3 66.7 55.6 43.5 MHz
External feedback, T-type,
Min of 1/(tWLA + tWHA) or
1/(tSAT + tCOA)105 105 95.2 95.2 76.9 62.5 52.6 41.7 MHz
Internal feedback (fCNTA),
D-type, Min of 1/(tWLA +
tWHA) or 1/(tSA + tCOAi)133 133 125 125 105 83.3 66.7 50.0 MHz
Internal feedback (fCNTA),
T-type, Min of 1/(tWLA +
tWHA) or 1/(tSAT + tCOAi)125 125 118 118 95.2 76.9 62.5 47.6 MHz
No feedback2, Min of 1/
(tWLA + tWHA), 1/(tSA +
tHA) or 1/(tSAT + tHA)167 167 143 143 125 100 62.5 55.6 MHz
fMAXI
Maximum input register
frequency , Min of 1/(tWIRH
+ tWIRL) or 1/(tSIRS +
tHIRS)
167 167 143 143 125 100 83.3 83.3 MHz
MACH 4A TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)
-5 -55 -6 -65 -7 -10 -12 -14
UnitMin Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
46 MACH 4 Family
CAPACITANCE 1
Note:
1. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified
where this parameter may be affected.
ICC vs. FREQUENCY
These curves represent the typical power consumption for a particular device at system
frequency. The selected “typical” pattern is a 16-bit up-down counter. This pattern fills the
device and exercises every macrocell. Maximum frequency shown uses internal feedback and
a D-type register. Power/Speed are optimized to obtain the highest counter frequency and the
lowest power. The highest frequency (LSBs) is placed in common PAL blocks, which are set to
high power . The lowest frequency signals (MSBs) are placed in a common PAL block and set to
lowest power.
Parameter Symbol Parameter Description Test Conditions Typ Unit
CIN Input capacitance VIN=2.0 V 3.3 V or 5 V, 25°C, 1 MHz 6 pF
CI/O Output capacitance VOUT=2.0V 3.3 V or 5 V, 25°C, 1 MHz 8 pF
350
300
250
200
150
100
50
0
0
10
20
30
40
50
60
70
80
90
100
110
120
130
VCC = 5 V or 3.3 V, TA = 25 °C
ICC (mA)
Frequency (MHz) 17466G-066
M4(LV)-32/32
M4(LV)-64/32
M4(LV)-96/48
M4(LV)-128/64
M4(LV)-192/96
M4(LV)-256/128
Figure 19. ICC Curves at High Power Mode
17466G-044
MACH 4 Family 47
350
300
250
200
150
100
50
0
0
10
20
30
40
50
60
70
80
90
100
110
120
VCC = 5 V or 3.3 V, TA = 25 °C
M4(LV)-32/32
ICC (mA)
Frequency (MHz) 17466G-065
M4(LV)-64/32
M4(LV)-96/48
M4(LV)-128/64
M4(LV)-192/96
M4(LV)-256/128
Figure 20. ICC Curves at Low Power Mode
Figure 21. MACH 4A Device Dynamic Icc Curves at High and Low Power Modes
300
250
200
150
100
50
0
0 20 40 60 80 100 120 140 160 180 200
M4A3-256/128 (HP)
M4A3-256/128 (LP)
M4A3-128/64 (HP)
M4A3-128/64 (LP)
M4A3-32/32 (HP)
M4A3-32/32 (LP)
220 240 260
Frequency (MHz)
VCC = 3.3V, TA = 25°C
Icc (mA)
HP: High Power
LP: Low Power
17466H-066
48 MACH 4 Family
44-PIN PLCC CONNECTION DIAGRAM (M4(LV)-32/32, M4A(3,5)-32/32,
M4(LV)-64/32 AND M4A(3,5)-64/32)
Top View
44-Pin PLCC
