This is information on a product in full production.
April 2012 Doc ID 018517 Rev 2 1/67
1
STW82103B
RF down converter with embedded integer-N synthesizer
Datasheet production data
Features
High linearity:
IIP3: +25 dBm
2FRF-2FLO spurious rejection: 80 dBc
Noise figure:
NF: 10.5 dB
Conversion gain
CG: 8 dB
RF range: 2300 MHz to 2700 MHz
Wide IF amplifier frequency range: 70 MHz to
400 MHz
Integrated RF balun with internal matching
Dual differential integrated VCOs with
automatic center frequency calibration:
LOA: 2200 to 2550 MHz
LOB: 2500 to 3000 MHz
Embedded integer-N synthesizer
Dual modulus programmable prescaler
(16/17 or 19/20)
Programmable reference frequency divider
(10 bits)
Adjustable charge pump current
Digital lock detector
Excellent integrated phase noise
Fast lock time: 150 µs
Integrated DAC with dual current output
Supply: 3.3 V and 5 V analog,
3.3 V digital
Dual digital bus interface: SPI and I2C bus (fast
mode) with 3 bit programmable address
(1101A2A1A0)
Process: 0.35 µm BICMOS SiGe
Operating temperature range -40 to +85oC
44-lead exposed pad VFQFPN package
7x7x1.0 mm
Applications
Cellular infrastructure equipment:
IF sampling receivers
Digital PA linearization loops
Other wireless communication systems.
Description
The STMicroelectronics STW82103B is an
integrated down converter providing 8 dB of gain,
10.5 dB NF, and a very high input linearity by
means of its passive mixer.
Embedding two wide band auto calibrating VCOs
and an integer-N synthesizer, the STW82103B is
suitable for both Rx and Tx requirements for
Cellular infrastructure equipment.
The integrated RF balun and internal matching
permit direct 50 ohm single-ended interface to RF
port. The IF output is suitable for driving 200-ohm
impedance filters.
By embedding a DAC with dual current output to
drive an external PIN diode attenuator, the
STW82103B replaces several costly discrete
components and offers a significant footprint
reduction.
The STW82103B device is designed with
STMicroelectronics advanced 0.35 µm
SiGe process. Its performance is specified over a
-40 °C to +85 °C temperature range.
Table 1. Device summary
Part number Package Packaging
STW82103B VFQFPN-44 Tray
STW82103BTR VFQFPN-44 Tape and reel
www.st.com
Contents STW82103B
2/67 Doc ID 018517 Rev 2
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.1 Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.2 Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.3 Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.4 A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.5 Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1.6 Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.7 Mute until lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.8 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.9 Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.10 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.11 External VCO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.12 Mixer and IF amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1.13 Dual output current DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STW82103B Contents
Doc ID 018517 Rev 2 3/67
9 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1 I2C general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1.2 START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.3 Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.4 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.5 Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.6 Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.7 Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.2 I2C timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.1 Data and clock timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.2 I2C START and STOP timing specification . . . . . . . . . . . . . . . . . . . . . . 36
9.2.3 I2C acknowledge timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3.1 I2C register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3.2 I2C register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.4 Device calibration through the I2C interface . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.1 VCO calibration procedure (I2C interface) . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.2 Power ON sequence (I2C interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.3 VCO calibration auto-restart procedure (I2C interface) . . . . . . . . . . . . . 46
10 SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1 SPI general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 SPI timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2.1 Data, clock and load timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.3 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.1 SPI register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.2 SPI register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.4 Device calibration through the SPI interface . . . . . . . . . . . . . . . . . . . . . . 53
10.4.1 VCO calibration procedure (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.2 Power ON sequence (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.3 VCO calibration auto-restart procedure (SPI interface) . . . . . . . . . . . . . 54
11 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2 Standard Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Contents STW82103B
4/67 Doc ID 018517 Rev 2
11.3 Diversity mode operation with same LO frequency . . . . . . . . . . . . . . . . . 58
11.4 Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . 59
11.5 External VCO standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . 60
11.6 External VCO diversity mode operation with same LO . . . . . . . . . . . . . . 61
12 Evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STW82103B List of tables
Doc ID 018517 Rev 2 5/67
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. Down converter mixer and IF amplifier electrical characteristics . . . . . . . . . . . . . . . . . . . . 15
Table 7. Pin diode attenuator driver (dual output current DAC) electrical characteristics. . . . . . . . . 16
Table 8. Integer-N synthesizer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Phase noise performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Current values for CPSEL[2:0] selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. VCOA performance against amplitude setting (frequency = 4.6 GHz) . . . . . . . . . . . . . . . . 30
Table 12. VCOB performance against amplitude setting (frequency = 2.8 GHz) . . . . . . . . . . . . . . . . 30
Table 13. Suggested CAP[2:0] values for LO Frequency range mixer. . . . . . . . . . . . . . . . . . . . . . . . 31
Table 14. Linearity performance against IFAMP[1:0] configuration (typical condition) . . . . . . . . . . . . 32
Table 15. I2C data and clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 16. I2C START and STOP timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 17. I2C acknowledge timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 18. I2C register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 19. Address decoder and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 20. SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 21. SPI register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 23. Evaluation kit order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 24. VFQFPN-44 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 25. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
List of figures STW82103B
6/67 Doc ID 018517 Rev 2
List of figures
Figure 1. STW82103B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. STW82103B pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Conversion gain against RF frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Noise figure against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 5. IIP3 against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. 2RF-2LO response against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. LOA (VCOA div. by 2) closed-loop phase noise at 2.38 GHz,
(FSTEP = 200 kHz, ICP = 3 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. LOB (VCOB div. by 2) closed-loop phase noise at 2.75 GHz,
(FSTEP = 200 kHz, ICP = 3 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. Reference frequency input buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. VCO divider diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 12. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. VCO typical sub-band characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. Data validity waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. START and STOP condition waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 16. Byte format and acknowledge waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 17. I2C data and clock waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 18. I2C START and STOP timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 19. I2C acknowledge timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 20. I2C first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 21. SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. SPI data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 23. SPI timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 24. SPI first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25. Typical STW82103B application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 26. Standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 27. Diversity mode operation with same LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 28. Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 29. External VCO standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 30. External VCO diversity mode operation with same LO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 31. VFQFPN-44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STW82103B Block diagram
Doc ID 018517 Rev 2 7/67
1 Block diagram
Figure 1. STW82103B block diagram
VDD_DAC
REXT_DAC
VDD_DIV
VDD_VCO
EXTVCO_INN
EXTVCO_INP
EXT_PD
ADD2
ADD1
ADD0
VDD_IO
