Rev.1.00, Aug.20.2004, page 1 of 13
BCR16CS-12L
Triac
Medium Power Use
REJ03G0341-0100
Rev.1.00
Aug.20.2004
Features
IT (RMS) : 16 A
VDRM : 600 V
IFGTI, IRGTI, IRGT : 30 mA (20 mA)Note6
Non-Insulated Type
Planar Passivation Type
Outline
2, 4
1
3
1. T
1
Terminal
2. T
2
Terminal
3. Gate Terminal
4. T
2
Terminal
TO-220S
123
4
Applications
Contactless AC switch, light dimmer, electronic flasher unit, hair drier, control of household equipment such as TV
sets, stereo systems, refrigerator, washing machine, infrared kotatsu, carpet, electric fan, solenoid driver, small motor
control, solid state relay, copying machine, electric tool, electric heater control, and other general purpose control
applications
Maximum Ratings
Voltage class
Parameter Symbol 12 Unit
Repetitive peak off-state voltageNote1 VDRM 600 V
Non-repetitive peak off-state voltageNote1 VDSM 720 V
BCR16CS-12L
Rev.1.00, Aug.20.2004, page 2 of 13
Parameter Symbol Ratings Unit Conditions
RMS on-state current IT (RMS) 16 A Commercial frequency, sine full wave
360° conduction, Tc = 100°CNote3
Surge on-state current ITSM 170 A 60Hz sinewave 1 full cycle, peak valu e,
non-repetitive
I2t for fusing I2t 121 A2s Value corresponding to 1 cycle of half
wave 60Hz, surge on-state current
Peak gate power dissipation PGM 5W
Average gate power dissipation PG (AV) 0.5 W
Peak gate voltage VGM 10 V
Peak gate current IGM 2A
Junction temperature Tj – 40 to +125 °C
Storage temperature Tstg – 40 to +125 °C
Mass 1.2 g Typical value
Notes: 1. Gate open.
Electrical Characteristics
Parameter Symbol Min. Typ. Max. Unit Test conditions
Repetitive peak off-state current IDRM 2.0 mA Tj = 125°C, VDRM applied
On-state voltage VTM 1.5 V Tc = 25°C, ITM = 25 A,
Instantaneous measurement
ΙVFGTΙ——1.5V
ΙΙ VRGTΙ——1.5V
Gate trigger voltageNote2
ΙΙΙ VRGTΙΙΙ ——1.5V
Tj = 25°C, VD = 6 V, RL = 6 ,
RG = 330
ΙIFGTΙ——30
Note6 mA
ΙΙ IRGTΙ——30
Note6 mA
Gate trigger currentNote2
ΙΙΙ IRGTΙΙΙ ——30
Note6 mA
Tj = 25°C, VD = 6 V, RL = 6 ,
RG = 330
Gate non-trigger voltage VGD 0.2 V Tj = 125°C, VD = 1/2 VDRM
Thermal resistance Rth (j-c) ——1.4°C/W Junction to caseNote3 Note4
Critical-rate of rise of off-state
commutating voltageNote5 (dv/dt)c 10 V/µs Tj = 125°C
Notes: 2. Measurement using the gate trigger characteristics measurement circuit.
3. Case temperature is measured on the T2 tab.
4. The contact thermal resistance Rth (c-f) in case of greasing is 1.0°C/W.
5. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.
6. High sensitivit y (IGT 20 mA) is also available. (IGT item: 1)
Test conditions Commutating voltage and curr ent waveforms
(inductive load)
1. Junction temperature
Tj = 125°C
2. Rate of decay of on-state commutating current
(di/dt)c = – 8.0 A/ms
3. Peak off-state voltage
VD = 400 V
Supply Voltage
Time
Time
Time
Main Current
Main Voltage
(di/dt)c
V
D
(dv/dt)c
BCR16CS-12L
Rev.1.00, Aug.20.2004, page 3 of 13
Performance Curves
Maximum On-State Characteristics
On-State Voltage (V)
On-State Current (A)
Rated Surge On-State Current
Conduction Time (Cycles at 60Hz)
Surge On-State Current (A)
Gate Characteristics (I, II and III)
Gate Current (mA)
Gate Voltage (V)
Gate Trigger Voltage vs.