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I/O = Input/Output
VCC = Supply Voltage
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
144 43 42
5432
641
40
7
8
9
10
11
12
13
14
15
16
17 23 24 25 26
19 20 21 22
18 27 28
39
38
37
36
35
34
33
32
31
30
29
I/O5
I/O6
I/O7
TDI
CLK0/I0
GND
TCK
I/O8
I/O9
I/O10
I/O11
A2
A1
A0
B0
B1
B2
B3
D3
D2
D1
D0
C0
C1
C2
B3
B2
B1
B0
B8
B9
B10
A2
A1
A0
A8
A9
A10
A11
I/O27
I/O26
I/O25
I/O24
TDO
GND
CLK1/I1
TMS
I/O23
I/O22
I/O21
I/O12
I/O13
I/O14
I/O15
VCC
GND
I/O16
I/O17
I/O18
I/O19
I/O20
B4
B5
B6
B7
C7
C6
C5
C4
C3
A12
A13
A14
A15
B15
B14
B13
B12
B11
I/O4
I/O3
I/O2
I/O1
I/O0
GND
VCC
I/O31
I/O30
I/O29
I/O28
A3
A4
A5
A6
A7
D7
D6
D5
D4
A3
A4
A5
A6
A7
B7
B6
B5
B4
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
17466G-026
I/O Cell (0-7)
PAL Block (A-D)
C7
MACH 4 Family 49
44-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32, M4A(3,5)-32/32,
M4(LV)-64/32 AND M4A(3,5)-64/32)
Top View
44-Pin TQFP
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I/O = Input/Output
VCC = Supply Voltage
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
I/O12
I/O13
I/O14
I/O15
VCC
GND
I/O16
I/O17
I/O18
I/O19
I/O20
B4
B5
B6
B7
C7
C6
C5
C4
C3
A12
A13
A14
A15
B15
B14
B13
B12
B11
I/O4
I/O3
I/O2
I/O1
I/O0
GND
VCC
I/O31
I/O30
I/O29
I/O28
A3
A4
A5
A6
A7
D7
D6
D5
D4
A3
A4
A5
A6
A7
B7
B6
B5
B4
I/O27
I/O26
I/O25
I/O24
TDO
GND
CLK1/I1
TMS
I/O23
I/O22
I/O21
D3
D2
D1
D0
C0
C1
C2
B3
B2
B1
B0
B8
B9
B10
I/O5
I/O6
I/O7
TDI
CLK0/I0
GND
TCK
I/O8
I/O9
I/O10
I/O11
A2
A1
A0
B0
B1
B2
B3
A2
A1
A0
A8
A9
A10
A11
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
44
43
42
41
40
39
38
37
36
35
34
12
13
14
15
16
17
18
19
20
21
22
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
I/O Cell (0-7)
PAL Block (A-D)
C7
50 MACH 4 Family
48-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32, M4A(3,5)-32/32,
M4(LV)-64/32 AND M4A(3,5)-64/32)
Top View
48-Pin TQFP
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I/O = Input/Output
VCC = Supply Voltage
NC = No Connect
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
I/O12
I/O13
I/O14
I/O15
VCC
NC
GND
I/O16
I/O17
I/O18
I/O19
I/O20
B4
B5
B6
B7
C7
C6
C5
C4
C3
A12
A13
A14
A15
B15
B14
B13
B12
B11
I/O4
I/O3
I/O2
I/O1
I/O0
GND
NC
VCC
I/O31
I/O30
I/O29
I/O28
A3
A4
A5
A6
A7
D7
D6
D5
D4
A3
A4
A5
A6
A7
B7
B6
B5
B4
I/O27
I/O26
I/O25
I/O24
TDO
GND
NC
CLK1/I1
TMS
I/O23
I/O22
I/O21
D3
D2
D1
D0
C0
C1
C2
B3
B2
B1
B0
B8
B9
B10
I/O5
I/O6
I/O7
TDI
CLK0/I0
NC
GND
TCK
I/O8
I/O9
I/O10
I/O11
A2
A1
A0
B0
B1
B2
B3
A2
A1
A0
A8
A9
A10
A11
1
2
3
4
5
6
7
8
9
10
11
12
33
34
35
36
32
31
30
29
28
27
26
25
44
45
46
47
48
43
42
41
40
39
38
37
13
14
15
16
17
18
19
20
21
22
23
24
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-32/32