VDD_PSCBUF
VDD_OUTBUF
OUTBUFN
OUTBUFP
VCTRL
ICP
REXT_CP
VDD_CP
LOCK_DET
REF_CLK
VDD_PLL
DBUS_SEL
VDD_DIG
SDA/DATA
SCL/CLK
LOAD
IF_OUTN
IF_OUTP
VDD_IFAMP
TEST2
TEST1
TEST_ALC
RF_CT
RF_IN
VDD_RFESD
MIXDRV_CT
VDD_ALC
VDD_MIXDRV
I_PINDRV1
I_PINDRV2
VSS_ALC
VSS_DAC
VSS_IFAMP
VSS_DIG
VSS_PLL
VSS_CP
VSS_PSCBUF
VSS_IO
VSS_VCO
VSS_OUTBUF
VSS_DIV
VSS_MIXDRV
RF_VSS
DAC
IF
AMP
DBUS
VCO
MIX
DIV2
VCO
REF
CHP
BUF
VCO
BUFF
divider
divider
BUF
DRV
calibrator
CAL_VCO
UP
DN
CAL_VCO
LO
LO/2xLO
EXT
OUT
OUT
LO/VCO
BUF
VSS_RFESD
Pin description STW82103B
8/67 Doc ID 018517 Rev 2
2 Pin description
Figure 2. STW82103B pin configuration
VDD_DAC
REXT_DAC
VDD_DIV
VDD_VCO
EXTVCO_INN
EXTVCO_INP
EXT_PD
ADD2
ADD1
ADD0
VDD_IO
VDD_PSCBUF
NC
NC
VDD_OUTBUF
OUTBUFN
OUTBUFP
VCTRL
ICP
REXT_CP
VDD_CP
LOCK_DET
REF_CLK
VDD_PLL
DBUS_SEL
VDD_DIG
SDA/DATA
SCL/CLK
LOAD
NC
IF_OUTN
IF_OUTP
VDD_IFAMP
TEST2
TEST1
TEST_ALC
RF_CT
RF_IN
VDD_RFESD
MIXDRV_CT
VDD_ALC
VDD_MIXDRV
I_PINDRV1
I_PINDRV2
1
2
3
4
5
6
7
8
9
10
11
12 13 14 15 16 17 18 19 20 21 22
44 43 42 41 40 39 38 37 36 35 34
33
32
31
30
29
28
27
26
25
24
23
STW82103B
VFQFPN44
STW82103B Pin description
Doc ID 018517 Rev 2 9/67
Table 2. Pin list
Pin No Name Description Observation
1 VDD_DAC DAC power supply Vsupply analog1= 3.3 V
2 REXT_DAC External resistance connection for DAC -
3 VDD_DIV Divider by 2 power supply Vsupply analog1= 3.3 V
4 VDD_VCO VCOs and External VCO Buffer power supply Vsupply analog1= 3.3 V
5 EXTVCO_INN External VCO (LO) negative input
Diversity Slave Mode and External
VCO Modes; otherwise it must be
connected to GND
6 EXTVCO_INP External VCO (LO) positive input
Diversity Slave Mode and External
VCO Modes; otherwise it must be
connected to GND
7 EXT_PD Hardware power down:
‘0’ device ON; ‘1’ device OFF CMOS Input
8 ADD2 I2CBUS address select pin CMOS Input
9 ADD1 I2CBUS address select pin CMOS Input
10 ADD0 I2CBUS address select pin CMOS Input
11 VDD_IO Digital IO power supply Vsupply digital = 3.3 V
12 VDD_PSCBUF Prescaler input buffer power supply Vsupply analog1= 3.3 V
13 NC Not connected -
14 NC Not connected -
15 VDD_OUTBUF Power supply for LO buffer Vsupply analog1= 3.3 V
16 OUTBUFN LO Output buffer negative output Open collector @ 3.3 V
17 OUTBUFP LO Output buffer positive output Open collector @ 3.3 V
18 VCTRL Control voltage for VCOs -
19 ICP PLL charge pump output -
20 REXT_CP External resistance connection for PLL charge
pump current -
21 VDD_CP Power supply for charge pump Vsupply analog1= 3.3 V
22 LOCK_DET Lock detector CMOS Output
23 REF_CLK Reference frequency input -
24 VDD_PLL PLL digital power supply Vsupply analog1= 3.3 V
25 DBUS_SEL Digital Bus Interface select CMOS Input
26 VDD_DIG Power supply for digital bus interface Vsupply digital = 3.3 V
27 SDA/DATA I2CBUS /SPI data line CMOS Bidir Schmitt triggered
28 SCL/CLK I2CBUS /SPI clock line CMOS Input Schmitt triggered
29 LOAD SPI load line CMOS Input Schmitt triggered
30 NC Not connected -
31 IF_OUTN IF amplifier negative output Open collector @ 5 V(1)
Pin description STW82103B
10/67 Doc ID 018517 Rev 2
32 IF_OUTP IF Amplifier positive output Open collector @ 5 V(1)
33 VDD_IFAMP IF Amplifier power supply Vsupply analog1 = 3.3 V
34 TEST2 Test input 2 Test purpose only; it must be
connected to GND
35 TEST1 Test input 1 Test purpose only; it must be
connected to GND
36 TEST_ALC Test output Test purpose only; it must be
connected to GND
37 RF_CT RF balun central tap -
38 RF_IN RF input -
39 VDD_RFESD RF ESD positive rail power supply Vsupply analog1 = 3.3 V
40 MIXDRV_CT Mixer driver balun central tap Vsupply analog2 = 5 V(1)
41 VDD_ALC ALC power supply Vsupply analog1 = 3.3 V
42 VDD_MIXDRV Mixer driver power supply Vsupply analog1 = 3.3 V
43 I_PINDRV1 DAC current output for external PIN Diode
attenuator PMOS Open drain
44 I_PINDRV2 DAC current output for external PIN Diode
attenuator PMOS Open drain
1. Supply voltage @ 3.3 V in low-current mode operation
Table 2. Pin list (continued)
Pin No Name Description Observation
STW82103B Absolute maximum ratings
Doc ID 018517 Rev 2 11/67
3 Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol Parameter Values Unit
AVCC1 Analog supply voltage 0 to 4.6 V
AVCC2 Analog supply voltage 0 to 6 V
DVCC Digital supply voltage 0 to 4.6 V
Tstg Storage temperature +150 °C
ESD
(Electro-static discharge)
HBM on pins 16, 17, 31, 32 0.8
kV
HBM on pin 37, 38, 40 1
HBM on all remaining pins 2
CDM-JEDEC Standard on pin 38, 40 0.25
CDM-JEDEC Standard on all remaining pins 0.5
MM 0.2
Operating conditions STW82103B
12/67 Doc ID 018517 Rev 2
4 Operating conditions
Table 4. Operating conditions
Symbol Parameter Test conditions Min Typ Max Unit
AVCC1 Analog Supply voltage - 3.15 3.3 3.45 V
AVCC2 Analog Supply voltage - 4.75 5 5.25 V
DVCC Digital Supply voltage - 3.15 3.3 3.45 V
ICC3.3V Current Consumption at 3.3 V
Standard mode - 130 150 mA
External VCO standard mode - 110 130 mA
Diversity slave mode - 105 120 mA
Diversity master mode - 155 180 mA
External VCO diversity master
mode -145165mA
ICC5V Current Consumption High current mode at 5 V - 160 185 mA
Low current mode at 3.3 V - 90 105 mA
TAOperating ambient temperature - -40 85 °C
TJMaximum junction temperature - - 125 °C
Θ
JA
Junction to ambient package thermal
resistance(1) Multi-layer JEDEC board - 33 - °C/W
Θ
JB
Junction to board package thermal
resistance(1) Multi-layer JEDEC board - 19 - °C/W
Θ
JC
Junction to case package thermal
resistance(1) Multi-layer JEDEC board - 3 - °C/W
Ψ
JB
Thermal characterization parameter
junction to board(1) Multi-layer JEDEC board - 18 - °C/W
Ψ
JT
Thermal characterization parameter
junction to top case(1) Multi-layer JEDEC board - 0.3 - °C/W
1. Refer to JEDEC standard JESD 51-12 for a detailed description of the thermal resistances and thermal parameters.
Data here presented are referring to a Multi-layer board according to JEDEC standard.
TJ = TA + Θ
JA * Pdiss (in order to estimate TJ if ambient temperature TA and dissipated power Pdiss are known)
TJ = TB + ΨJB * Pdiss (in order to estimate TJ if board temperature TB and dissipated power Pdiss are known)
TJ = TT + ΨJT * Pdiss (in order to estimate TJ if top case temperature TT and dissipated power Pdiss are known)
STW82103B Operating conditions
Doc ID 018517 Rev 2 13/67
T
Table 5. Digital logic levels
Symbol Parameter Test conditions Min Typ Max Unit
Vil Low level input voltage - - - 0.2*Vdd V
Vih High level input voltage - 0.8*Vdd - - V
Vhyst Schmitt trigger hysteresis - 0.8 - - V
Vol Low level output voltage - - - 0.4 V
Voh High level output voltage - 0.85*Vdd - - V
Test conditions STW82103B
14/67 Doc ID 018517 Rev 2
5 Test conditions
Unless otherwise specified the following test conditions are applied:
Vsupply digital = 3.3 V
Vsupply analog1 = 3.3 V
Vsupply analog2 = 5 V
FIF = 150 MHz
MIX = 0111
T ambient = 27 °C
Refer also to Section 11: Application information.
STW82103B Electrical characteristics
Doc ID 018517 Rev 2 15/67
6 Electrical characteristics
Note: Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5V, FRF = 2500 MHz,
FLO = 2350 MHz, TA = +25*C, RF power = 0 dBm, unless otherwise specified.
)
Table 6. Down converter mixer and IF amplifier electrical characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
FRF RF Frequency - 2300 - 2700 MHz
FLO LO Frequency VCOA divided by 2 2200 - 2550 MHz
VCOB 2500 - 3000 MHz
FIF IF Center Frequency(2) FIF = ABS(FLO-FRF)70-400MHz
CG Power Conversion Gain Rin = 50 ohm, Rout = 200 ohm
RFin = 0 dBm 7.5 8 8.5 dB
CGΔT
Power Conversion Gain over
Temperature(3) T= -40 to +85 °C - ±0.7 - dB
IP1dB Input P1dB High current Mode - 14 - dBm
Low current Mode - 8 -
IIP3 Third-order input intercept
point(4)
High current Mode 23.5 25 - dBm
Low current Mode 17.5 19 -
IIP3ΔT
IIP3 variation over
temperature(3) T= -40 to +85 °C - ±0.5 - dB
nFRF-nFLO Spurious rejection at IF(3)
2FRF-2FLO FRFin = -5 dBm,
FIF = 150 MHz -80-dBc
3FRF-3FLO FRFin = -5 dBm,
FIF = 150 MHz -76-dBc
NFSSB Noise figure High-current mode, MIX = 0011 - 10.5 11 dB
Low-current mode, MIX = 0011 - 10.5 11 dB
- LO to IF Leakage 1xLO - -45 - dBm
2xLO -38
- LO to RF Leakage - - -28 - dBm
- RF to IF Isolation - - 58 - dB
RFRL RF Return Loss Matched to 50 ohm - 20 - dB
IFRL IF Return Loss Matched to 200 ohm - 22 - dB
-Gain Flatness for TX
observation path(5)
Maximum deviation from Fc over ±10
MHz. For any Fc within each TX
observation path band.
-0.05 - +0.05 dB
Maximum deviation from Fc over ±30
MHz. For any Fc within each TX
observation path band.
-0.10 - +0.10 dB
Electrical characteristics STW82103B
16/67 Doc ID 018517 Rev 2
-Phase Flatness for TX
observation path(5)
Maximum deviation from linear phase
at Fc over ±10 MHz. For any Fc within
each TX observation path band.
-0.3 - +0.3 deg
Maximum deviation from linear phase
at Fc over ±30 MHz. For any Fc within
each TX observation path band.
-0.7 - +0.7 deg
- Gain Flatness for RX path(5) Maximum ripple over a 4 MHz band.
For any Fc within each RX path band. --0.1
dB
pk-pk
- Phase Flatness for RX path(5) Maximum ripple over a 4 MHz band.
For any Fc within each RX path band. --0.6
deg
pk-pk
ICCMD
Mixer Driver Current
Consumption
3.3 V Supply (pin 41, 42) - 45 - mA
5 V Supply (pin 40) - 55 - mA
Mixer Driver Current
Consumption (Low Current
Mode)
3.3 V Supply (pin 41, 42) - 20 - mA
3.3 V Supply (pin 40) - 35 - mA
ICCIFAM
IFAMP Current Consumption 3.3 V Supply (pin 33) - 10 - mA
5 V Supply (pin 31, 32) - 107 - mA
IFAMP Current Consumption
(Low Current Mode)
3.3 V Supply (pin 33) - 6 - mA
3.3 V Supply (pin 31, 32) - 55 - mA
1. All linearity and NF performances are intended at maximum LO amplitude (LO_A[1:0]=[11]), tuning capacitors (CAP[2:0])
programmed according to the selected frequency, mixer bias (MIX[3:0]) set to maximize performance and the device
operated in high current mode. The performances of conversion gain, NF and linearity are intended at the SMA connectors
of a typical application board.
2. The IF frequency range supported by the IF Amplifier is from 70 to 400 MHz. The exact IF frequency range supported for a
specific RF frequency can be calculated as FIF = ABS(FLO-FRF) where FLO is inside the specified LO frequency range.