Junction Temperature
Junction Temperature (°C)
Gate Trigger Voltage (Tj = t°C)
Gate Trigger Voltage (Tj = 25°C)
×
100 (%)
Gate Trigger Current vs.
Junction Temperature
Junction Temperature (°C)
Gate Trigger Current (Tj = t°C)
Gate Trigger Current (Tj = 25°C)
× 100 (%)
Conduction Time (Cycles at 60Hz)
Transient Thermal Impedance (°C/W)
4.40.4 1.2 2.4 3.20.8 1.6 2.0 2.8 3.6 4.0
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
10
0
2510
1
80
60
40
20
37
10
2
4
25374
100
120
140
160
180
200
0
2310
2
5710
3
1.6
02310
–1
5710
0
23 5710
1
23 5710
2
0.8
0.6
0.4
0.2
1.0
1.2
1.4
10
0
2310
1
5710
2
23 5710
3
23 5710
4
3
2
10
1
7
5
3
2
7
5
7
5
3
2
10
–1
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
Tj = 25°C
Tj = 125°C
V
GM
= 10V P
G(AV)
= 0.5W
P
GM
= 5W
I
GM
= 2A
V
GD
= 0.2V
V
GT
= 1.5V
I
FGT I
, I
RGT I
, I
RGT III
Typical Example
I
RGT III
I
FGT I
, I
RGT I
Typical Example
Maximum Transient Thermal Impedance
Characteristics (Junction to case)
BCR16CS-12L
Rev.1.00, Aug.20.2004, page 4 of 13
On-State Power Dissipation (W)
RMS On-State Current (A)
Maximum On-State Power Dissipation
RMS On-State Current (A)
Case Temperature (°C)
Allowable Case Temperature vs.
RMS On-State Current
RMS On-State Current (A)
Ambient Temperature (°C)
Allowable Ambient Temperature vs.
RMS On-State Current
Junction Temperature (°C)
Repetitive Peak Off-State Current (Tj = t°C)
Repetitive Peak Off-State Current (Tj = 25°C) × 100 (%)
Repetitive Peak Off-State Current vs.
Junction Temperature
Holding Current vs.
Junction Temperature
Junction Temperature (°C)
Holding Current (Tj = t°C)
Holding Current (Tj = 25°C) × 100 (%)
RMS On-State Current (A)
Ambient Temperature (°C)
Allowable Ambient Temperature vs.
RMS On-State Current
40
30
15
10
5
35
25
20
020
024 86 1012141618
40
1210
8
160
120
100
60
20
0200
80
140
2461416
18
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140
4
4
–40 0 40 80 120
10
1
14040–40–60 –20 0 20 60 80 100120
10
5
7
5
3
2
10
4
7
5
3
2
10
3
7
5
3
2
10
2
160
120
100
60
20
04.02.0
0 1.0 1.5 2.5 3.0 3.5
40
80
140
0.5
40
1210
8
160
120
100
60
20
0200
80
140
24614
16 18
360° Conduction
Resistive,
inductive loads
Curves apply regardless
of conduction angle
360° Conduction
Resistive,
inductive loads
All fins are black painted
aluminum and greased
120 × 120 × t2.3
100 × 100 × t2.3
60 × 60 × t2.3
Curves apply
regardless of
conduction angle
Resistive,
inductive loads
Natural convection
Typical Example Typical Example
Natural convection
No fins
Curves apply regardless
of conduction angle
Resistive, inductive loads
BCR16CS-12L
Rev.1.00, Aug.20.2004, page 5 of 13
Rate of Rise of Off-State Voltage (V/µs)
Breakover Voltage (dv/dt = xV/µs)
Breakover Voltage (dv/dt = 1V/µs) × 100 (%)
Breakover Voltage vs.