M4A(3,5)-32/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
M4(LV)-64/32
M4A(3,5)-64/32
17466G-028
I/O Cell (0-7)
PAL Block (A-D)
C7
MACH 4 Family 51
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-96/48 AND M4A(3,5)-96/48)
Top View
100-Pin TQFP
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I = Input
I/O = Input/Output
VCC = Supply Voltage
NC = No Connect
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
NC
TDI
NC
NC
I/O6
I/O7
I/O8
I/O9
I/O10
I/O11
I0/CLK0
V
CC
GND
I1/CLK1
I/O12
I/O13
I/O14
I/O15
I/O16
I/O17
NC
NC
TMS
TCK
NC
A1
A0
B0
B1
B2
B3
B4
B5
B6
B7
C0
C1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
GND
NC
NC
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
NC
I2
NC
NC
GND
V
CC
I3
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
NC
NC
GND
C2
C3
C4
C5
C6
C7
D7
D6
D5
D4
D3
D2
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
GND
NC
NC
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
I7
V
CC
GND
NC
NC
I6
NC
I/O47
I/O46
I/O45
I/O44
I/O43
I/O42
NC
NC
GND
A2
A3
A4
A5
A6
A7
F7
F6
F5
F4
F3
F2
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
TDO
NC
NC
NC
I/O41
I/O40
I/O39
I/O38
I/O37
I/O36
I5/CLK3
GND
V
CC
I4/CLK2
I/O35
I/O34
I/O33
I/O32
I/O31
I/O30
NC
NC
NC
NC
F1
F0
E0
E1
E2
E3
E4
E5
E6
E7
D0
D1
17466G-029
I/O Cell (0-7)
PAL Block (A-F)
C7
52 MACH 4 Family
84-PIN PLCC CONNECTION DIAGRAM (M4(LV)-128N/64)
Top View
84-Pin PLCC
Note:
Pin-compatible with the MACH131, MACH231, MACH435.
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I = Input
I/O = Input/Output
VCC = Supply Voltage
1
2
381
82
83
84
6
7
8
94
580 76
77
78
79 75
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
43
42
41
40 47
46
45
44
37
36
35
34 39
38
33 48 52
51
50
49
10
22
11
32 53
74
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
CLK0/I0
VCC
GND
CLK1/I1
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
GND
I/O8 GND
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
CLK3/I4
VCC
CLK2/I3
I/O47
G7
G6
G5
G4
G3
G2
G1
G0
F0
F1
F2
F3
F4
F5
F6
F7
B7
B6
B5
B4
B3
B2
B1
B0
C0
C1
C2
C3
C4
C5
C6
C7
I/O46
I/O45
I/O44
I/O43
I/O42
I/O41
GND
I/O40
GND
VCC
I/O0
I/O62
I/O63
I5
VCC
I/O3
I/O4
I/O5
I/O6
I/O1
I/O2
I/O61
I/O57
I/O58
I/O59
I/O60
I/O56
I/O7
H0
H1
H2
H3
H4
H5
H6
H7
A7
A6
A5
A4
A3
A2
A1
A0
GND
GND
VCC
I2
I/O34
I/O33
I/O32
VCC
I/O29
I/O28
I/O27
I/O26
I/O31
I/O30
I/O35
I/O39
I/O38
I/O37
I/O36
GND
I/O25
I/O24
E0
E1
E2
E3
E4
E5
E6
E7
D7
D6
D5
D4
D3
D2
D1
D0
17466G-030
I/O Cell (0-7)
PAL Block (A-H)
C7
MACH 4 Family 53
100-PIN PQFP CONNECTION DIAGRAM (M4(LV)-128/64 AND M4A(3,5)-128/64)
Top View
100-Pin PQFP
Note:
The numbers in parentheses reflect compatible pin numbers for 84-pin PLCC.