3. Guaranteed by design and characterization
4. RFin = 0 dBm/tone, RF tone spacing = 5 MHz
5. Guaranteed by design
Table 6. Down converter mixer and IF amplifier electrical characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 7. Pin diode attenuator driver (dual output current DAC) electrical characteristics
Symbol Parameters Conditions Min Typ Max Unit
R Resolution - - 10 - Bit
DNL Differential non linearity - -0.05 - 0.05 LSB
INL Integral non linearity - -0.45 - 0.45 LSB
IFS Full Scale current (1) -0.28-2.8mA
- Current Mismatch - - - 2 %
-Output voltage compliance
range -0-3V
VREXT_DAC Voltage Reference - - 1.19 V
REXT_DAC REXT DAC Range - 10 - 100 kΩ
Iccstatic Static current consumption (Iout = 0 mA; pin 1) - 2.5 - mA
1. See relationship between IDAC and REXT_DAC in the Circuit Description section (Dual Output Current DAC)
STW82103B Electrical characteristics
Doc ID 018517 Rev 2 17/67
Table 8. Integer-N synthesizer electrical characteristics
Symbol Parameter Conditions Min Typ Max Unit
VCO dividers
N VCO Divider Ratio (N) Prescaler 16/17 256 - 65551 -
Prescaler 19/20 361 - 77836 -
Reference clock and phase frequency detector
Fref Reference input frequency - 10 19.2 200 MHz
- Reference input sensitivity - 0.35 1 1.5 Vpeak
R Reference Divider Ratio - 2 - 1023
FPFD PFD input frequency - - - 16 MHz
FSTEP Frequency step (1)
Prescaler 16/17 FLO/
65551 -FLO/
256 Hz
Prescaler 19/20 FLO/
77836 -FLO/
361 Hz
Charge pump
ICP ICP sink/source (2) 3bit programmable - - 5 mA
VOCP Output voltage compliance range - 0.4 - Vdd-0.3 V
- Spurious(3) ---70-dBc
VCOs
KVCOA VCOA sensitivity
Higher frequency range - 85 - MHz/V
Intermediate frequency
range - 75 - MHz/V
Lower frequency range - 65 - MHz/V
KVCOB VCOB sensitivity
Higher frequency range - 85 - MHz/V
Intermediate frequency
range - 70 - MHz/V
Lower frequency range - 60 - MHz/V
ΔTLKA
VCOA Maximum Temperature
variation for continuous lock (4)
CALTYPE [0] - - 100 °C
CALTYPE [1] - - 125 °C
ΔTLKB
VCOB Maximum Temperature
variation for continuous lock (4)
CALTYPE [0] - - 125 °C
CALTYPE [1] - - 125 °C
-VCO A Pushing - - 8 - MHz/V
VCO B Pushing - - 14 - MHz/V
VCTRL VCO control voltage - 0.4 Vdd-0.3 V
- LO Harmonic Spurious - - -20 dBc
IVCO
VCO and VCO buffer current
consumption Amplitude [11] (pin 4) - 35 - mA
IDIV2DIVIDER by 2 consumption (pin 3) - 20 - mA
Electrical characteristics STW82103B
18/67 Doc ID 018517 Rev 2
2 x LO output buffer (test purpose only)
FOUT Frequency range - 4.4 - 5.1 GHz
POUT Output level - - 0 - dBm
RL Return Loss Matched to 50 ohm - 10 - dB
I2LOBUF Current Consumption (pin 15, 16, 17) - 35 - mA
LO output buffer
FOUT Frequency range - 2.2 - 3 GHz
POUT Output level - - 0 - dBm
RL Return Loss Matched to 50ohm - 10 - dB
ILOBUF Current Consumption (pin 15, 16, 17) - 30 - mA
External VCO (LO) buffer
fINVCO Frequency range - 2.2 - 3 GHz
PIN Input level - - 0 - dBm
IEXTBUF Current Consumption External VCO Buffer
(pin 4) -25 -mA
PLL miscellaneous
IPLL PLL Current Consumption
Input Buffer, Prescaler,
Digital Dividers, misc.
(pin 24)
-8 -mA
IPRE
Prescaler input buffer Current
Consumption (pin 12) - 3 - mA
ICP Charge Pump Current Consumption CPSEL=[111], REXT_CP
= 4.7 kΩ (pin 21) -4 -mA
tLOCK Lock up time(5)
25 kHz PLL bandwidth;
within 1ppm of frequency
error
-150 -µs
1. The frequency step is related to the PFD input frequency as follows: FSTEP=FPFD/2)
2. See relationship between ICP and REXT_CP in the Circuit Description section (Charge Pump)
3. The level of spurs may change depending on PFD frequency, Charge Pump current, selected channel and PLL loop BW.
4. When setting a specified output frequency, the VCO calibration procedure must be run first in order to select the best
subrange for the VCO covering the desired frequency. Once programmed at the initial temperature T0 inside the operating
temperature range (-40 °C to +85 °C), the synthesizer is able to maintain the lock status if the temperature drift (in either
direction) is within the limit specified by ΔTLK, provided that the final temperature T1 is still inside the nominal range.
5. Frequency jump form 2450 to 2300 MHz; it includes the time required by the VCO calibration procedure (7 x FPFD cycles
=17.5 µs with FPFD =400 kHz))
Table 8. Integer-N synthesizer electrical characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
STW82103B Electrical characteristics
Doc ID 018517 Rev 2 19/67
Table 9. Phase noise performance(1)
Parameters Conditions Min. Typ. Max. Unit
In band phase noise floor, closed loop(2)
Normalized In Band Phase Noise
Floor (LO)
ICP=4 mA, PLL BW = 50 kHz
(including reference clock
contribution)
--224-
dBc/Hz
In Band Phase Noise Floor (LO)
VCOA divided by 2 -230+20log(N)+10log(FPFD)
dBc/Hz
In Band Phase Noise Floor (LO)
VCOB direct -224+20log(N)+10log(FPFD)
PLL integrated phase noise
Integrated Phase Noise
(single sided)
100 Hz to 40 MHz
FLO=2.200 GHz, FSTEP=200 kHz,
ICP=3 mA, PLL BW = 25 kHz
- -44.9 - dBc
- 0.46 - ° rms
LOA (2200 MHz to 2550 MHz) – open loop
Phase Noise @ 1 kHz - - -63 - dBc/Hz
Phase Noise @ 10 kHz - - -89 - dBc/Hz
Phase Noise @ 100 kHz - - -113 - dBc/Hz
Phase Noise @ 1 MHz - - -134 - dBc/Hz
Phase Noise @ 10 MHz - - -151 - dBc/Hz
Phase Noise Floor @ 40 MHz - - -155 - dBc/Hz
LOB (2500 MHz to 3000 MHz) – open loop
Phase Noise @ 1 kHz - - -64 - dBc/Hz
Phase Noise @ 10 kHz - - -91 - dBc/Hz
Phase Noise @ 100 kHz - - -113 - dBc/Hz
Phase Noise @ 1 MHz - - -134 - dBc/Hz
Phase Noise @ 10 MHz - - -153 - dBc/Hz
Phase Noise Floor @ 40 MHz - - -162 - dBc/Hz
1. Phase Noise SSB. VCO amplitude set to maximum value [11]. All the closed-loop performances are specified using a
Reference Clock signal at 76.8 MHz with phase noise of -144 dBc/Hz @1 kHz offset, -157 dBc/Hz @10 kHz offset and
-168 dBc/Hz of noise floor.
2. Normalized PN = Measured LO PN – 20log(N) – 10log(FPFD) where N is the VCO divider ratio (N=B*P+A) and FPFD is the
comparison frequency at the PFD input
Typical performance characteristics STW82103B
20/67 Doc ID 018517 Rev 2
7 Typical performance characteristics
Note: Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5 V, FIF = 150 MHz,
TA = +25 °C, RF power = 0 dBm, unless otherwise specified.
Figure 3. Conversion gain against RF frequency
Figure 4. Noise figure against RF frequency
STW82103B Typical performance characteristics
Doc ID 018517 Rev 2 21/67
Figure 5. IIP3 against RF frequency
Figure 6. 2RF-2LO response against RF frequency
Typical performance characteristics STW82103B
22/67 Doc ID 018517 Rev 2
Figure 7. LOA (VCOA div. by 2) closed-loop phase noise at 2.38 GHz,
(FSTEP = 200kHz, ICP = 3mA)
Figure 8. LOB (VCOB div. by 2) closed-loop phase noise at 2.75 GHz,
(FSTEP = 200kHz, ICP = 3mA)
STW82103B General description
Doc ID 018517 Rev 2 23/67
8 General description
The STW82103B (see Figure 1: STW82103B block diagram on page 7) consists of a high
linearity passive CMOS mixer with integrated RF balun, an IF amplifier, a 10-bit current
steering DAC with dual output, and an integrated integer-N synthesizer.
The synthesizer embeds 2 internal low-noise VCOs with buffer blocks, a divider by 2, a low
noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit programmable
reference divider, two programmable counters and a dual-modulus prescaler. The A-counter
(5 bits) and B counter (12 bits) counters, in conjunction with the dual modulus prescaler
P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P+A.
The device is controlled through a digital interface (I2C bus interface or SPI digital interface).
All internal devices operate with a power supply of 3.3 V except for the IF Amplifier output
stage and the mixer driver stage operating at 5 V power supply in order to maximize the
linearity performance. If the application requires a reduced linearity and noise figure
performance the device is programmed in a low-current mode by using the minimum LO
amplitude and the minimum biasing current in the IF amplifier. In low-current mode
operation the device can use only the 3.3 V power supply thus dissipating less power.
8.1 Circuit description
8.1.1 Reference input stage
The reference input stage is shown in Figure 9. The resistor network feeds a DC bias at the
Fref input while the inverter used as the frequency reference buffer is AC coupled.
Figure 9. Reference frequency input buffer
Fref
VDD
Inverter
Power Down
Buffer
General description STW82103B
24/67 Doc ID 018517 Rev 2
8.1.2 Reference divider
The 10-bit programmable reference counter allows the input reference frequency to be
divided to produce the input clock to the PFD. The division ratio is programmed through the
digital interface.
8.1.3 Prescaler
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it
down to a manageable frequency for the CMOS A and B counters. The modulus (P) is
programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which
division ratio depends on the state of the modulus input.
8.1.4 A and B counters
The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17
or 19/20) prescaler make it possible to generate output frequencies which are spaced only
by the reference frequency divided by the reference division ratio. Thus, the division ratio
and the VCO output frequency are given by the following formulae:
where:
FVCO: VCO output frequency.
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface).
B: division ratio of the main counter.
A: division ratio of the swallow counter.
Fref: input reference frequency.
R: division ratio of the reference counter.
N: division ratio of the PLL
The following points should be noted:
For the VCO divider to work correctly, B must be higher than A.
A can take any value from 0 to 31.
Two PLL division ratio (N) ranges are possible, depending on the value of P:
256 to 65551 (when P=16)
361 to 77836 (when P=19).
NBPA+×=
FVCO
BPA+×()Fref
×
R
-----------------------------------------------=
STW82103B General description
Doc ID 018517 Rev 2 25/67
Figure 10. VCO divider diagram
8.1.5 Phase frequency detector (PFD)
The PFD takes inputs from the reference and the VCO dividers and produces an output
proportional to the phase error. The PFD includes a delay gate that controls the width of the
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer
function.
Figure 11 is a simplified schematic of the PFD.
Figure 11. PFD diagram
modulus
Prescaler
16/17 or 19/20
5-bit
A counter
12-bit
B counter
VCOBUF-
VCOBUF+
To P FD
VDD
Fref_DIV
FVCO_div
VDD
D
Delay
ABL
Down
Up
R
R
Q
D Q
General description STW82103B
26/67 Doc ID 018517 Rev 2
8.1.6 Lock detect
This signal indicates that the difference between rising edges of both UP and DOWN PFD
signals is found to be shorter than the fixed delay (roughly 5 ns). The Lock Detect signal is
high when the PLL is locked. The Lock Detector consumes current only during PLL
transients.
8.1.7 Mute until lock
This (software controlled) function shuts down the following elements until the PLL achieves
the lock status:
RF output stage
LO output buffer
mixer
IF amplifier circuitry
Under this setting there is no signal at the IF output stage or the LO output during a
frequency jump.
8.1.8 Charge pump
This block drives two matched current sources, Iup and Idown, which are controlled
respectively by the UP and DOWN PFD outputs. The nominal value of the output current is
controlled by an external resistor (to be connected to the REXT input pin) and the selection
of one of 8 possible values by a 3-bit word.
The minimum value of the output current is: IMIN = 2*VBG/REXT_CP (VBG~1.17 V)
Note: The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are
forced to VDD/2.
Table 10. Current values for CPSEL[2:0] selection
CPSEL2 CPSEL1 CPSEL0 Current Value for REXT=4.7 kΩ
000I
MIN 0.5 mA
0012*I
MIN 1.00 mA
0103*I
MIN 1.50 mA
0114*I
MIN 2.00 mA
1005*I
MIN 2.50 mA
1016*I
MIN 3.00 mA
1107*I
MIN 3.50 mA
1118*I
MIN 4.00 mA
STW82103B General description
Doc ID 018517 Rev 2 27/67
Figure 12. Loop filter connection
8.1.9 Voltage controlled oscillators
VCO selection
Within the STW82103B two low-noise VCOs are integrated to cover a wide band from
2200 MHz to 2550 MHz after the division by 2, and from 2500 MHz to 3000 MHz:
VCO A frequency range is 4400 MHz to 5100 MHz
VCO B frequency range is 2500 MHz to 3000 MHz
VCO frequency calibration
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting
capacitors to the resonator. These frequency ranges are intended to cover the wide band of
operation and compensate for process variations on the VCO center frequency.
An automatic range selection is performed when the bit SERCAL rises from ‘0’ to ‘1’ . The
charge pump is inhibited and the pins ICP and VCTRL are set at a fixed calibration voltage
(VCAL). The frequency ranges are then tested to select the nearest one to the desired
output frequency (FOUT= N*Fref/R) with VCAL input voltage applied. After this selection, the
charge pump is once again enabled and the PLL performs a fine adjustment around VCAL
on the loop filter voltage to lock FOUT
, thus enabling a fast settling time.
Two calibration algorithms are selectable by setting the CALTYPE bit.
Setting the CALTYPE bit to ‘1’ guarantees the PLL lock versus temperature variations. Once
programmed at the initial temperature, T0, within the operating temperature range (-40 °C to
+85 °C), the synthesizer is able to maintain the lock status if the temperature drift (in either
direction) is within the limit specified by ΔTLK, and provided that the final temperature, T1, is
still inside the nominal range.
Setting the CALTYPE bit to ‘0’ fixes VCAL to the mid point of the charge pump output
(VDD/2). Optimum PLL phase noise performance versus temperature variations with a
reduced ΔTLK is guaranteed in this case.
The ΔTLK parameter, specific to each VCO and calibration type, in the STW82103B is
specified in Table 8: Integer-N synthesizer electrical characteristics.
VDD
Buffer
Buffer
VCTRL
C3
C2
C1
R3
R1
Cal bit
Charge
pump ICP
General description STW82103B
28/67 Doc ID 018517 Rev 2
Figure 13. VCO typical sub-band characteristics
The SERCAL bit should be set to ’1’ at each division ratio change. The calibration takes
approximately 7 periods of the Comparison Frequency and the SERCAL bit is automatically
reset to ’0’ at the end of each calibration.
The maximum allowed FPFD to perform the calibration process is 1 MHz. If a higher FPFD is
used the following procedure should be adopted:
1. Calibrate the VCO at the desired frequency with an FPFD lower than 1 MHz
2. Set the A, B and R dividers ratio for the desired FPFD
For calibration details refer to Section 9.4.1: VCO calibration procedure (I2C interface) or
Section 10.4.1: VCO calibration procedure (SPI interface).
00000
00001
01111
11111
Calibrator lock
range
VCTRL (V)
FREQ (Hz)
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
STW82103B General description
Doc ID 018517 Rev 2 29/67
VCO calibration auto-restart feature
The VCO Calibration Auto-Restart feature, once activated, allows the calibration procedure
to be restarted when the Lock Detector reports that the PLL has moved to an unlock
condition (trigger on ‘1’ to ‘0’ transition of Lock Detector signal).
This situation could happen if the device experiences a significant temperature variation and
the CALTYPE bit is set for optimum PLL phase noise performance (CALTYPE [0]).By
enabling the VCO Calibration Auto-Restart feature (through the AUTO_CAL bit), the device
re-selects the proper VCO frequency sub-range, without any external user command.
This feature can be enabled only when the FPFD is lower than 1 MHz.
VCO voltage amplitude control
The voltage swing of the VCOs can be adjusted over 4 levels by means of two dedicated
programming bits (PLL_A1 and PLL_A0). This setting trades current consumption with
phase noise performances of the VCO. Higher amplitudes provide best phase noise while
lower ones save power.
General description STW82103B
30/67 Doc ID 018517 Rev 2
Ta bl e 1 1 and Ta bl e 1 2 give the current consumption and the phase noise at 1 MHz.
8.1.10 Output stage
The differential output signal of the synthesizer after the Divider by 2 for VCOA and directly
for VCOB is available on pins 16 and 17.
The output stage is selected by programming the PD[4:0] bits.
The output stage is an open-collector structure which is able to meet different requirements
over the desired output frequency range by proper connections on the PCB. See Figure 27:
Diversity mode operation with same LO frequencies.
8.1.11 External VCO buffer
Although the STW82103B includes two wideband and low-noise VCOs, external VCO use
capability is also provided.
The external VCO buffer can be used to manage a signal coming from an external VCO in
order to build a local oscillator signal by using the STW82103B internal synthesizer as a
PLL. This is only possible when External VCO standard mode or External VCO diversity
master mode operation are selected. See Figure 29: External VCO standard mode
operation and Figure 30: External VCO diversity mode operation with same LO.
If the STW82103B is operated in Diversity slave mode, the external VCO buffer manage the
signal coming from the synthesizer output stage of another STW82103B device See
Figure 27: Diversity mode operation with same LO frequencies and Figure 30: External
VCO diversity mode operation with same LO.
The selection of the external VCO buffer is done by setting the PD[4:0] bits.
The external VCO signal can range from 2200 MHz to 3000 MHz and its minimum power
level must be -10 dBm.
Table 11. VCOA performance against amplitude setting (frequency = 4.6 GHz)
PLL_A[1:0] Current
Consumption (mA) PN @ 1 MHz
00 23 -124
01 24 -125
10 32 -127
11 35 -128
Table 12. VCOB performance against amplitude setting (frequency = 2.8 GHz)
PLL_A[1:0] Current
Consumption (mA) PN @ 1 MHz
00 16 -129
01 18 -131
10 27 -133
11 30 -134
STW82103B General description
Doc ID 018517 Rev 2 31/67
8.1.12 Mixer and IF amplifier
LO mixer driver
The LO signal is fed through a driver in order to achieve the high power level needed to drive
the passive mixer for maximum performance of linearity and NF.
The LO Mixer Driver is coupled to the mixer with an integrated LO balun. The LO signal level
is adjusted by means of an Automatic Level Control loop (ALC) controlled by the bits
LO_A[1:0].
In low current mode the configuration LO_A[1:0]=’00’ (minimum LO amplitude) should be
selected and the power supply on pin 40 can be set to 3.3 V.
The LO balun resonating frequency can be adjusted by means of the bits CAP[2:0] in order
to match the selected LO frequency.
Mixer
A doubly balanced CMOS passive mixer is internally driven by the high level LO signal in
order to achieve high linearity and low noise performance.
The RF integrated balun permits the removal of external components and it is internally
matched to 50 ohms.
The gate bias of the CMOS devices in the mixer is programmable with 4 bits (MIX[3:0]) to
optimize the input matching and the gain of the signal chain.
Higher values of gate bias (higher decimal values of MIX[3:0]) are suggested to maximize
linearity and lower values to maximize the performance of Gain and NF.
Table 13. Suggested CAP[2:0] values for LO Frequency range mixer
CAP[2:0] LO frequency range
000 2875 MHz ÷ 3000MHz
001 2750 MHz ÷ 2875 MHz
010 2640 MHz ÷ 2750 MHz
011 2530 MHz ÷ 2640 MHz
100 2435 MHz ÷ 2530 MHz
101 2350 MHz ÷ 2435 MHz
110 2280 MHz ÷ 2350 MHz
111 2200 MHz ÷ 2280 MHz
General description STW82103B
32/67 Doc ID 018517 Rev 2
IF amplifier
The integrated IF stage permits a 200-ohm load to be driven (typically a SAW filter) ensuring
high linearity.
It is an open collector stage (pin 31, 32) and should be biased to 5 V with choke inductors.
The typical output impedance is 200 ohms. The linearity performances are controlled by the
bits IFAMP[1:0]. In low current mode the configuration IFAMP[1:0]=’00’ (minimum linearity)
should be selected and the open collector stage can be biased to 3.3 V with choke
inductors.
8.1.13 Dual output current DAC
The STW82103B embeds a 10-bit Dual Output steering current DAC especially suited to
drive an external PIN diode attenuator. This provides power level calibration capability at the
RF input for the TX observation path applications.
The current sourced by the DAC is related to the REXT_DAC resistor according to the
following formulae (where VREXT_DAC is approximately 1.19 V):
With a 10 kΩ REXT_DAC the FS current is approximately 2.8 mA.
Table 14. Linearity performance against IFAMP[1:0] configuration (typical
condition)
IFAMP[1:0] Linearity performance
00 19 dB
01 21 dB
10 23 dB
11 25 dB
IDACLSB
1
2
---3VR
EXT_DAC
×
REXT_DAC
---------------------------------------- 1
64
------
××=LSB DAC current
IDACFS
1
2
---3VR
EXT_DAC
×
REXT_DAC
---------------------------------------- 1023
64
-------------
××=Full scale current
STW82103B I2C bus interface
Doc ID 018517 Rev 2 33/67
9 I2C bus interface
The I2C bus interface is selected by hardware connection of the pin 25 (DBUS_SEL) to 0 V.
Data transmission from a microprocessor to the STW82103B takes place through the 2
wires (SDA and SCL) I2C-bus interface. The STW82103B is always a slave device.
The I2C-bus protocol defines any device that sends data on to the bus as a transmitter and
any device that reads the data as receiver. The device that controls the data transfer is
known as the master and the others as slaves. The master always initiates the transfer and
provides the serial clock for synchronization.
The STW82103B I2C bus supports Fast Mode operation (clock frequency up to 1 MHz).
9.1 I2C general features
9.1.1 Data validity
Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while
the clock is HIGH identify START or STOP conditions.
Figure 14. Data validity waveform
SDA
SCL
Data line stable Change
data valid data allowed
I2C bus interface STW82103B
34/67 Doc ID 018517 Rev 2
9.1.2 START and STOP conditions
Figure 15. START and STOP condition waveform
START condition
A START condition is identified by a HIGH to LOW transition of the data bus SDA while the
clock signal SCL is stable in the HIGH state. A Start condition must precede any command
for data transfer.
STOP condition
A STOP condition is identified by a transition of the data bus SDA from LOW to HIGH while
the clock signal SCL is stable in the HIGH state.. A STOP condition terminates
communications between the STW82103B and the Bus Master.
9.1.3 Byte format and acknowledge
Every byte (8 bits long) transferred on the SDA line must contain bits. Each byte must be
followed by an acknowledge bit. The MSB is transferred first.
An acknowledge bit indicates a successful data transfer. The transmitter, either master or
slave, releases the SDA bus after sending 8 bits of data. During the 9th clock pulse the
receiver pulls the SDA low to acknowledge the receipt of 8 bits of data.
Figure 16. Byte format and acknowledge waveform
SCL
SDA
START STOP
SCL
SDA
START
MSB
123789
STOP
Acknowledgement
from receiver
STW82103B I2C bus interface
Doc ID 018517 Rev 2 35/67
9.1.4 Device addressing
To start the communication between the Master and the STW82103B, the master must
initiate with a START condition. Following this, the master sends onto the SDA line 8 bits
(MSB first) corresponding to the device select address and read or write mode.
The first 7 MSBs are the device address identifier, corresponding to the I2C-Bus definition.
For the STW82103B the address is set as ’1101A2A1A0’, 3-bits programmable. The 8th bit
(LSB) is the read or write operation bit (the RW bit is set to 1 in read mode and to 0 in write
mode).
After a START condition the STW82103B identifies the device address on the bus and, if
matched, it acknowledge the identification on SDA bus during the 9th clock pulse.
9.1.5 Single-byte write mode
Following a START condition the master sends a device select code with the RW bit set to 0.
The STW82103B gives an acknowledge and waits for the internal sub-address (1 byte). This
byte provides access to any of the internal registers.
After reception of the internal byte sub-address the STW82103B again responds with an
acknowledge. A single-byte write to sub-address 0x00 would affect DATA_OUT[47:40], a
single-byte write with sub-address 0x04 would affect DATA_OUT[15:8] and so on.
9.1.6 Multi-byte write mode
The multi-byte write mode can start from any internal address. The master sends the data
bytes and each one is acknowledged. The master terminates the transfer by generating a
STOP condition.
The sub-address determines the starting byte. For example, a multi-byte write with sub-
address 0x01 and 4 DATA_IN bytes affects 4 bytes starting at address 0x01 (registers at
addresses 0x01, 0x02, 0x03 and 0x04 are modified).
9.1.7 Current byte address read
In the current byte address read mode, following a START condition, the master sends the
device address with the RW bit set to 1 (No sub-address is needed as there is only 1 byte
read register). The STW82103B acknowledges this and outputs the data byte. The master
does not acknowledge the received byte, but terminates the transfer with a STOP condition.
S 1101A2A1A00ack sub-address
byte ack DATA IN ack P
S 1101A2A1A00ack sub-address
byte ack DATA IN ack .. DATA
IN ack P
S 1101A2A1A01 ack DATA OUT No ack P
I2C bus interface STW82103B
36/67 Doc ID 018517 Rev 2
9.2 I2C timing specifications
9.2.1 Data and clock timing specification
Figure 17. I2C data and clock waveforms
9.2.2 I2C START and STOP timing specification
Figure 18. I2C START and STOP timing waveforms
Table 15. I2C data and clock timing parameters
Symbol Parameter Min Unit
Tcs Data to clock set up time 2
ns
Tch Data to clock hold time 2
Tcwh Clock pulse width high 10
Tcwl Clock pulse width low 5.5
SDA
SCL
tcs tch
tcwl
tcwh
SDA
SCL
tstart tstop
STW82103B I2C bus interface
Doc ID 018517 Rev 2 37/67
9.2.3 I2C acknowledge timing specification
Figure 19. I2C acknowledge timing waveforms
Table 16. I2C START and STOP timing parameters
Symbol Parameter Min Unit
Tstart Clock to data start time 2 ns
Tstop Data to clock down stop time 2
Table 17. I2C acknowledge timing parameters
Symbol Parameter Max Unit
Td1 Ack begin delay 2 ns
Td2 Ack end delay 2
SDA
SCL 89
td1 td2
I2C bus interface STW82103B
38/67 Doc ID 018517 Rev 2
9.3 I2C registers
STW82103B has 9 write-only registers and 1 read-only register.
9.3.1 I2C register summary
The following table gives a short description of the write-only registers list.
Table 18. I2C register list
Offset Register name Description Page
0x00 FUNCTIONAL_MODE Functional mode register on page 39
0x01 B_COUNTER B counter register on page 39
0x02 A_COUNTER A counter register on page 40
0x03 REF_DIVIDER Reference clock divider ratio register on page 40
0x04 CONTROL PLL control register on page 41
0x05 MUTE_&_CALIBRATION Mute and calibration control register on page 42
0x06 DAC_CONTROL DAC control register on page 42
0x07 MIXER_CONTROL Mixer control register on page 43
0x08 IFAMP_LO_CONTROL IF amplifier LO control register on page 43
0x09 READ_ONLY_REGISTER Device ID and calibration status register on page 44
STW82103B I2C bus interface
Doc ID 018517 Rev 2 39/67
9.3.2 I2C register definitions
FUNCTIONAL_MODE Functional mode register
Address: 0x00
Type: W
Reset: 0x00
B_COUNTER B counter register
Address: 0x01
Type: W
Reset: 0x00
Description: Most significant bits of the B counter value
76543210
ALC_PD PKD_EN PD[4:0] B11
WWWW
[7] ALC_PD: for test purpose only must be set to ’0’. (ALC ON)
[6] PKD_EN: for test purpose only must be set to 0’. (Peak detector output on pin 36 OFF)
[5:1] PD[4:0]: bits used to select different functional modes for the STW82103B according to
the following table
00000: (0 decimal) Power down mode
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;
internal synthesizer OFF)
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output
buffer ON)
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output
buffer ON)
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO
input buffer ON)
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO
input buffer and LO output buffer ON)
[0] B11: B counter value (bits B[10:0] in the B_COUNTER and A_COUNTER registers)
76543210
B[10:3]
W
[7:0] B[10:3]: B counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[2:0] in the
A_COUNTER register)
I2C bus interface STW82103B
40/67 Doc ID 018517 Rev 2
A_COUNTER A counter register
Address: 0x02
Type: W
Reset: 0x00
Description: Least significant bits of the B-counter value. A-counter value.
REF_DIVIDER Reference clock divider ratio register
Address: 0x03
Type: W
Reset: 0x00
Description: Most significant bits of the reference clock divider ratio value.
76543210
B[2:0] A[4:0]
W W
[7:5] B[2:0]: B Counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[10:3] in
the B_COUNTER register).
[4:0] A[4:0]: A counter value
76543210
R[9:2]
W
[7:0] R[9:2]: Reference clock divider ratio (bits R[1:0] in the CONTROL register)
STW82103B I2C bus interface
Doc ID 018517 Rev 2 41/67
CONTROL PLL control register
Address: 0x04
Type: W
Reset: 0x00
Description: Least significant bits of the reference clock divider ratio value and PLL control bits.
76543210
[R1:0] PLL_A[1:0] CPSEL[2:0] PSC_SEL
WW WW
[7:6] R[1:0]: Reference clock divider ratio (bits R[9:2] in the REF_DIVIDER register)
[5:4] PLL_A[1:0]: VCO amplitude
[3:1] CPSEL[2:0]: Charge Pump output current
[0] PSC_SEL: Prescaler Modulus select (‘0’ for P=16, ‘1’ for P=19)
The LO output frequency is programmed by setting the proper value for A, B and R
according to the following formula:
Where:
–D
R equals 0.5 for VCOA (VCO output frequency divided by 2) or 1 for VCOB (VCO
output frequency)
P is the selected Prescaler Modulus
FLO DRBPA+()
Fref
R
----------
⋅⋅=
I2C bus interface STW82103B
42/67 Doc ID 018517 Rev 2
MUTE_&_CALIBRATION Mute and calibration control register
Address: 0x05
Type: W
Reset: 0x00
Description: For test purposes only
DAC_CONTROL DAC control register
Address: 0x06
Type: W
Reset: 0x00
Description: Most significant bits of the DAC control word
76543210
CALTYPE
SERCAL
SELEXTCAL
MUTE_EN
MUTE_TYPE
MUTE_LOOUT_EN
MUTE_MIX_EN
MUTE_IFAMP_EN
WWWWWWWW
[7] CALTYPE: Calibration algorithm selection
0: standard calibration to optimize the phase noise versus temperature
1: enhanced calibration to maximize the ΔTLK range
[6] SERCAL:
1: starts the VCO auto-calibration (automatically reset to ’0’ at the end of calibration)
[5] SELEXTCAL: test purpose only; must be set to ‘0’
[4] MUTE_EN:
0: mute function disabled
1: mute function enabled
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute the IF output
on Unlock state)
[2] MUTE_LOOUT_EN:
To be set to ’1’ to mute the LO output buffer
[1] MUTE_MIX_EN:
To be set to ’1’ mute the Mixer circuitry
[0] MUTE_IFAMP_EN: To be set to '1' to mute the IF amplifier circuitry
76543210
DAC[9:2]
W
[7:0] DAC[9:2]: DAC input word for DAC current control (bits DAC[1:0] in the
MIXER_CONTROL register).
STW82103B I2C bus interface
Doc ID 018517 Rev 2 43/67
MIXER_CONTROL Mixer control register
Address: 0x07
Type: W
Reset: 0x00
Description: Least significant bits of DAC control word and mixer control bit fields
IFAMP_ LO_CONTROL IF amplifier LO control register
Address: 0x08
Type: W
Reset: 0x00
76543210
DAC[1:0]
MIX[3:0]
PD_DAC
CAL_AUTOSTART_EN
WWWW
[7:6] DAC[1:0]: DAC input word for DAC current control (bits DAC[9:2] in the DAC_CONTROL
register)
[5:2] MIX[3:0]: Mixer bias control value
[1] PD_DAC: DAC power down
[0] CAL_AUTOSTART_EN: VCO calibration auto-restart enable (’1’ active), permits to
automatically restart the VCO calibration procedure in case of PLL unlock
76543210
IFAMP[1:0] CAP[2:0] LO_A[1:0] LPMUX_EN
WWWW
[7:6] IFAMP[1:0]: power consumption/linearity control
[5:3] CAP[2:0]: Tuning capacitors control
[2:1] LO_A[1:0]: LO amplitude control
[0] LPMUX_EN: for test purpose only (low power mode for MUX); must be set to ’0’
I2C bus interface STW82103B
44/67 Doc ID 018517 Rev 2
READ-ONLY REGISTER Device ID and calibration status register
Address: 0x09
Type: R
Reset: 0x00
Description: This register is automatically addressed in the ‘current byte address read mode’
76543210
ID[1:0] LOCK_DET INTCAL[4:0]
RR R
[7:6] ID[1:0]: device identification ’11’ for STW82103B
[5] LOCK_DET: ’1’ when PLL is locked
[4:0] INTCAL[4:0]: internal value of the VCO calibration control word
STW82103B I2C bus interface
Doc ID 018517 Rev 2 45/67
9.4 Device calibration through the I2C interface
9.4.1 VCO calibration procedure (I2C interface)
The calibration of the VCO center frequency is activated by setting the SERCAL bit of the
MUTE & CALIBRATION register to ’1’.
To program the device ensuring a correct VCO calibration, the following procedure is
required before every channel change:
1. Program all the Registers using a multi-byte write sequence with the desired setting:
Functional Mode
B and A counters
R counter
VCO amplitude
Charge Pump
Prescaler Modulus
–DAC
Mixer and LO Control
all bits of the MUTE & CALIBRATION Register (0x05) set to ’0’.
2. Program the MUTE & CALIBRATION register using a single-byte write sequence (sub-
address 0x05) with the SERCAL bit set to ’1’.
The maximum allowed PFD frequency (FPFD) to perform the calibration process is 1 MHz. If
the desired FPFD is higher than 1 MHz the following steps are needed:
3. Perform all the step of the above calibration procedure programming the desired VCO
frequency with a proper setting of R, B and A counter so that FPFD results lower than
1MHz.
4. Once calibration is completed, program all the Registers by using a multi-byte write
sequence (Functional Mode, B and A counters, R counter, VCO amplitude, Charge
Pump, Prescaler Modulus, DAC, Mixer and LO Control) with the proper settings for the
desired VCO and PFD frequencies.
9.4.2 Power ON sequence (I2C interface)
At power-on the device is configured in power-down mode.
In order to guarantee correct setting of the internal circuitry after the power on, the following
steps must be followed:
1. Power up the device
2. Provide the Reference clock
3. Implement the first programming sequence with a proper delay time between the STOP
condition of the multi-byte write sequence and that of the single-byte write sequence
(see Figure 20). The Tdelay value must respect the following condition:
Fref is the reference clock frequency.
Tdelay 1023 1
Fref
----------
×>
I2C bus interface STW82103B
46/67 Doc ID 018517 Rev 2
Figure 20. I2C first programming timing
9.4.3 VCO calibration auto-restart procedure (I2C interface)
The VCO calibration auto-restart feature is enabled in two steps:
1. Set the desired frequency ensuring VCO calibration procedure as described above
(Section 9.4.1).
2. Program the MIXER_CONTROL register (sub-address 0x07) using a single-byte write
sequence with the CAL_AUTOSTART_EN bit set to '1' while keeping the others
unchanged.
START START
STOP STOP
CLK
DATA MSB LSB MSB LSB
Multi-byte sequence Single-byte sequence
Tdelay > 1023/Fref
STW82103B SPI digital interface
Doc ID 018517 Rev 2 47/67
10 SPI digital interface
10.1 SPI general features
The SPI digital interface is selected by hardware connection of the pin 25 (DBUS_SEL) to
3.3 V.
The STW82103B IC is programmed by means of a high-speed serial-to-parallel interface
with write option only. The 3-wires bus can be clocked at a frequency as high as 100 MHz to
allow fast programming of the registers containing the data for RF IC configuration.
The programming of the chip is done through serial words with whole length of 26 bits. The
first 2 MSB represent the address of the registers. The others 24 LSB represent the value of
the registers.
Each data bit is stored in the internal shift register on the rising edge of the CLOCK signal.
On the rising edge of the LOAD signal the outputs of the selected register are sent to the
device.
Figure 21. SPI input and output bit order
Last
DATA
LOAD
122324
25 (MSB)
LOAD #4
Reg. #0
Reg. #1 Reg. #4
A1
Address
bit sent
(LSB) 0
decoder
00 (LSB)
SPI digital interface STW82103B
48/67 Doc ID 018517 Rev 2
Figure 22. SPI data structure
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Address Data for register (24 bits)
MSB LSB
Note: MSB is sent first
Table 19. Address decoder and outputs
Address Outputs
A1 A0 DATABITS
D23-D0 NoName Function
0 0 24 0 ST1 DAC, Mixer, Tuning capacitors, LO_amplitude
01 24 1ST2 Reference divider, VCO amplitude, VCO Calibration, Charge
Pump current, Prescaler Modulus, Mute functions
1 0 24 2 ST3 Functional modes, VCO dividers
1 1 24 3 ST4 Reserved
STW82103B SPI digital interface
Doc ID 018517 Rev 2 49/67
10.2 SPI timing specification
10.2.1 Data, clock and load timing
Figure 23. SPI timing waveforms
DATA
CLOCK
LOAD
MSB LSBMSB - 1
tclk
tclk_loadr
tload tclk_loadf
tsetup thold
Table 20. SPI timing parameters
Parameter Description Min. Typ. Max. Unit
tsetup DATA to CLOCK setup time 1 - - ns
thold DATA to clock hold time 0.5 - - ns
tclk CLOCK cycle period 10 - - ns
tload LOAD pulse width 3 - - ns
tclk_loadr CLOCK to LOAD rising edge 0.6 - - ns
tclk_loadf CLOCK to LOAD falling edge 2.5 - - ns
SPI digital interface STW82103B
50/67 Doc ID 018517 Rev 2
10.3 SPI registers
10.3.1 SPI register summary
10.3.2 SPI register definitions
ST1 SPI register 1
Address: 0x00
Type: W
Reset: 0x00
Table 21. SPI register list
Offset Register name Description Page
0x00 ST1 SPI register 1 on page 50
0x01 ST2 SPI register 2 on page 51
0x10 ST3 SPI register 3 on page 52
23222120191817161514131211109876543210
DAC[9:0]
MIX[3:0]
PWD_DAC
CAL_AUTOSTART_EN
IF[1:0]
CAP[2:0]
LO_A[1:0]
LPMUX_EN
WWWWWWWW
[23:14] DAC[9:0]: DAC input word
[13:10] MIX[3:0]: Mixer bias control
[9] PWD_DAC: DAC power down
[8] CAL_AUTOSTART_EN: VCO calibration auto-restart enable
[7:6] IF[1:0]: Power consumption/linearity control
[5:3] CAP[2:0]: Tuning capacitors control
[2:1] LO_A[1:0]: LO amplitude control
[0] LPMUX_EN: For test purpose only. Must be set to ‘0’
STW82103B SPI digital interface
Doc ID 018517 Rev 2 51/67
ST2 SPI register 2
Address: 0x01
Type: W
Reset: 0x00
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R[9:0]
PLL_A[1:0]
CPSEL[2:0]
PSC_SEL
CAL_TYPE
SERCAL
SELEXTCAL
MUTE_EN
MUTE_TYPE
MUTE_LOOUT_EN
MUTE_MIX_EN
MUTE_IFAMP_EN
W W W WWWWWWWWW
[23:14] R[9:0]: Reference clock divider ratio
[13:12] PLL_A[1:0]: VCO amplitude control
[11:9] CPSEL[2:0]: Charge pump output current control
[8] PSC_SEL: Prescaler modulus select (‘0’ for P=16, ‘1’ for P=19)
[7] CAL_TYPE: Calibration algorithm selection
0: standard calibration to optimize the phase noise versus temperature
1: enhanced calibration to maximize the ΔTLK range
[6] SERCAL:
at ‘1’ starts the VCO auto-calibration (automatically reset to ‘0’ at the end of calibration)
[5] SELEXTCAL: test purpose only. Must be set to ‘0’
[4] MUTE_EN:
0: mute function disabled
1: mute function enabled
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute IF output on
Unlock state)
[2] MUTE_LOOUT_EN:
To be set to ’1’ to mute the LO output buffer
[1] MUTE_MIX_EN:
To be set to ’1’ to mute the Mixer circuitry
[0] MUTE_IFAMP_EN:
To be set to ’1’ to mute the IF amplifier circuitry
SPI digital interface STW82103B
52/67 Doc ID 018517 Rev 2
ST3 SPI register 3
Address: 0x10
Type: W
Reset: 0x00
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ALC_PD
PKD_EN
PD[4:0]
B[11:0]
A[4:0]
WW W W W
[23] ALC_PD: Test purpose only; must be set to ‘0’ (ALC ON)
[22] PKD_EN: for test purpose only; must be set to ‘0’
[21:17] PD[4:0]:
00000: (0 decimal) Power down mode
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;
internal synthesizer OFF)
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output
buffer ON)
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output
buffer ON)
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO
input buffer ON)
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO
input buffer and LO output buffer ON)
[16:5] B[11:0]: B counter bits
[4:0] A[4:0]: A Counter Bits
STW82103B SPI digital interface
Doc ID 018517 Rev 2 53/67
10.4 Device calibration through the SPI interface
10.4.1 VCO calibration procedure (SPI interface)
The calibration of the VCO center frequency is activated by setting to ’1’ the SERCAL bit
(ST2 Register bit [6]).
In order to program properly the device while ensuring the VCO calibration, the following
procedure is required before every channel change:
1. Program the ST1 Register with the desired setting (DAC, Mixer, LO Control)
2. Program the ST3 Register with the desired setting (Functional mode, B and A counters)
3. Program the ST2 Register with the desired setting (R counter, VCO amplitude, Charge
Pump, Prescaler Modulus) and SERCAL bit set to ’1’
The maximum allowed PFD frequency (FPFD) to perform the calibration process is 1 MHz; if
the desired FPFD is higher than 1 MHz the following steps are needed:
4. Perform all the steps of the above calibration procedure programming the desired VCO
frequency with a proper setting of R, B and A counter so that FPFD results lower than 1
MHz.
5. Once calibration is completed program the device with the proper setting for the desired
VCO and PFD frequencies according to the following steps:
a) Program the ST3 Register with the desired setting (Functional mode, B and A
counters)
b) Program the ST2 Register with the desired setting (R counter, VCO amplitude,
Charge Pump, Prescaler Modulus) with the SERCAL bit set to ’0’.
10.4.2 Power ON sequence (SPI interface)
At power-on the device is configured in power-down mode.
In order to guarantee correct setting of the internal circuitry after the power on, the following
steps must be followed:
1. Power up the device
2. Provide the reference clock
3. Implement the first programming sequence with a proper delay time between the ST3
and ST2 load rising edges (see Figure 24). The Tdelay value must respect the following
condition:
Fref is the reference clock frequency.
Tdelay 1023 1
Fref
----------
×>
SPI digital interface STW82103B
54/67 Doc ID 018517 Rev 2
Figure 24. SPI first programming timing
10.4.3 VCO calibration auto-restart procedure (SPI interface)
The VCO calibration auto-restart feature is enabled in two steps:
1. Set the desired frequency ensuring VCO calibration as described in Section 10.4.1.
2. Program the ST1 register with the CAL_AUTOSTART_EN bit set to '1' while keeping
unchanged the others.
DATA
LOAD
ST3 ST2
MSB MSB-1 LSB
LSB-1 MSB MSB-1 LSB
LSB-1
Tdelay > 1023/Fref
STW82103B Application information
Doc ID 018517 Rev 2 55/67
11 Application information
11.1 Application circuit
Figure 25. Typical STW82103B application circuit
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
C1 C2 C3
1
2
3
4
5
6
7
8
9
10
11 VDD_IO
ADD0
ADD1
ADD2
EXT_PD
EXTVCO_INP
EXTVCO_INN
VDD_VCO
VDD_DIV
REXT_DAC
VDD_DAC
3.3V_LN4
RF_IN
C19
3.3V_LN1
3.3V_LN3
3.3V_LN2
C15 C16 C17
5V_2 L3
L4
C18
U3 IF_out
1
2
3
4
5
6
NC
C14
C13
C12
R10
R9
R8
3.3V_LN2
LOAD
SLC/CLK
SDA/DATA
3.3V_LN2
SPI
I2C
C11 REF_CLK
R7
3.3V_LN1
R6
LOCK_DET
3.3V_LN1
R2 R3
L1 L2
C6 C7
R4
C9
C8
R5
C10
1
2
34
5
6
X5
X6
X7
X8
U2
NC
3.3V_LN1
3.3V_LN1
3.3V_LN1
External VCO
X1
X2
X3
X4
U1
NC C4
C5
3.3V_LN1
LO_Output
12 13 14 15 16 17 18 19 20 21 22
VDD_PSCBUF
NC
NC
VDD_OUTBUF
OUTBUFN
OUTBUFP
VCTRL
ICP
REXT_CP
VDD_CP
LOCK_DET
33
32
31
30
29
28
27
26
25
24
23
VDD_IFAMP
IF_OUTP
IF_OUTN
NC
LOAD
SLC/CLK
SDA/DATA
VDD_DIG
DBUS_SEL
VDD_PLL
REF_CLK
44 43 42 41 40 37
38
39 36 35 34
I_PINDRV2
I_PINDRV1
VDD_MIXDRV
VDD_ALC
MIXDRV_CT
VDD_RFESD
RF_IN
RF_CT
TEST_ALC
TEST1
TEST2
VFQFPN-44
123
4
5
6
5V_1
R1
Application information STW82103B
56/67 Doc ID 018517 Rev 2
Note: 1 For optimum performance a low-noise 3.3 V power supply must be used.
2 The 3.3 V and 5 V power supplies are split in order to maximize the isolation between RF,
LO, IF and digital sections.
Table 22. Application circuit component values
Designation Quantity Description Supplier
C1, C15 2 4.7 µF capacitors COG (0402)
Murata Manufacturing Co., Ltd
C2, C11 2 1 nF capacitors COG (0402)
C3 1 10 pF capacitor COG (0402)
C4,C5 2 3.3 pF capacitors COG (0402)
C6, C7 2 1.1 pF capacitor COG (0402)
C8 1 270 pF capacitor COG (0402)
C9 1 2.7 nF capacitor COG (0402)
Murata Manufacturing Co., Ltd
C10 1 68 pF capacitor COG (0402)
C12, C13, C14 3 15 pF capacitors COG (0402)
C16 1 100 nF capacitor COG (0402)
C17 1 100 pF capacitor COG (0402)
C18 1 180 pF capacitor COG (0402)
C19 1 6.8 pF capacitor COG (0402)
R1 1 100 ohm resistors (0402) -
R2,R3,R7 3 50 ohm resistors (0402) -
R4 1 2.2 kohm resistor (0402) -
R5 1 8.2 kohm resistor (0402) -
R6 1 4.7 kohm resistor (0402) -
R8, R9, R10 3 100 ohm resistors (0402) -
U1, U2 2 Balun JTI - 2450BL15K100 JOHANSON TECHNOLOGY
U3 1 Balun ADT4-5WT Mini Circuits
X1 1 7.5 nH inductor CS (0402) Coilcraft, Inc
X2 1 0.2 pF capacitor COG (0402) Murata Manufacturing Co., Ltd
X3 1 10 nH inductor CS (0402) Coilcraft, Inc
X4 0 NC -
X5 0 NC -
X6, X8 2 12 nH inductor CS (0402) Coilcraft, Inc
X7 0 NC -
X9 1 1 pF capacitor COG (0402) Murata Manufacturing Co., Ltd
L1, L2 2 11 nH inductors CS (0402) Coilcraft, Inc
L3, L4 2 220 nH inductors CS (1206)
STW82103B Application information
Doc ID 018517 Rev 2 57/67
11.2 Standard Mode Operation
The STW82103B can be used in Standard Mode for both RX path and TX observation path
(RX Chain ON and Synthesizer ON).
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to
calibrate the signal level at the input of the device.
Figure 26. Standard mode operation
RF_IN2
I_PINDRV1
I_PINDRV2
RF_IN
RF_VSS
RF_CT
MIXDRV_CT
DAC
REXT_DAC
MIX
DIV2
STW82103B
RF_IN
DRV
5V
IF AMP
DBUS
VCO
CAL_VCO
BUF
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
LOCK_DET
4:1 IF_OUT
50 Ω
5V
REXT_CP
calibrator
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
VCO
CAL_VCO
VCTRL
BUFF
IF_OUTP
IF_OUTN
Application information STW82103B
58/67 Doc ID 018517 Rev 2
11.3 Diversity mode operation with same LO frequency
The STW82103B supports the Diversity mode with the same LO frequency by using one
STW82103B in Master Mode (RX Chain ON, Synthesizer ON and LO output buffer ON) and
the other in Slave Mode (RX Chain ON, Synthesizer OFF and EXT VCO/LO buffer ON). This
operation mode is suitable for antenna diversity.
Figure 27. Diversity mode operation with same LO frequencies
4:1 IF_M
50 Ω
5V
IF_OUTP
IF_OUTN
IF AMP
DBUS
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
RF_IN
RF_VSS
RF_CT
RF_IN_M
5V
DIV2
BUF
LOCK_DET
REXT_CP
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
VCO
CAL_VCO
VCTRL
BUFF
VCO
calibrator
MIXDRV_CT
MIX
DRV
STW82103B Master
MIX
DRV
DBUS
RF_IN
RF_CT
RF_IN_S
100 Ω
4:1 IF_S
50 Ω
IF_OUTP
IF_OUTN
STW82103B Slave
IF AMP
5V
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
EXTVCO_INN
MIXDRV_CT
5V
OUTBUFP
OUTBUFN
3.3V
LO
OUT
EXTVCO_INP
50 Ω50 Ω
EXT
LO/VCO
BUF
RF_VSS
to DAC
CAL_VCO
STW82103B Application information
Doc ID 018517 Rev 2 59/67
11.4 Diversity mode operation with different LO frequencies
The STW82103B is particularly suitable for Diversity schemes using different LO
frequencies such as the Interferer Diversity. In these schemes two STW82103Bs are used,
each one set in Standard Mode and with different LO frequencies.
Figure 28. Diversity mode operation with different LO frequencies
4:1 IF_OUT1
50 Ω
5V
IF_OUTP
IF_OUTN
IF AMP
DBUS
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
RF_IN
RF_VSS
RF_CT
RF_IN1
5V
DIV2
BUF
LOCK_DET
REXT_CP
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
VCO
CAL_VCO
VCTRL
BUFF
VCO
CAL_VCO
calibrator
MIXDRV_CT
MIX
DRV
STW82103B Master
4:1 IF_OUT2
50 Ω
5V
IF_OUTP
IF_OUTN
IF AMP
DBUS
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
RF_IN
RF_VSS
RF_CT
RF_IN2
5V
DIV2
BUF
LOCK_DET
REXT_CP
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
VCO
CAL_VCO
VCTRL
BUFF
VCO
CAL_VCO
calibrator
MIXDRV_CT
MIX
DRV
STW82103B Diversity
LO1
LO2
Application information STW82103B
60/67 Doc ID 018517 Rev 2
11.5 External VCO standard mode operation
The STW82103B can be used in Ext VCO Mode for both RX path and TX observation path
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON and with an external VCO).
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to
calibrate the signal level at the input of the device.
Figure 29. External VCO standard mode operation
RF_IN2
I_PINDRV1
I_PINDRV2
RF_IN
RF_VSS
RF_CT
MIXDRV_CT
DAC
REXT_DAC
MIX
STW82103B
RF_IN
DRV
5V
IF AMP
DBUS
BUF
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
LOCK_DET
4:1 IF_OUT
50 Ω
5V
REXT_CP
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
EXT
IF_OUTP
IF_OUTN
EXTERNAL
VCO
EXTVCO_INP EXTVCO_INN
LO/VCO
BUF
STW82103B Application information
Doc ID 018517 Rev 2 61/67
11.6 External VCO diversity mode operation with same LO
The STW82103B can be used in Diversity mode using one STW82103B in Master Mode
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON, LO output buffer ON and with an
external VCO) and the other one in Slave Mode (RX Chain ON, Synthesizer OFF and EXT
VCO/LO buffer ON).
Figure 30. External VCO diversity mode operation with same LO
MIX
DRV
DBUS
RF_IN
RF_CT
RF_IN_S
100 Ω
4:1 IF_S
50 Ω
IF_OUTP
IF_OUTN
STW82103B Slave
IF AMP
5V
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
EXTVCO_INN
MIXDRV_CT
5V
EXTVCO_INP
EXT
LO/VCO
BUF
RF_VSS
RF_IN
RF_VSS
RF_CT
MIXDRV_CT
MIX
STW82103B Master
RF_IN_M
DRV
5V
IF AMP
DBUS
BUF
DBUS_SEL
SDA/DATA
SCL/CLK
LOAD
LOCK_DET
4:1 IF_M
50 Ω
5V
REXT_CP
REF_CLK
CHP
PFD
UP
DN
PLL
ICP
VCO
BUFF
IF_OUTP
IF_OUTN
EXTERNAL
VCO
EXTVCO_INP EXTVCO_INN
OUTBUFP
OUTBUFN
LO/2xLO
OUT
50 Ω50 Ω
3.3V
to DAC
Evaluation kit STW82103B
62/67 Doc ID 018517 Rev 2
12 Evaluation kit
An evaluation kit can be delivered upon request, including the following:
Evaluation board
GUI (graphical user interface) to program the device
PLLSim software for PLL loop filter design and noise simulation
When ordering, please specify the following order code:
Table 23. Evaluation kit order code
Part number Description
STW82103B-EVB STW82103B evaluation kit, 2.3 to 2.7 GHz RF frequency range
STW82103B Package mechanical data
Doc ID 018517 Rev 2 63/67
13 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 31. VFQFPN-44 package outline
Package mechanical data STW82103B
64/67 Doc ID 018517 Rev 2
Note: 1 VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead.
Very thin: A=1.00 Max.
2 Details of terminal 1 identifier are optional but must be located on the top surface of the
package by using either a mold or marked features.
Table 24. VFQFPN-44 package dimensions
Symbol
Dimensions in mm
Min Typ Max
A 0.80 0.90 1.00
A1 - 0.02 0.05
A2 - 0.65 1.00
A3 - 0.200 -
b 0.18 0.25 0.30
D 6.85 7.00 7.15
D1 - 6.750 -
D2 3.80 3.90 4.00
D3 - 4.90 -
E 6.85 7.00 7.15
E1 - 6.750 -
E2 3.80 3.90 4.00
E3 - 4.90 -
e - 0.50 -
L 0.35 0.55 0.75
P--0.60
K (degree) - - 12
ddd - - 0.08
STW82103B Revision history
Doc ID 018517 Rev 2 65/67
14 Revision history
Table 25. Document revision history
Date Revision Changes
11-Mar-2011 1 First release
19-Apr-2012 2
Cover page:
IIP3 value changed to +25 dBm
2FRF-2FLO spurious rejection changed to 80 dBc
Noise figure NF changed to 10.5 dB
Removed ‘Preliminary Data’ tags.
Table 3 moved to new Section 3: Absolute maximum ratings
Section 2.1 becomes Section 4: Operating conditions
Section 2.2 becomes Section 5: Test conditions
Section 2.3 becomes Section 6: Electrical characteristics
Table 4: Operating conditions updated current consumption:
–I
CC3.3V
. Updated typical values of diversity master modes. Added maximum
values.
–I
CC5V
. Updated typical and added maximum values.
Section 6: Electrical characteristics. Added note about Vsupply, RF frequency
range, ambient temperature and RF power conditions.
Table 6: Down converter mixer and IF amplifier electrical characteristics :
updated:
CG added minimum and max values.
–IP
1dB updated high-current mode value
IIP3 added minimum values and updated typical values
–nF
RF-nFLO modified typical values
–NF
SSB added maximum values
LO to RF leakage typical value modified
RF to IF isolation typical value modified
–IF
RL typical value modified
–ICC
MD 3.3 V on pins 41 and 42, modified typical values
–ICC
IFAM 5 V supply value on pins 31 and 32, modified typical value
Table 8: Integer-N synthesizer electrical characteristics updated:
–K
VCOA typical values for high and intermediate frequency ranges
–K
VCOB typical values for all frequency ranges
ΔTLK split into ΔTLK A and ΔTLK B (for VCOA and VCOB). Specified as
maximum values.
modified table footnote 4
Table 9: Phase noise performance updated typical values of:
Integrated Phase Noise (single sided) 100 Hz to 40 MHz
LOA open-loop phase noise @ 1 kHz, 10 kHz, 100 kHz, 10 MHz and phase
noise floor @ 40 MHz
LOB open-loop phase noise @ 1 kHz, 10 kHz, 100 kHz, 1 MHz, 10 MHz and
phase noise floor @ 40 MHz
Revision history STW82103B
66/67 Doc ID 018517 Rev 2
19-Apr-2012 2
Added Section 7: Typical performance characteristics.
Section 8.1.9: Voltage controlled oscillators. Modified :
VCO frequency calibration
VCO calibration auto-restart feature
Table 12: VCOB performance against amplitude setting (frequency = 2.8
GHz) values of PN @1 MHz
Table 12: VCOB performance against amplitude setting (frequency = 2.8 GHz),
modified values of linearity performance.
Section 9.3.2: I2C register definitions. Updated description of bitfield CALTYPE
and MUTE_TYPE in registers MUTE_&_CALIBRATION
Added Section 9.4.2: Power ON sequence (I2C interface)
modified Figure 23: SPI timing waveforms
modified Table 20: SPI timing parameters minimum values of tclk_loadr and
tclk_loadf.
Section 10.3.2: SPI register definitions: updated
description of bitfields CALTYPE and MUTE_TYPE in register ST2
description of bitfield PD[4:0] in register ST3
Added Section 10.4.2: Power ON sequence (SPI interface)
Added Section 12: Evaluation kit.
Table 25. Document revision history (continued)
Date Revision Changes
STW82103B
Doc ID 018517 Rev 2 67/67
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
STW82103BTR STW82103B