To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please
email any questions regarding the system integration to Fairchild_questions@onsemi.com.
Is Now Part of
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, afliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Afrmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
©2012 Fairchild Semiconductor Corporation 1www.fairchildsemi.com
FSB50825AS Rev. 1.6
FSB50825AS Motion SPM® 5 Series
tm
April 2015
FSB50825AS
Motion SPM® 5 Series
Features
UL Certified No. E209204 (UL1557)
250 V RDS(on) = 0.45 Max FRFET MOSFET 3-
Phase Inverter with Gate Drivers and Protection
Built-in Bootstrap Diodes Simplify PCB Layout
Separate Open-Source Pins from Low-Side MOSFETs
for Three-Phase Current-Sensing
Active-HIGH Interface, Works with 3.3 / 5 V Logic,
Schmitt-trigger Input
Optimized for Low Electromagnetic Interference
HVIC Temperature-Sensing Built-in for Temperature
Monitoring
HVIC for Gate Driving and Under-Voltage Protection
Isolation Rating: 1500 Vrms / 1 min.
Moisture Sensitive Level (MSL) 3
RoHS Compliant
Applications
3-Phase Inverter Driver for Small Power AC Motor
Drives
Related Source
RD-FSB50450A - Reference Design for Motion SPM 5
Series Ver.2
AN-9082 - Motion SPM5 Series Thermal Performance
by Contact Pressure
AN-9080 - User’s Guide for Motion SPM 5 Series V2
General Description
The FSB50825AS is an advanced Motion SPM® 5
module providing a fully-featured, high-performance
inverter output stage for AC Induction, BLD C and PMSM
motors. These modules integrate optimized gate drive of
the built-in MOSFETs(FRFET® technology) to minimize
EMI and losses, while also providing multiple on-module
protection features including under-voltag e lockouts and
thermal monitoring. The built-in high-speed
HVIC requires only a single supply voltage and
translates the incoming logic-level gate inputs to the
high-voltage, high-current drive signals required to
properly drive the module's internal MOSFETs.
Separate open-source MOSFET terminals are available
for each phase to support the widest variety of control
algorithms.
Package Marking & Ordering Information
Device Marking Device Package Reel Size Packing Type Quantity
FSB50825AS FSB50825AS SPM5Q-023 330mm Tape-Reel 450
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 2www.fairchildsemi.com
FSB50825AS Rev. 1.6
Absolute Maximum Ratings
Inverter Part (each MOSFET unless otherwise specified.)
Control Part (each HVIC unless otherwise specified.)
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)
Thermal Resistance
Total System
1st Notes:
1. For the m easurement point of case temperature TC, please refer to Figure 4.
2. Marking “ * “ is calculation value or design factor.
Symbol Parameter Conditions Rating Unit
VDSS Drain-Source Voltage of Each MOSFET 250 V
*ID 25 Each MOSFET Drain Current, Continuous TC = 25°C 3.6 A
*ID 80 Each MOSFET Drain Current, Continuous TC = 80°C 2.7 A
*IDP Each MOSFET Drain Current, Peak TC = 25°C, PW < 100 s 9.0 A
*IDRMS Each MOSFET Drain Current, Rms TC = 80°C, FPWM < 20 kHz 1.9 Arms
*PDMaximum Power Dissipation TC = 25°C, For Each MOSFET 14.2 W
Symbol Parameter Conditions Rating Unit
VCC Control Supply Voltage Applied Between VCC and COM 20 V
VBS High-side Bias Voltage Applied Between VB and VS20 V
VIN Input Signal Voltage Applied Between IN and COM -0.3 ~ VCC + 0.3 V
Symbol Parameter Conditions Rating Unit
VRRMB Maximum Repetitive Reverse Voltage 250 V
* IFB Forward Current TC = 25°C 0.5 A
* IFPB Forward Current (Peak) TC = 25°C, Under 1ms Pulse Width 1.5 A
Symbol Parameter Conditions Rating Unit
RJC Junction to Case Thermal Resistance Each MOSFET under Inverter Oper-
ating Condition (1st Note 1) 8.8 °C/W
Symbol Parameter Conditions Rating Unit
TJOperating Junction Tem perature -40 ~ 150 °C
TSTG Storage Temperature -40 ~ 125 °C
VISO Isolation Voltage 60 Hz, Sinusoidal, 1 Minute, Con-
nect Pins to Heat Sink Plate 1500 Vrms
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 3www.fairchildsemi.com
FSB50825AS Rev. 1.6
Pin descriptions
Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)
1st Notes:
3. Source t e rminal of e ach low-s i de MOS FET is no t c onn ect e d to sup p ly gr ou nd o r b ia s voltag e gr ound in si de M ot io n S P M® 5 product. External connections should be made as
indicated in Figure 3.