PIN DESIGNATIONS
I/CLK = Input or Clock
GND = Ground
I = Input
I/O = Input/Output
VCC = Supply Voltage
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
TRST = Test Reset
ENABLE = Program
I/O7 A7
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
VCC
GND
GND
VCC
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
H0
H1
H2
H3
H4
H5
H6
H7
GND
GND
TDI
I5
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
IO/CLK0
GND
GND
I1/CLK1
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
B7
B6
B5
B4
B3
B2
B1
B0
C0
C1
C2
C3
C4
C5
C6
C7 TMS
TCK
GND
GND
28
29
30
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
1
2
3
99
98
100
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
97
96
95
94
93
92
91
90
89
88
87
86
85
84
82
81
83
I/O46
I/O45
I/O44
I/O43
I/O42
I/O41
I/O40
I2
ENABLE
GND
GND
GND
TD0
TRST
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
G7
G6
G5
G4
G3
G2
G1
G0
I4/CLK3
GND
GND
I3/CLK2
I/O47 F1
F2
F3
F4
F5
F6
F7
F0
GND
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
80
79
78
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
GND
GND
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
E0
E1
E2
E3
E4
E5
E6
E7
(83)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(62)
(61)
(60)
(59)
(58)
(57)
(56)
(55)
(54)
(41)
(73)
(72)
(71)
(70)
(69)
(68)
(67)
(66)
(65)
(10)
(9)
(8)
(7)
(6)
(5)
(4)
(3)
(82)
(81)
(80)
(79)
(78)
(77)
(76)
(75)
VCC
VCC VCC
VCC
VCC
VCC
17466G
-
031
I/O Cell (0-7)
PAL Block (A-H)
C7
54 MACH 4 Family
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-128/64 AND M4A(3,5)-128/64)
Top View
100-Pin TQFP
PIN DESIGNATIONS
CLK/I = Clock or Input
GND = Ground
I = Input
I/O = Input/Output
VCC = Supply Voltage
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
TRST = Test Reset
ENABLE = Program
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
GND
TDI
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
I0/CLK0
VCC
GND
I1/CLK1
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
TMS
TCK
GND
B7
B6
B5
B4
B3
B2
B1
B0
C0
C1
C2
C3
C4
C5
C6
C7
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
GND
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I2
V
CC
GND
GND
V
CC
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
GND
GND
D7
D6
D5
D4
D3
D2
D1
D0
E0
E1
E2
E3
E4
E5
E6
E7
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
GND
GND
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
VCC
GND
GND
VCC
I5
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
GND
GND
A7
A6
A5
A4
A3
A2
A1
A0
H0
H1
H2
H3
H4
H5
H6
H7
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
GND
TDO
TRST
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
I4/CLK3
GND
VCC
I3/CLK2
I/O47
I/O46
I/O45
I/O44
I/O43
I/O42
I/O41
I/O40
ENABLE
GND
G7
G6
G5
G4
G3
G2
G1
G0
F0
F1
F2
F3
F4
F5
F6
F7
17466G-032
I/O Cell (0-7)
PAL Block (A-H)
C7
MACH 4 Family 55
144-PIN TQFP CONNECTION DIAGRAM (M4(LV)-192/96 AND M4A(3,5)-192/96)
Top View
144-Pin TQFP
PIN DESIGNATIONS
CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
VCC = Supply Voltage
TDI = Test Data In
TCK = Test Clock
TMS = Test Mode Select
TDO = Test Data Out
17466G-033
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
GND
TDI
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I2
I3
VCC
GND
I4
I/O8
I/O9
I/O10
I/O11
I/O12
I/O13
I/O14
I/O15
GND
VCC
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
TMS
TCK
GND
D7
D6
D5
D4
D3
D2
D1
D0
C7
C6
C5
C4
C3
C2
C1
C0
E7
E6
E5
E4
E3
E2
E1
E0
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
I5
I6
I7
CLK1
GND
VCC
CLK2
I8
I9
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
VCC
GND
I/O40
I/O41
I/O42
I/O43
I/O44
I/O45
I/O46
I/O47
F7
F6
F5
F4
F3
F2
F1
F0
G0
G1
G2
G3
G4
G5
G6
G7
H0
H1
H2
H3
H4
H5
H6
H7
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
I/O95
I/O94
I/O93
I/O92
I/O91
I/O90
I/O89
I/O88
GND
VCC
I/O87
I/O86
I/O85
I/O84
I/O83
I/O82
I/O81
I/O80
I1
I0
CLK0
GND
VCC
CLK3
I15
I14
I13
I/O79
I/O78
I/O77
I/O76
I/O75
I/O74
I/O73
I/O72
GND
B7
B6
B5
B4
B3
B2
B1
B0
A7
A6
A5
A4
A3
A2
A1
A0
L0
L1
L2
L3
L4
L5
L6
L7
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
GND
TDO
NC
I/O71
I/O70
I/O69
I/O68
I/O67
I/O66
I/O65
I/O64
I12
VCC
GND
I11
I10
I/O63
I/O62
I/O61
I/O60
I/O59
I/O58
I/O57
I/O56
GND
VCC
I/O55
I/O54
I/O53
I/O52
I/O51
I/O50
I/O49
I/O48
NC
GND
K0
K1
K2
K3
K4
K5
K6
K7
J0
J1
J2
J3
J4
J5
J6
J7
I0
I1
I2
I3
I4
I5
I6
I7
I/O Cell (0-7)
PAL Block (A-L)
C7
56 MACH 4 Family
176-PIN TQFP CONNECTION DIAGRAM - M4A3-256/128, M4A3-192/128,
M4A3-128/128, AND M4A3-384/132
Top View
176-Pin TQFP
C7
C6
C5
C4
C3
C2
C1
C0
F7
F6
F5
F4
F3
F2
F1
F0
H5
G0
G1
G2
G3
G4
G5
G6
G7
J0
J1
J2
J3
J4
J5
J6
J7
C7
C6
C5
C4
C3
C2
C1
C0
D7
D6
D5
D4
D3
D2
D1
D0
E0
E1
E2
E3
E4
E5
E6
E7
F0
F1
F2
F3
F4
F5
F6
F7
GND
TDI
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
VCC
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
GND
VCC
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
I/O40
GND
VCC
I/O41
I/O42
I/O43
I/O44
I/O45
I/O46
I/O47
I/O48
TMS
TCK
GND
GND
I/O49
I/O50
I/O51
I/O52
I/O53
I/O54
I/O55
I/O56
GND
VCC
I/O57
I/O58
I/O59
I/O60
I/O61
I/O62
I/O63
I/O64
I/O66
CLK1
GND
GND
VCC
CLK2
I/O66
I/O67
I/O68
I/O69
I/O70
I/O71
I/O72
I/O73
VCC
GND
I/O74
I/O75
I/O76
I/O77
I/O78
I/O79
I/O80
I/O81
GND
GND
TDI
I/O16
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
VCC
GND
I/O24
I/O25
I/O26
I/O27
I/O28
I/O29
I/O30
I/O31
GND
VCC
I0*(I4)
I/O32
I/O33
I/O34
I/O35
I/O36
I/O37
I/O38
I/O39
GND
VCC
I/O40
I/O41
I/O42
I/O43
I/O44
I/O45
I/O46
I/O47
TMS
TCK
GND
GND
TDI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
VCC
I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TMS
TCK
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
K7
K6
K5
K4
K3
K2
K1
K0
I7
I6
I5
I4
I3
I2
I1
I0
L6
P0
P1
P2
P3
P4
P5
P6
P7
N0
N1
N2
N3
N4
N5
N6
N7
G7
G6
G5
G4
G3
G2
G1
G0
H7
H6
H5
H4
H3
H2
H1
H0
I0
I1
I2
I3
I4
I5
I6
I7
J0
J1
J2
J3
J4
J5
J6
J7
GND
I/O48
I/O49
I/O50
I/O51
I/O52
I/O53
I/O54
I/O55
GND
VCC
I/O56
I/O57
I/O58
I/O59
I/O60
I/O61
I/O62
I/O63
I1*(I6)
CLK1
GND
GND
VCC
CLK2
I/O64
I/O65
I/O66
I/O67
I/O68
I/O69
I/O70
I/O71
VCC
GND
I/O72
I/O73
I/O74
I/O75
I/O76
I/O77
I/O78
I/O79
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I
CLK1
GND
GND
VCC
CLK2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
FX7
FX6
FX5
FX4
FX3
FX2
FX1
FX0
CX7
CX6
CX5
CX4
CX3
CX2
CX1
CX0
DX5
BX0
BX1
BX2
BX3
BX4
BX5
BX6
BX7
O0
O1
O2
O3
O4
O5
O6
O7
N7
N6
N5
N4
N3
N2
N1
N0
M7
M6
M5
M4
M3
M2
M1
M0
L0
L1
L2
L3
L4
L5
L6
L7
K0
K1
K2
K3
K4
K5
K6
K7
B7
B6
B5
B4
B3
B2
B1
B0
A7
A6
A5
A4
A3
A2
A1
A0
P0
P1
P2
P3
P4
P5
P6
P7
O0
O1
O2
O3
O4
O5
O6
O7
B7
B6
B5
B4
B3
B2
B1
B0
D7
D6
D5
D4
D3
D2
D1
D0
HX6
EX0
EX1
EX2
EX3
EX4
EX5
EX6
EX7
GX0
GX1
GX2
GX3
GX4
GX5
GX6
GX7
GND
TDO
TRST
I/O111
I/O110
I/O109
I/O108
I/O107
I/O106
I/O105
I/O104
VCC
GND
I/O103
I/O102
I/O101
I/O100
I/O99
I/O98
I/O97
I/O96
I2*(I1)
VCC
GND
I/O95
I/O94
I/O93
I/O92
I/O91
I/O90
I/O89
I/O88
GND
VCC
I/O87
I/O86
I/O85
I/O84
I/O83
I/O82
I/O81
I/O80
ENABLE
GND
GND
TDO
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I
VCC
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
GND
GND
I/O15
I/O14
I/O13
I/O12
I/O11
I/O10
I/O9
I/O8
GND
VCC
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
CLK0
VCC
GND
GND
CLK3
I3*(I3)
I/O127
I/O126
I/O125
I/O124
I/O123
I/O122
I/O121
I/O120
VCC
GND
I/O119
I/O118
I/O117
I/O116
I/O115
I/O114
I/O113
I/O112
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
CLK0
VCC
GND
GND
CLK3
I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
GND
I/O15
I/O14
I/O13
I/O12
I/O11
I/O10
I/O9
I/O8
GND
VCC
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
CLK0
VCC
GND
GND
CLK3
I/O131
I/O130
I/O129
I/O128
I/O127
I/O126
I/O125
I/O124
I/O123
VCC
GND
I/O122
I/O121
I/O120
I/O119
I/O118
I/O117
I/O116
I/O115
GND
GND
TDO
VCC
I/O114
I/O113
I/O112
I/O111
I/O110
I/O109
I/O108
I/O107
VCC
GND
I/O106
I/O105
I/O104
I/O103
I/O102
I/O101
I/O100
I/O99
I/O98
VCC
GND
I/O97
I/O96
I/O95
I/O94
I/O93
I/O92
I/O91
I/O90
GND
VCC
I/O89
I/O88
I/O87
I/O86
I/O85
I/O84
I/O83
I/O82
GND
GND
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
RECOMMEND TO TIE TO VCC
M4A3-256/128
M4A3-384/132
M4A3-128/128 &
M4A3-192/128
RECOMMEND TO TIE TO GND
PIN DESIGNATIONS
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
TRST
ENABLE
=
=
=
=
=
=
=
=
=
=
=
=I/O Cell (0-7)
PAL Block (A-HX)
Clock
Ground
Input ( ) shows equivalent pin in M4A3-256/128 (208PQFP)
Input/Output
No Connect
Supply V oltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
Test Reset
Program
C7
17466G-042
MACH 4 Family 57
208-PIN PQFP CONNECTION DIAGRAM - M4A3-256/128, M4A5-256/128,
M4-256/128, M4LV-256/128, AND M4A3-384/160
Top View
208-Pin PQFP
PIN DESIGNATIONS
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
TRST
ENABLE
=
=
=
=
=
=
=
=
=
=
=
=I/O Cell (0-7)
PAL Block (A-HX)
Clock
Ground
Input ( ) shows equivalent pin in M4A3-256/128 (208PQFP)
Input/Output
No Connect
Supply Voltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
Test Reset
Program
C7
17466G-044
58 MACH 4 Family
256-BALL BGA CONNECTION DIAGRAM (M4(LV)-256/128 AND
M4A(3,5)-256/128)
Bottom View
256-Ball BGA
PIN DESIGNATIONS
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
TRST
ENABLE
=
=
=
=
=
=
=
=
=
=
=
=I/O Cell (0-7)
PAL Block (A-P)
Clock
Ground
Input
Input/Output
No Connect
Supply Voltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
Test Reset
Program
C7
17466G-045
MACH 4 Family 59
256-BALL BGA CONNECTION DIAGRAM - M4A3-384/192
Bottom View
256-Ball BGA
PIN DESIGNATIONS
CLK
GND
I
I/O
N/C
VCC
TDI
TCK
TMS
TDO
=
=
=
=
=
=
=
=
=
=I/O Cell (0-7)
PAL Block (A-HX)
Clock
Ground
Input
Input/Output
No Connect
Supply Voltage
Test Data In
Test Clock
Test Mode Select
Test Data Out
C7
17466G-046
60 MACH 4 Family
MACH 4 PRODUCT ORDERING INFORMATION
MACH 4 Devices Commercial & Industrial - 3.3V and 5V
Lattice/Vantis programmable logic products are available with several ordering options. The order number (Valid Combination) is
formed by a combination of:
All MACH devices are dual-marked with both Commercial and
Industrial grades. The Industrial speed grade is slower, i.e.,
M4-256/128-7YC-10YI
Valid Combinations
Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local
Lattice/Vantis sales office to confirm availability of
specific valid combinations and to check on newly
released combinations.