Rate of Rise of Off-State Voltage
Breakover Voltage vs.
Junction Temperature
Junction Temperature (°C)
Breakover Voltage (Tj = t°C)
Breakover Voltage (Tj = 25°C) × 100 (%)
Commutation Characteristics
Critical Rate of Rise of Off-State
Commutating Voltage (V/µs)
Rate of Decay of On-State
Commutating Current (A/ms)
Gate Trigger Current (tw)
Gate Trigger Current (DC) × 100 (%)
Gate Current Pulse Width (µs)
Gate Trigger Current vs.
Gate Current Pulse Width
Test Procedure I
Test Procedure III
Test Procedure II
Gate Trigger Characteristics Test Circuits
Latching Current (mA)
Latching Current vs.
Junction Temperature
Junction Temperature (°C)
16040 0 40 80 120
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
160
100
80
40
20
014040–4060 –20 0 20 60 80
140
100120
60
120
10
1
10
3
7
5
3
2
10
0
23 5710
1
10
2
7
5
3
2
23 5710
2
4
4
44
2310
1
5710
2
23 5710
3
23 5710
4
120
0
20
40
60
80
100
140
160
10
1
2310
0
5710
1
23 5710
2
23
7
5
5
3
2
7
7
3
2
10
0
66
6
6V 6V
6V
330330
330
A
V
A
V
A
V
Distribution T2+, G
Typical Example
T2+, G+
T2, GTypical Example
Typical Example
Typical Example
Tj = 125°C
III Quadrant
I Quadrant
Main Voltage
Main CurrentI
T
(di/dt)c
τ
V
D
Time
Time
(dv/dt)c
Typical Example
Tj = 125°C
IT = 4A
τ = 500µs
VD = 200V
f = 3Hz
Minimum
Characteristics
Value
I Quadrant
III Quadrant
I
FGT I
I
RGT I
I
RGT III
Typical Example
BCR16CS-12L
Rev.1.00, Aug.20.2004, page 6 of 13
Package Dimensions
TO-220S
EIAJ Package Code JEDEC Code Mass (g) (reference value) Lead Material
1.2 Cu alloy
Symbol Dimension in Millimeters
Min Typ Max
A
A
1
A
2
b
D
E
e
x
y
1
y
ZD
ZE
10.5 max
5
0.8
4.5
1.3
0.5
0
+0.3
- 0
3.0
+0.3
- 0.5
1
1.5 max
1.5 max
8.6 ± 0.3
9.8 ± 0.5
4.5
2.6 ± 0.4
(1.5)
Note 1) The dimensional figures indicate representative values unless
otherwise the tolerance is specified.
Order Code
Lead form Standard
packing Quantity Standard order code Standard order
code example
Surface-mounted type Taping 1000 Type name +A – T +Direction (1 or 2) +1 BCR16CS-12LA-T11
Surface-mounted type Plastic Magazine
(Tube) 50 Type name +A BCR16CS-12LA
Note : Please confirm the specificati on about the shipping in detail.
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 7 of 13
BCR16CS-12L
Triac
Medium Power Use
(The product guaranteed maximum junction temperature of 150°C)
Features
IT (RMS) : 16 A
VDRM : 600 V
IFGTI, IRGTI, IRGT : 30 mA (20 mA)Note6
Non-Insulated Type
Planar Passivation Type
Outline
2, 4
1
3
1. T
1
Terminal
2. T
2
Terminal
3. Gate Terminal
4. T
2
Terminal
TO-220S
123
4
Applications
Contactless AC switch, light dimmer, electronic flasher unit, hair drier, control of household equipment such as TV
sets, stereo systems, refrigerator, washing machine, infrared kotatsu, carpet, electric fan, solenoid driver, small motor
control, solid state relay, copying machine, electric tool, electric heater control, and other general purpose control
applications
Warning
1. Refer to the recommended circuit values aroun d the triac before using.
2. Be sure to exchange the specification before using. Otherwi se, ge neral triacs with the maximum
junction temperature of 125°C will be supplied.
Maximum Ratings
Voltage class
Parameter Symbol 12 Unit
Repetitive peak off-state voltageNote1 VDRM 600 V
Non-repetitive peak off-state voltageNote1 VDSM 720 V
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 8 of 13
Parameter Symbol Ratings Unit Conditions
RMS on-state current IT (RMS) 16 A Commercial frequencysine full wave
360° conductionTc = 125°CNote3
Surge on-state current ITSM 170 A 60Hzsinewave 1 full cycle, peak value,
non-repetitive
I2t for fusing I2t 121 A2sValue corresponding to 1 cycle of half
wave 60Hz, surge on-state current
Peak gate power dissipation PGM 5W
Average gate power dissipation PG (AV) 0.5 W
Peak gate voltage VGM 10 V
Peak gate current IGM 2A
Junction temperature Tj – 40 to +150 °C
Storage temperature Tstg – 40 to +150 °C
Mass 1.2 g Typical value
Notes: 1. Gate open.
Electrical Characteristics
Parameter Symbol Min. Typ. Max. Unit Test conditions
Repetitive peak off-state current IDRM 2.0 mA Tj = 150°C, VDRM applied
On-state voltage VTM ——1.5V
Tc = 25°C, ITM = 25 A,
Instantaneous measurement
ΙVFGTΙ——1.5V
ΙΙ VRGTΙ——1.5V
Gate trigger voltageNote2
ΙΙΙ VRGTΙΙΙ ——1.5V
Tj = 25°C, VD = 6 V, RL = 6 ,
RG = 330
ΙIFGTΙ——30
Note6 mA
ΙΙ IRGTΙ——30
Note6 mA
Gate trigger currentNote2
ΙΙΙ IRGTΙΙΙ ——30
Note6 mA
Tj = 25°C, VD = 6 V, RL = 6 ,
RG = 330
Gate non-trigger voltage VGD 0.2/0.1 V Tj = 125°C/150°C, VD = 1/2 VDRM
Thermal resistance Rth (j-c) ——1.4°C/W Junction to caseNote3 Note4
Critical-rate of rise of off-state
commutating voltageNote5 (dv/dt)c 10/1 V/µs Tj = 125°C/150°C
Notes: 2. Measurement using the gate trigger characteristics measurement circuit.
3. Case temperature is measured on the T2 tab.
4. The contact thermal resistance Rth (c-f) in case of greasing is 1.0°C/W.
5. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.
6. High sensitivit y (IGT 20 mA) is also available. (IGT item: 1)
Test conditions Commutating voltage and curr ent waveforms
(inductive load)
1. Junction temperature
Tj = 125°C/150°C
2. Rate of decay of on-state commutating current
(di/dt)c = – 8.0 A/ms
3. Peak off-state voltage
VD = 400 V
Supply Voltage
Time
Time
Time
Main Current
Main Voltage
(di/dt)c
V
D
(dv/dt)c
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 9 of 13
Performance Curves
Maximum On-State Characteristics
On-State Voltage (V)
On-State Current (A)
Rated Surge On-State Current
Conduction Time (Cycles at 60Hz)
Surge On-State Current (A)
Gate Characteristics (I, II and III)
Gate Current (mA)
Gate Voltage (V)
Gate Trigger Voltage vs.
Junction Temperature
Junction Temperature (°C)
Gate Trigger Voltage (Tj = t°C)
Gate Trigger Voltage (Tj = 25°C)
×
100 (%)
Gate Trigger Current vs.