Pin Number Pin Name Pin Description
1 COM IC Common Supply Ground
2V
B(U) Bias Voltage for U-Phase High-Side MOSFET Driving
3V
CC(U) Bias Voltage for U-Phase IC and Low-Side MOSFET Driving
4IN
(UH) Signal Input for U-Phase High-Side
5IN
(UL) Signal Input for U-Phase Low-Side
6 N.C No Connection
7V
B(V) Bias Voltage for V-Phase High Side MOSFET Driving
8V
CC(V) Bias Voltage for V-Phase IC and Low Side MOSFET Driving
9IN
(VH) Signal Input for V-Phase High-Side
10 IN(VL) Signal Input for V-Phase Low-Side
11 VTS Output for HVIC Temperature Sensing
12 VB(W) Bias Voltage for W-Phase High-Side MOSFET Driving
13 VCC(W) Bias Voltage for W-Phase IC and Low-Side MOSFET Driving
14 IN(WH) Signal Input for W-Phase High-Side
15 IN(WL) Signal Input for W-Phase Low-Side
16 N.C No Connection
17 P Positive DC-Link Input
18 U, VS(U) Output for U-Phase & Bias Voltage Ground for High-Side MOSFET Driving
19 NUNegative DC-Link Input for U-Phase
20 NVNegative DC-Link Input for V-Phase
21 V, VS(V) Output for V-Phase & Bias Voltage Ground for High-Side MOSFET Driving
22 NWNegative DC-Link Input for W-Phase
23 W, VS(W) Output for W Phase & Bias Voltage Ground for High-Side MOSFET Driving
(1) COM
(2) VB(U)
(3) VCC(U)
(4) I N (UH)
(5) I N (UL)
(6) N.C
(7) VB(V)
(8) VCC(V)
(9) I N (VH)
(10) IN(VL)
(11) VTS
(12 ) VB(W)
(13) VCC(W)
(14) IN (WH)
(15) IN (WL)
(16)
(17) P
(18) U, VS(U)
(19) NU
(20) NV
(21) V, VS(V)
(22) NW
(23) W, VS(W)
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
VTS
COM
VCC
LIN
HIN
VB
HO
VS
LO
N.C
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 4www.fairchildsemi.com
FSB50825AS Rev. 1.6
Electrical Characteristics (TJ = 25°C, VCC = VBS = 15 V unless otherwise specified.)
Inverter Part (each MOSFET unless otherwise specified.)
Control Part (each HVIC unless otherwise specified.)
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)
2nd Notes:
1. BVDSS is the absolute maxi mum voltage rating between drain and source terminal of each MOSFET inside Motion SPM® 5 product. VPN shou ld be sufficiently less than this
value consideri ng the ef fect of the stray inductance so that VPN should not exceed BVDSS in any case.
2. tON and tOFF include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field
applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.
3. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test
circuit that is same as the switching test circuit.
4. Vts is only for sensing-temperature of modu l e and can not shut down MOSFETs automati ca ll y.
5. Built-in bootstrap diode includes around 15 resistance characteristic. Please refer to Figure 2.
Symbol Parameter Conditions Min Typ Max Unit
BVDSS Drain - Source
Breakdown Voltage VIN = 0 V, ID = 1 mA (2nd Note 1) 250 - - V
IDSS Zero Gate Voltage
Drain Current VIN = 0 V, VDS = 250 V - - 1 mA
RDS(on) Static Drain - Source
Turn-On Resistance VCC = VBS = 15 V, VIN = 5 V, ID = 2.0 A - 0.33 0.45
VSD Drain - Source Diode
Forward Voltage VCC = VBS = 15V, VIN = 0 V, ID = -2.0 A - - 1.2 V
tON
Switching Times
VPN = 150 V, VCC = VBS = 15 V, ID = 2.0 A
VIN = 0 V 5 V, Inductive Load L = 3 mH
High- and Low-Side MOSFET Switching
(2nd Note 2)
- 950 - ns
tOFF - 520 - ns
trr - 150 - ns
EON - 100 - J
EOFF -10- J
RBSOA Reverse Bias Safe Oper-
ating Area
VPN = 200 V, VCC = VBS = 15 V, ID = IDP, VDS = BVDSS,
TJ = 150°C
High- and Low-Side MOSFET Switching (2nd Note 3) Full Square
Symbol Parameter Conditions Min Typ Max Unit
IQCC Quiescent VCC Current VCC = 15 V,
VIN = 0 V Applied Between VCC and COM - - 200 A
IQBS Quiescent VBS Current VBS = 15 V,
VIN = 0 V Applied Between VB(U) - U,
VB(V) - V, VB(W) - W - - 100 A
UVCCD Low-Side Under-Voltage
Protection (Figure 8) VCC Under-Voltage Protection Detectio n Level 7.4 8.0 9.4 V
UVCCR VCC Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
UVBSD High-Side Under-Voltage
Protection (Figure 9) VBS Under-Voltage Protection Detection Level 7.4 8.0 9.4 V
UVBSR VBS Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
VTS HVIC Temperature Sens-
ing Voltage Output VCC = 15 V, THVIC = 25°C (2nd Note 4) 600 790 980 mV
VIH ON Threshold Voltage Logic HIGH Level Applied between IN and COM --2.9V