128
FAMILY TYPE
M
4- = MACH 4 Family (5-V VCC)
M
4LV- = MACH 4 Family Low Voltage (3.3-V VCC)
M4- 256 Y C
MACROCELL DENSITY
32 = 32 Macrocells 128N = 128 Macrocells, Non-ISP
64 = 64 Macrocells 192 = 192 Macrocells
96 = 96 Macrocells 256 = 256 Macrocells
128 = 128 Macrocells
I/Os
/32 = 32 I/Os in 44-pin PLCC, 44-pin TQFP or 48-pin TQFP
/48 = 48 I/Os in 100-pin TQFP
/64 = 64 I/Os in 84-pin PLCC, 100-pin PQFP or 100-pin TQFP
/96 = 96 I/Os in 144-pin TQFP
/
128 = 128 I/Os in 208-pin PQFP or 256-ball BGA
OPERATING CONDITIONS
C = Commercial (0°C to +70°C)
I = Industrial (-40 °C to +85 °C)
PACKAGE TYPE
A = Ball Grid Array (BGA)
J = Plastic Leaded Chip Carrier
(PLCC)
V = Thin Quad Flat Pack (TQFP)
Y = Plastic Quad Flat Pack (PQFP)
SPEED
-7 =7.5 ns tPD
-10 =10 ns tPD
-12 =12 ns tPD
-14 =14 ns tPD
-15 =15 ns tPD
-18 =18 ns tPD
-7
48 = 48-pin TQFP for M4(LV)-32/32
or M4(LV)-64/32
/
Valid Combinations
M4-32/32
-7, -10, -12, -15
JC, VC, VC48
M4LV-32/32 JC, VC, VC48
M4-64/32 JC, VC, VC48
M4LV-64/32 JC, VC, VC48
M4-96/48 VC
M4LV-96/48 VC
M4-128/64 YC, VC
M4LV-128/64 YC, VC
M4-128N/64 JC
M4LV-128N/64 JC
M4-192/96 VC
M4LV-192/96 VC
M4-256/128 YC, AC
M4LV-256/128 YC, AC
Valid Combinations
M4-32/32
-10, -12, -14, -18
JI, VI, VI48
M4LV-32/32 JI, VI, VI48
M4-64/32 JI, VI, VI48
M4LV-64/32 JI, VI, VI48
M4-96/48 VI
M4LV-96/48 VI
M4-128/64 YI, VI
M4LV-128/64 YI, VI
M4-128N/64 JI
M4LV-128N/64 JI
M4-192/96 VI
M4LV-192/96 VI
M4-256/128 YI, AI
M4LV-256/128 YI, AI
MACH 4 Family 61
MACH 4A PRODUCT ORDERING INFORMATION
MACH 4A Devices Commercial and Industrial - 3.3V and 5V
Lattice/Vantis programmable logic products are available with several ordering options. The order number (Valid Combination) is
formed by a combination of:
128
FAMILY TYPE
M
4A3- = MACH 4 Family Low Voltage Advanced Feature
(3.3-V VCC)
M
4A5- = MACH 4 Family Advanced Feature (5-V VCC)
M4A3- 256 Y C
MACROCELL DENSITY
32 = 32 Macrocells 192 = 192 Macrocells
64 = 64 Macrocells 256 = 256 Macrocells
96 = 96 Macrocells 384 = 384 Macrocells
128 = 128 Macrocells 512 = 512 Macrocells
I/Os
/32 = 32 I/Os in 44-pin PLCC, 44-pin TQFP or 48-pin TQFP
/48 = 48 I/Os in 100-pin TQFP
/64 = 64 I/Os in 100-pin TQFP, 100-pin PQFP, or 100-ball fpBGA
/68 = 68 I/Os in 100-pin TQFP or 100-ball fpBGA
/96 = 96 I/Os in 144-pin TQFP or 144-ball fpBGA
/128 = 128 I/Os in 176-pin TQFP , 200-ball fpBGA, 208-pin PQFP, or
256-ball BGA
/132 = 132 I/Os in 176-pin TQFP
/160 = 160 I/Os in 208-pin PQFP
/192 = 192 I/Os in 256-ball BGA or 320-ball fpBGA
/256 = 256 I/Os in 352-ball BGA
OPERATING CONDITIONS
C = Commercial (0°C to +70°C)
I = Industrial (-40 °C to +85 °C)
PACKAGE TYPE
A = Ball Grid Array (BGA)
J = Plastic Leaded Chip Carrier
(PLCC)
V = Thin Quad Flat Pack (TQFP)
Y = Plastic Quad Flat Pack (PQFP)
FA = Fine-pitch Ball Grid Array 0.8mm
(fpBGA)
SPEED
-5 = 5.0 ns tPD
-55 = 5.5 ns tPD
-6 = 6.0 ns tPD
-65 = 6.5 ns tPD
-7 = 7.5 ns tPD
-10 = 10 ns tPD
-12 = 12 ns tPD
-14 = 14 ns tPD
-7
48 = 48-pin TQFP for
M4A3-32/32 or M4A3-64/32
M4A5-32/32 or M4A5-64/32
/
3.3V Commercial Combinations
M4A3-32/32
-5, -55, -6, -65,
-7, -10, -12
JC, VC, VC48
M4A3-64/32 JC, VC, VC48
M4A3-64/64 VC, FAC
M4A3-96/48 VC
M4A3-128/64 YC, VC, FAC
M4A3-128/96 VC, FAC
M4A3-128/128 VC, FAC
M4A3-192/68 VC, FAC
M4A3-192/96 VC, FAC
M4A3-192/128 VC, FAC
M4A3-256/128 YC, VC, AC, FAC
M4A3-256/160 YC
M4A3-256/192 AC
M4A3-384/132
-65, -7, -10, -12
VC
M4A3-384/160 YC
M4A3-384/192 AC
M4A3-512/132 VC
M4A3-512/160 YC
M4A3-512/192 AC
M4A3-512/256 AC
3.3V Industrial Combinations
M4A3-32/32
-7, -10, -12, -14
JI, VI, VI48
M4A3-64/32 JI, VI, VI48
M4A3-64/64 VI
M4A3-96/48 VI
M4A3-128/64 YI, VI
M4A3-128/96 VI
M4A3-128/128 VI
M4A3-192/68 VI
M4A3-192/96 VI
M4A3-192/128 VI
M4A3-256/128 YI, VI, AI
M4A3-256/160 YI
M4A3-256/192 AI
M4A3-384/132
-10, -12, -14
VI
M4A3-384/160 YI
M4A3-384/192 AI
M4A3-512/132 VI
M4A3-512/160 YI
M4A3-512/192 AI
M4A3-512/256 AI
62 MACH 4 Family
Most MACH devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower , i.e., M4A3-
256/128-7YC-10YI
Valid Combinations
V alid Combinations list configurations planned to be supported in volume for this device. Consult the local Lattice/V antis sales office
to confirm availability of specific valid combinations and to check on newly released combinations.
Trademarks
Copyright © 1999 Lattice Semiconductor. All rights reserved.
Vantis, the Vantis logo, and combinations thereof, First-Time-Fit, SpeedLocking, Bus-Friendly, DesignDirect, and Lattice/VantisPRO are trademarks,
and MACHPRO, MACHXL, and PAL are registered trademarks of Lattice Semiconductor Corporation.
Other product names used in this publication are for indentification purposes only and may be trademarks of their respective companies.
5V Industrial Combinations
M4A5-32/32
-7, -10, -12, -14
JI, VI, VI48
M4A5-64/32 JI, VI, VI48
M4A5-96/48 VI
M4A5-128/64 YI, VI
M4A5-192/96 VI
M4A5-256/128 -10, -12, -14 YI, VI, AI
5V Commercial Combinations
M4A5-32/32
-5, -55, -6, -65,
-7, -10, -12
-65, -7, -10, -12
JC, VC, VC48
M4A5-64/32 JC, VC, VC48
M4A5-96/48 VC
M4A5-128/64 YC, VC
M4A5-192/96 VC
M4A5-256/128 YC, VC, AC