Junction Temperature
Junction Temperature (°C)
Gate Trigger Current (Tj = t°C)
Gate Trigger Current (Tj = 25°C)
× 100 (%)
Conduction Time (Cycles at 60Hz)
Transient Thermal Impedance (°C/W)
10
0
23 5710
1
80
60
40
20
23 5710
2
44
100
120
140
160
180
200
0
0.5 1.0 3.01.5 2.0 2.5 3.5 4.0
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
2310
2
5710
3
1.6
02310
–1
5710
0
23 5710
1
23 5710
2
0.8
0.6
0.4
0.2
1.0
1.2
1.4
10
0
2310
1
5710
2
23 5710
3
23 5710
4
3
2
10
1
7
5
3
2
7
5
7
5
3
2
10
–1
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140 160
4
4
–40 0 40 80 120
10
1
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140 160
4
4
–40 0 40 80 120
Tj = 25°C
Tj = 150°C
V
GM
= 10V P
G(AV)
= 0.5W
P
GM
= 5W
I
GM
= 2A
V
GT
= 1.5V
V
GD
= 0.1V
I
FGT I
, I
RGT I
, I
RGT III
Typical Example
I
RGT III
I
FGT I
, I
RGT I
Typical Example
Maximum Transient Thermal Impedance
Characteristics (Junction to case)
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 10 of 13
On-State Power Dissipation (W)
RMS On-State Current (A)
Maximum On-State Power Dissipation
RMS On-State Current (A)
Case Temperature (°C)
Allowable Case Temperature vs.
RMS On-State Current
RMS On-State Current (A)
Ambient Temperature (°C)
Allowable Ambient Temperature vs.
RMS On-State Current
Junction Temperature (°C)
Repetitive Peak Off-State Current (Tj = t°C)
Repetitive Peak Off-State Current (Tj = 25°C) × 100 (%)
Repetitive Peak Off-State Current vs.
Junction Temperature
Holding Current vs.
Junction Temperature
Junction Temperature (°C)
Holding Current (Tj = t°C)
Holding Current (Tj = 25°C) × 100 (%)
RMS On-State Current (A)
Ambient Temperature (°C)
Allowable Ambient Temperature vs.
RMS On-State Current
40
30
15
10
5
35
25
20
020
024 86 1012141618
40
1210
8
160
120
100
60
20
0200
80
140
2461416
18
10
3
7
5
3
2
–60 –20 20
10
2
7
5
3
2
60 100 140 160
4
4
–40 0 40 80 120
10
1
14016040–40–60 –20 0 20 60 80 100 120
10
5
7
5
3
2
10
4
7
5
3
2
10
3
7
5
3
2
5
3
2
10
2
40
1210
8
160
120
100
60
20
0200
80
140
24614
16 18
160
120
100
60
20
04.02.0
0 1.0 1.5 2.5 3.0 3.5
40
80
140
0.5
360° Conduction
Resistive,
inductive loads
Curves apply regardless
of conduction angle
360° Conduction
Resistive,
inductive loads
All fins are black painted
aluminum and greased
120 × 120 × t2.3
100 × 100 × t2.3
60 × 60 × t2.3
Curves apply
regardless of
conduction angle
Resistive, inductive loads
Natural convection
Typical Example Typical Example
Natural convection
No fins
Curves apply regardless
of conduction angle
Resistive, inductive loads
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 11 of 13
Rate of Rise of Off-State Voltage (V/µs)
Breakover Voltage (dv/dt = xV/µs)
Breakover Voltage (dv/dt = 1V/µs) × 100 (%)
Breakover Voltage vs.
Rate of Rise of Off-State Voltage (Tj=125°C)
Rate of Rise of Off-State Voltage (V/µs)
Breakover Voltage (dv/dt = xV/µs)
Breakover Voltage (dv/dt = 1V/µs) × 100 (%)
Breakover Voltage vs.
Rate of Rise of Off-State Voltage (Tj=150°C)
Breakover Voltage vs.
Junction Temperature
Junction Temperature (°C)
Breakover Voltage (Tj = t°C)
Breakover Voltage (Tj = 25°C) × 100 (%)
Commutation Characteristics (Tj=125°C)
Critical Rate of Rise of Off-State
Commutating Voltage (V/µs)
Rate of Decay of On-State
Commutating Current (A/ms)
Commutation Characteristics (Tj=150°C)
Critical Rate of Rise of Off-State
Commutating Voltage (V/µs)
Rate of Decay of On-State
Commutating Current (A/ms)
Latching Current (mA)
Latching Current vs.
Junction Temperature
Junction Temperature (°C)
160
100
80
40
20
0
14040–4060 160–20 0 20 60 80
140
100120
60
120
16040 0 40 80 120
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
2310
1
5710
2
23 5710
3
23 5710
4
120
0
20
40
60
80
100
140
160
2310
1
5710
2
23 5710
3
23 5710
4
120
0
20
40
60
80
100
140
160
10
2
35710
1
23235710
2
7
5
10
1
7
3
2
7
5
10
0
3
2
35710
1
23235710
2
7
5
10
1
7
3
2
7
5
10
0
3
2
Distribution T2+, G
Typical Example
T2+, G+
T2, GTypical Example
Typical Example
Typical Example
Tj = 150°C
III Quadrant
I Quadrant
Typical Example
Tj = 125°C
III Quadrant
I Quadrant
Main Voltage
Main CurrentI
T
(di/dt)c
τ
V
D
Time
Time
(dv/dt)c
Typical Example
Tj = 125°C
IT = 4A
τ = 500µs
VD = 200V
f = 3Hz
Minimum
Characteristics
Value
III Quadrant
I Quadrant
Main Voltage
Main CurrentI
T
(di/dt)c
τ
V
D
Time
Time
(dv/dt)c
Typical Example
Tj = 150°C
IT = 4A
τ = 500µs
VD = 200V
f = 3Hz
Minimum
Characteristics
Value
I Quadrant
III Quadrant
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 12 of 13
C1 = 0.1 to 0.47µF
R1 = 47 to 100
C0 = 0.1µF
R0 = 100
Gate Trigger Characteristics Test Circuits Recommended Circuit Values Around The Triac
Test Procedure I
Test Procedure III
Test Procedure II
Gate Trigger Current (tw)
Gate Trigger Current (DC) × 100 (%)
Gate Current Pulse Width (µs)
Gate Trigger Current vs.
Gate Current Pulse Width
10
1
10
3
7
5
3
2
10
0
23 5710
1
10
2
7
5
3
2
23 5710
2
4
4
44
C
1
C
0
R
0
R
1
66
6
6V 6V
6V
330330
330
A
V
A
V
A
V
Typical Example
I
FGT I
I
RGT I
I
RGT III
Load
BCR16CS-12L (The product guaranteed maximum junction temperature of 150°C)
Rev.1.00, Aug.20.2004, page 13 of 13
Package Dimensions
TO-220S
EIAJ Package Code JEDEC Code Mass (g) (reference value) Lead Material
1.2 Cu alloy
Symbol Dimension in Millimeters
Min Typ Max
A
A
1
A
2
b
D
E
e
x
y
1
y
ZD
ZE
10.5 max
5
0.8
4.5
1.3
0.5
0
+0.3
- 0
3.0
+0.3
- 0.5
1
1.5 max
1.5 max
8.6 ± 0.3
9.8 ± 0.5
4.5
2.6 ± 0.4
(1.5)
Note 1) The dimensional figures indicate representative values unless
otherwise the tolerance is specified.
Order Code
Lead form Standard
packing Quantity Standard order code Standard order
code example
Surface-mounted type Taping 1000 Type name +B – T +Direction (1 or 2) +1 BCR16CS-12LB-T11
Surface-mounted type Plastic Magazine
(Tube) 50 Type name +B BCR16CS-12LB
Note : Please confirm the specificati on about the shipping in detail.
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
http://www.renesas.com
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
RENESAS SALES OFFICES
© 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .1.0