VIL OFF Threshold Voltage Logic LOW Level 0.8 - - V
Symbol Parameter Conditions Min Typ Max Unit
VFB Forward Voltage IF = 0.1 A, TC = 25°C (2nd Note 5) - 2.5 - V
trrB Reverse Recovery Time IF = 0.1 A, TC = 25°C - 80 - ns
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 5www.fairchildsemi.com
FSB50825AS Rev. 1.6
Recommended Operating Condition
Figure 2. Built-in Bootstrap Diode Characteristics (Typical)
Symbol Parameter Conditions Min. Typ. Max. Unit
VPN Supply Voltage Applied Between P and N - 150 200 V
VCC Control Supply Voltage Applied Between VCC and COM 13.5 15.0 16.5 V
VBS High-Side Bias Voltage Applied Between VB and VS13.5 15.0 16.5 V
VIN(ON) Input ON Threshold Voltage Applied Between IN and COM 3.0 -VCC V
VIN(OFF) Input OFF Threshold Voltage 0 -0.6 V
tdead Blanking Time for Preventing
Arm-Short VCC = VBS = 13.5 ~ 16.5 V, TJ 150°C 1.0 - - s
fPWM PWM Switching Frequency TJ 150°C - 15 - kHz
0123456789101112131415
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Built-in Bootstrap Diode VF-IF C haracteristic
IF [A]
VF [V ]
Tc=25°C
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 6www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters
3rd Notes:
1. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching fr equency, typical example of parameters is shown above.
2. RC-coupli ng (R 5 and C5) and C4 at each input of Motion SPM 5 product and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise.
3. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C1, C2
and C3 should ha ve good high-frequency characteristics to absorb high-frequency ripple-current.
Figure 4. Case Temperature Measurement
3rd Notes:
4. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.
Figure 5. Temperature Profile of VTS (Typical)
HIN LIN Output Note
0 0 Z Both FRFET Off
0 1 0 Low side F RFET On
10 V
DC High side FRFET On
1 1 Forbidden Shoot through
Open Open Z Same as (0,0)
COM
VCC
LIN
HIN
VB
HO
VS
LO
P
NR3
Inverter
Output
C3
C1
MCU
+15 V
10F
These values depend on PWM control algorithm
* Example of Boot s t ra p Param te rs:
C1 = C2 = 1F Ceramic Capacitor
R5
C5
VDC
C2
VTS
* Example Circuit : V phase
C4
V
One Leg Diagram of Mo ti on SPM® 5 Product
20 40 60 80 100 120 140 160
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VTS [V]
THVIC [oC]
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 7www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 6. Switching Time Definitions
Figure 7. Switching and RBSOA (Single-pulse) Test Circuit (Low-side)
Figure 8. Under-Voltage Protection (Low-Side)
Figure 9. Under-Voltage Protection (High-Side)
tON trr
Irr
100% of ID120% of ID
(a) Turn -on
tOFF
(b) Tu rn -o ff
ID
VDS
VDS
ID
VIN VIN
10% of ID
UVCCD
UVCCR
Input Signal
UV Protection
Status
Low-side Supply, VCC
MOSFET Current
RESET DETECTION RESET
UVBSD
UVBSR
Input Signal
UV Protection
Status
High-si de Supply, VBS
MOSFET Current
RESET DETECTION RESET
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 8www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 10. Example of Application Circuit
4th Notes:
1. About pin position, refer to Figure 1.
2. RC-coupling (R5 and C5, R4 and C6) and C4 at each input of Motion SPM® 5 product and MCU are useful to prevent improper input signal caused by surge-noise.
3. The voltage -drop acros s R3 affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low-
side MOSFET. For this reason, the voltage-drop across R3 shou ld be less than 1 V in the steady-state.
4. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.
5. All the filter capacitors should be connected close to Motion SPM 5 product, and they should h ave good charac teristics for r ejecting high-freque ncy ripple current.
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
(1) COM
(2) VB(U)
(3) VCC(U)
(4) IN (UH)
(5) IN (UL)
(6) N.C
(7) VB(V)
(8) VCC(V)
(9) IN (VH)
(10) I N(VL)
(11) V TS
(12) V B(W)
(13) V CC(W)
(14) I N(WH)
(15) I N(WL)
(16) N .C
(17) P
(18) U, VS(U)
(19) N U
(22) N W
Micom
C1
15 V
Supply
C3VDC
C2
R3
R4
C6
R5
C5
For current-sensing and protection
VTS
(21) V, VS(V)
(20) N V
(23) W, V S(W)
C4
M
www.onsemi.com
1
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC