STM32F405xx STM32F407xx ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Features FBGA Core: ARM 32-bit CortexTM-M4F CPU with FPU, Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions Memories - Up to 1 Mbyte of Flash memory - Up to 192+4 Kbytes of SRAM including 64Kbyte of CCM (core coupled memory) data RAM - Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories LCD parallel interface, 8080/6800 modes Clock, reset and supply management - 1.8 V to 3.6 V application supply and I/Os - POR, PDR, PVD and BOR - 4-to-26 MHz crystal oscillator - Internal 16 MHz factory-trimmed RC (1% accuracy) - 32 kHz oscillator for RTC with calibration - Internal 32 kHz RC with calibration Low power - Sleep, Stop and Standby modes - VBAT supply for RTC, 20x32 bit backup registers + optional 4 KB backup SRAM 3x12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode 2x12-bit D/A converters General-purpose DMA: 16-stream DMA controller with FIFOs and burst support Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input LQFP64 (10 x 10 mm) LQFP100 (14 x 14 mm) LQFP144 (20 x 20 mm) LQFP176 (24 x 24 mm) UFBGA176 (10 x 10 mm) Up to 140 I/O ports with interrupt capability - Up to 136 fast I/Os up to 84 MHz - Up to 138 5 V-tolerant I/Os Up to 15 communication interfaces - Up to 3 x I2C interfaces (SMBus/PMBus) - Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control) - Up to 3 SPIs (37.5 Mbits/s), 2 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock - 2 x CAN interfaces (2.0B Active) - SDIO interface Advanced connectivity - USB 2.0 full-speed device/host/OTG controller with on-chip PHY - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI - 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII 8- to 14-bit parallel camera interface up to 54 Mbytes/s Analog random number generator CRC calculation unit, 96-bit unique ID RTC: subsecond accuracy, hardware calendar Table 1. Reference Device summary Part number STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE Debug mode - Serial wire debug (SWD) & JTAG interfaces - Cortex-M4F Embedded Trace MacrocellTM September 2011 Doc ID 022152 Rev 1 1/154 www.st.com 1 Contents STM32F405xx, STM32F407xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2/154 2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 ARM(R) CortexTM-M4F core with embedded Flash and SRAM . . . . . . . . 17 2.2.2 Adaptive real-time memory accelerator (ART AcceleratorTM) . . . . . . . . 17 2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 18 2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20 2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 25 2.2.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.21 Inter-integrated circuit interface (IC) 2.2.22 Universal synchronous/asynchronous receiver transmitters (USART) . 30 2.2.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.25 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.26 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 32 2.2.27 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 32 2.2.28 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.29 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 34 Doc ID 022152 Rev 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F405xx, STM32F407xx Contents 2.2.30 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 34 2.2.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.32 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.33 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.34 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.35 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.36 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.38 Embedded Trace MacrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 61 5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 61 5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 62 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 81 5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Doc ID 022152 Rev 1 3/154 Contents 6 7 STM32F405xx, STM32F407xx 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 86 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 135 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 135 5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.1 Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.2 Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 147 A.4 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 148 A.5 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 11 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 60 VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 61 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 61 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 65 Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 66 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 67 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 68 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Doc ID 022152 Rev 1 5/154 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. 6/154 STM32F405xx, STM32F407xx Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 USB FS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 105 Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 106 Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 116 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 117 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 125 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . 131 Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . 134 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 138 LQPF100 - 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 139 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 140 UFBGA176+25 - ultra thin fine pitch ball grid array 10 x 10 x 0.6 mm mechanical data . 141 LQFP176, 24 x 24 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 142 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Main applications versus package for STM32F407xx microcontrollers . . . . . . . . . . . . . . 145 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Compatible board design between STM32F2xx and STM32F4xx: LQFP176 . . . . . . . . . . 13 Compatible board design between STM32F1xx/STM32F2xx/ . . . . . . . . . . . . . . . . . . . . . . . . STM32F4xx: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Compatible board design STM32F1xx/STM32F2xx/ STM32F4xx: LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Compatible board design between STM32F1xx/STM32F4xx: LQFP64 . . . . . . . . . . . . . . . 15 STM32F40x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Regulator ON/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 25 Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 25 STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 103 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 111 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 111 Doc ID 022152 Rev 1 7/154 List of figures Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. 8/154 STM32F405xx, STM32F407xx 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 116 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 117 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 118 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 120 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 125 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 127 PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 128 PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 130 PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 131 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 134 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 134 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 138 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 139 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 UFBGA176+25 - ultra thin fine pitch ball grid array 10 x 10 x 0.6 mm, package outline . 141 LQFP176 24 x 24 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 142 Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Regulator OFF/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 USB OTG FS peripheral-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 USB OTG FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 OTG FS connection dual-role with internal PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 USB OTG HS peripheral-only connection in FS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 USB OTG HS host-only connection in FS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 OTG HS connection dual-role with external PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . . . . . . . . . . 151 Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 152 Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 152 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 1 Introduction Introduction This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32TM family, please refer to Section 2.1: Full compatibility throughout the family. The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual. For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F4xx Flash programming manual (PM0081). The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the CortexTM-M4F core please refer to the CortexTM-M4F Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439b/. Doc ID 022152 Rev 1 9/154 Description 2 STM32F405xx, STM32F407xx Description The STM32F405xx and STM32F407xx family is based on the high-performance ARM(R) CortexTM-M4F 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4F core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F405xx and STM32F407xx family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. Up to three I2Cs Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. Four USARTs plus two UARTs An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), Two CANs An SDIO/MMC interface Ethernet and the camera interface available on STM32F407xx devices only. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and peripheral counts for the list of peripherals available on each part number. The STM32F405xx and STM32F407xx family operates in the -40 to +105 C temperature range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 C temperature range and PDR_ON is connected to VSS. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F405xx and STM32F407xx family offers devices in four packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F405xx and STM32F407xx microcontroller family suitable for a wide range of applications: Motor drive and application control Medical equipment Industrial applications: PLC, inverters, circuit breakers Printers, and scanners Alarm systems, video intercom, and HVAC Home audio appliances Figure 5 shows the general block diagram of the device family. 10/154 Doc ID 022152 Rev 1 STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG Flash memory in Kbytes SRAM in Kbytes STM32F405ZG STM32F407Ix 512 512 512 1024 192(112+16+64) Backup 4 No No 10 Advancedcontrol 2 Basic 2 Doc ID 022152 Rev 1 Yes I2S 3/2 (full duplex) I2C 3 USART/UART 4/2 USB OTG FS Yes USB OTG HS Yes CAN 2 Camera interface GPIOs 12-bit ADC Number of channels 12-bit DAC Number of channels Maximum CPU frequency 1024 Yes General-purpose SPI / 1024 Yes Random number generator No 51 82 Yes 114 82 114 140 16 24 24 3 16 16 24 Yes 2 168 MHz 1.8 to 3.6 V(1) 11/154 Description Operating voltage STM32F407Zx 1024 Ethernet Communication interfaces STM32F407Vx System FSMC memory controller Timers STM32F405VG STM32F405xx, STM32F407xx Table 2. STM32F405xx and STM32F407xx: features and peripheral counts (continued) Peripherals STM32F405RG STM32F405ZG STM32F407Vx STM32F407Zx STM32F407Ix Ambient temperatures: -40 to +85 C /-40 to +105 C Operating temperatures Package STM32F405VG Junction temperature: -40 to + 125 C LQFP64 LQFP100 LQFP144 LQFP100 LQFP144 Description 12/154 Table 2. UFBGA176 LQFP176 1. VDD minimum value of 1.7 V is obtained when the device operates in the 0 to 70 C temperature range and PDR_ON is connected to VSS. Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx STM32F405xx, STM32F407xx 2.1 Description Full compatibility throughout the family The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle. The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F405xx and STM32F407xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x family remains simple as only a few pins are impacted. Figure 1, Figure 2, Figure 3, and Figure 4 give compatible board designs between the STM32F40x, STM32F2xxx, and STM32F10xxx families. Figure 1. Compatible board design between STM32F2xx and STM32F4xx: LQFP176 0$2?/. 6$$ 6 33 4WO RESISTORS CONNECTED TO 6 33 6 $$ OR .# FOR THE 34-&XX 6$$ OR 6 33 FOR THE 34-&XXXX -36 1. By default, PDR_ON (pin 171) should be connected to VDD. 2. Pin 171 is RFU for STM32F2xx. Doc ID 022152 Rev 1 13/154 Description STM32F405xx, STM32F407xx Figure 2. Compatible board design between STM32F1xx/STM32F2xx/ STM32F4xx: LQFP144 633 633 633 RESISTOR OR SOLDERING BRIDGE PRESENT FOR THE 34-&XXX CONFIGURATION NOT PRESENT IN THE 34-&XXXX CONFIGURATION 0$2?/. 633 6$$ 6 33 4WO RESISTORS CONNECTED TO 6$$ 633 FOR THE 34-&XXX 6$$ OR 6 33 FOR THE 34-&XXXX 6 33 6 $$ OR .# FOR THE 34-&XX 6 33 FOR 34-&XXX 6 $$ FOR 34-&XXXX 633 AIB 1. By default, PDR_ON (pin 143) should be connected to VDD. 2. Pin 143 is RFU for STM32F2xx. Figure 3. Compatible board design STM32F1xx/STM32F2xx/ STM32F4xx: LQFP100 633 633 633 0$2?/. 633 6$$ 6 33 4WO RESISTORS CONNECTED TO 6$$ 633 633 FOR THE 34-&XXX 6$$ OR 6 33 FOR THE 34-&XXXX 6 33 6 $$ OR .# FOR THE 34-&XX 1. By default, PDR_ON (pin 99) should be connected to VDD. 2. Pin 99 is RFU for STM32F2xx. 14/154 RESISTOR OR SOLDERING BRIDGE PRESENT FOR THE 34-&XXX CONFIGURATION NOT PRESENT IN THE 34-&XXXX CONFIGURATION Doc ID 022152 Rev 1 6 33 FOR 34-&XXX 6 $$ FOR 34-&XXXX AIB STM32F405xx, STM32F407xx Figure 4. Description Compatible board design between STM32F1xx/STM32F4xx: LQFP64 633 633 633 633 Doc ID 022152 Rev 1 RESISTOR OR SOLDERING BRIDGE PRESENT FOR THE 34-&XXX CONFIGURATION NOT PRESENT IN THE 34-&XXXX CONFIGURATION AI 15/154 Description STM32F405xx, STM32F407xx 2.2 Device overview Figure 5. STM32F40x block diagram %XTERNAL MEMORY CONTROLLER &3-# ##- DATA 2!- +" *4!' 37 32!- 032!- ./2 &LASH 0# #ARD !4! .!.$ &LASH $-! 32!- +" !(" -(Z &)&/ !( (" -(Z 3TREAMS $-! 32!- +" 6$$ 6$$! 0!;= 0";= '0)/ 0/24 ! '0)/ 0/24 " 0#;= '0)/ 0/24 # 0$;= '0)/ 0/24 $ 0%;= '0)/ 0/24 % 53" /4' &3 2# (3 0/2 2ESET 2# ,3 )NT 0,, 3UPPLY SUPERVISION 0/20$2 "/2 06$ 633 6#!0 6#!0 6$$! 633! .234 /3#?). /3#?/54 6"!4 TO 6 ,3 0#,+X 6"!4 84!, K(Z 24# '0)/ 0/24 ) ,3 0);= '0)/ 0/24 ( 6$$ TO 6 )7$' 3TANDBY INTERFACE '0)/ 0/24 ' &#,+ 0(;= '0)/ 0/24 & (#,+X 0&;= 84!, /3# -(Z 2ESET CLOCK -!.!'4 CONTROL $0 $3#, 3$! ).4. )$ 6"53 3/& 6$$ 6$$! 0';= (39.# 639.# 0)8#,+ $;= 0OWER MANAGMT 6OLTAGE REGULATOR 6 TO 6 6$$ &)&/ #AMERA INTERFACE 0(9 3TREAMS 2.' &)&/ $-! &)&/ 53" /4' (3 &LASH UP TO -" &)&/ 3 "53 %THERNET -!# $-! &)&/ 0(9 $0 $5,0) #+ $ $)2 340 .84 3#,3$! ).4. )$ 6"53 3/& #,+ .% ;= !;= $;= /%. 7%. .",;= ., .2%' .7!)4)/2$9 #$ .)/2$ )/72 ).4;= ).4. .))3 AS !& $ "53 !2- #ORTEX -& -(Z ) "53 &05 -)) OR 2-)) AS !& -$)/ AS !& !(" -05 .6)# %4- !24 !##%, #!#(% 42!#%#,+ 42!#%$;= !(" BUS MATRIX 3- .*4234 *4$) *4#+37#,+ *4$/37$ *4$/ !75 "ACKUP REGISTER /3#?). /3#?/54 24#?!& 24#?!& +" "+032!- 4)- B $-! !("!0" !("!0" CHANNELS %42 AS !& 4)- B CHANNELS %42 AS !& CHANNEL AS !& CHANNEL AS !& 3$)/ --# 4)- B 4)- 07- B 4)- 4)- B 4)- B 28 48 #+ #43 243 AS !& SMCARD 53!24 IR$! 28 48 #+ #43 243 AS !& SMCARD 53!24 IR$! -/3) -)3/ 3#+ .33 AS !& 30) 4)- 4)- B B 6$$! 6$$2%&?!$# ANALOG INPUTS COMMON TO THE !$#S ANALOG INPUTS COMMON TO THE !$# ANALOG INPUTS TO !$# 53!24 -"PS 4EMPERATURE SENSOR 6$$! !$# !$# !$# $!# )& )4& CHANNEL AS !& 53!24 28 48 #+ #43 243 AS !& 53!24 SMCARD IR$! 28 48 #+ #43 243 AS !& 5!24 28 48 AS !& 5!24 28 48 AS !& 30))3 -/3)3$ -)3/3$?EXT 3#+#+ .3373 -#+ AS !& 30))3 -/3)3$ -)3/3$?EXT 3#+#+ .3373 -#+ AS !& )#3-"53 3#, 3$! 3-"! AS !& )#3-"53 3#, 3$! 3-"! AS !& BX#!. BX#!. $!#?/54 AS !& 3#, 3$! 3-"! AS !& )#3-"53 $!# $!#?/54 AS !& CHANNEL AS !& SMCARD IR$! 77$' B CHANNELS AS !& B 4)- B 4)- 07- !0"!0" -(Z-(Z MAX COMPL CHANNELS 4)-?#(;=. CHANNELS 4)-?#(;= %42 "+). AS !& COMPL CHANNELS 4)-?#(;=. CHANNELS 4)-?#(;= %42 "+). AS !& CHANNELS AS !& 4)- !0" -(Z !0" -(Z $;= #-$ #+ AS !& B %84 )4 7+50 &)&/ !& CHANNELS %42 AS !& B 4)- &)&/ $-! CHANNELS %42 AS !& B 4)- 48 28 48 28 -36 1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 84 MHz. 16/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 2.2.1 Description ARM(R) CortexTM-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software. Figure 5 shows the general block diagram of the STM32F40x family. Note: Cortex-M4F is binary compatible with Cortex-M3. 2.2.2 Adaptive real-time memory accelerator (ART AcceleratorTM) The ART AcceleratorTM is a memory accelerator which is optimized for STM32 industrystandard ARM(R) CortexTM-M4F processors. It balances the inherent performance advantage of the ARM Cortex-M4F over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz. 2.2.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.2.4 Embedded Flash memory The STM32F40x devices embed a Flash memory of 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data. Doc ID 022152 Rev 1 17/154 Description 2.2.5 STM32F405xx, STM32F407xx CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 2.2.6 Embedded SRAM All STM32F40x products embed: Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 2.2.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. 18/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Multi-AHB matrix 3 3 3 53"?(3?- -!# 53" /4' %THERNET (3 %4(%2.%4?- $-!?0 $-!?-%- $-!?-%- 3 '0 $-! 3 3 - )#/$% - $#/$% !##%, 3 '0 $-! $-!?0) ) BUS 3 3 BUS !2#ORTEX -& +BYTE ##- DATA 2!- $ BUS Figure 6. Description &LASH MEMORY - 32! +BYTE - 32! +BYTE !(" PERIPH !(" PERIPH - - - &3-# 3TATIC -EM#TL !0" !0" "US MATRIX 3 AI 2.2.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. Doc ID 022152 Rev 1 19/154 Description STM32F405xx, STM32F407xx The DMA can be used with the main peripherals: 2.2.9 SPI and I2S I2C USART General-purpose, basic and advanced-control timers TIMx DAC SDIO Camera interface (DCMI) ADC. Flexible static memory controller (FSMC) The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash. Functionality overview: Write FIFO Maximum frequency (fCLK) for external access is 60 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 2.2.10 Nested vectored interrupt controller (NVIC) The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 87 maskable interrupt channels plus the 16 interrupt lines of the CortexTM-M4F. Closely coupled NVIC gives low-latency interrupt processing Interrupt entry vector table address passed directly to the core Allows early processing of interrupts Processing of late arriving, higher-priority interrupts Support tail chaining Processor state automatically saved Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 2.2.11 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a 20/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines. 2.2.12 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select the system clock between the RC oscillator and an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 2.2.13 Boot modes At startup, boot pins are used to select one out of three boot options: Boot from user Flash Boot from system memory Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB6), USB OTG FS in Device mode (PA9/PA11/PA12) through DFU (device firmware upgrade). 2.2.14 Power supply schemes VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 18: Power supply scheme for more details. Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 C temperature range with PDR_ON connected to VSS. Doc ID 022152 Rev 1 21/154 Description 2.2.15 STM32F405xx, STM32F407xx Power supply supervisor The power supply supervisor is enabled by holding PDR_ON high. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. All packages, except the LQFP64, offer the internal reset is controlled through the PDR_ON signal. 2.2.16 Voltage regulator The regulator has eight operating modes: Regulator ON/internal reset ON - Main regulator mode (MR) - Low power regulator (LPR) - Power-down Regulator ON/internal reset OFF - Main regulator mode (MR) - Low power regulator (LPR) - Power-down Regulator OFF/internal reset ON Regulator OFF/internal reset OFF Regulator ON Regulator ON/internal reset ON The regulator ON/internal reset ON mode is always enabled on LQFP64 package. On LQFP100 and LQFP144 packages, this mode is activated by setting PDR_ON to VDD. On UFBGA176 package, the internal regulator must be activated by connecting BYPASS_REG to VSS, and PDR_ON to VDD. On LQFP176 packages, the internal reset must be activated by connecting PDR_ON to VDD. 22/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description VDD minimum value is 1.8 V(a). There are three low-power modes: - MR is used in the nominal regulation mode (Run) - LPR is used in the Stop modes - Power-down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost). Regulator ON/internal reset OFF The regulator ON with internal reset OFF mode is not available on LQFP64 package. On LQFP100 and LQFP144 packages, the internal reset is controlled by setting PDR_ON pin to VSS. On UFBGA176 package, the internal regulator must be activated by connecting BYPASS_REG to VSS, and PDR_ON to VSS. On LQFP176 packages, the internal reset must be activated by connecting PDR_ON to VSS. The NRST pin should be controlled by an external reset controller to keep the device under reset when VDD is below 1.8 V (see Figure 7). Figure 7. Regulator ON/internal reset OFF 6$$ 0$2 6 TIME .234 TIME -36 a. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 C temperature range and PDR_ON is connected to VSS. Doc ID 022152 Rev 1 23/154 Description STM32F405xx, STM32F407xx Regulator OFF This mode allows to power the device as soon as VDD reaches 1.8 V. Regulator OFF/internal reset ON This mode is available only on UFBGA package. It is activated by setting BYPASS_REG and PDR_ON pins to VDD. The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD. The following conditions must be respected: - VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. - If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to reach 1.8 V(a), then PA0 should be connected to the NRST pin (see Figure 8). Otherwise, PA0 should be asserted low externally during POR until VDD reaches 1.8 V (see Figure 9). - If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.7 V, then a reset must be asserted on PA0 pin. In regulator OFF/internal reset ON mode, PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic which is not reset by the NRST pin, when the internal voltage regulator in off. Regulator OFF/internal reset OFF This mode is available only on UFBGA package. It is activated by setting BYPASS_REG pin to VDD and by applying an inverted reset signal to PDR_ON, and allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD. The following conditions must be respected: 24/154 - VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. - PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V and until VDD reaches 1.8 V (see Figure 8). - NRST should be controlled by an external reset controller to keep the device under reset when VDD is below 1.8 V (see Figure 9). Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Figure 8. Description Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 6$$ 0$2 6 6#!0? 6 #!0? 6 6 TIME 0! TIED TO .234 .234 TIME AIB 1. This figure is valid both whatever the internal reset mode (on or off). Figure 9. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization 6$$ 0$2 6 6#!0? 6 #!0? 6 6 TIME 0! ASSERTED EXTERNALLY .234 TIME 1. This figure is valid both whatever the internal reset mode (on or off). 2.2.17 Real-time clock (RTC), backup SRAM and backup registers The backup domain of the STM32F405xx and STM32F407xx includes: The real-time clock (RTC) 4 Kbytes of backup SRAM 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. Doc ID 022152 Rev 1 25/154 Description STM32F405xx, STM32F407xx It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 s to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 2.2.18: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 2.2.18 Low-power modes The STM32F405xx and STM32F407xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup). Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering 26/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. Note: 2.2.19 1 When in Standby mode, only an RTC alarm/event or an external reset can wake up the device provided VDD is supplied by an external battery. VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. 2.2.20 Timers and watchdogs The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 3 compares the features of the advanced-control, general-purpose and basic timers. Doc ID 022152 Rev 1 27/154 Description Table 3. STM32F405xx, STM32F407xx Timer feature comparison Counter Counter Prescaler Timer type Timer resolution type factor Max Max DMA Capture/ Complementary interface timer request compare output clock clock generation channels (MHz) (MHz) Advanced- TIM1, control TIM8 16-bit Up, Any integer Down, between 1 Up/down and 65536 Yes 4 Yes 84 168 TIM2, TIM5 32-bit Up, Any integer Down, between 1 Up/down and 65536 Yes 4 No 42 84 TIM3, TIM4 16-bit Up, Any integer Down, between 1 Up/down and 65536 Yes 4 No 42 84 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 84 168 TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 84 168 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 42 84 TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 42 84 TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 42 84 General purpose Basic Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: Input capture Output compare PWM generation (edge- or center-aligned modes) One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 28/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F40x devices (see Table 3 for differences). TIM2, TIM3, TIM4, TIM5 The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. Doc ID 022152 Rev 1 29/154 Description STM32F405xx, STM32F407xx SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: 2.2.21 A 24-bit downcounter Autoreload capability Maskable system interrupt generation when the counter reaches 0 Programmable clock source. Inter-integrated circuit interface (IC) Up to three IC bus interfaces can operate in multimaster and slave modes. They can support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.2.22 Universal synchronous/asynchronous receiver transmitters (USART) The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 bit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. 30/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 4. Description USART feature comparison USART Standard Modem SPI LIN irDA name features (RTS/CTS) master Smartcard (ISO 7816) Max. baud rate Max. baud rate in Mbit/s in Mbit/s (oversampling (oversampling by 16) by 8) APB mapping USART1 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) USART2 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) USART3 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) USART4 X - - - - - 2.62 5.25 APB1 (max. 42 MHz) USART5 X - - - - - 2.62 5.25 APB1 (max. 42 MHz) USART6 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) 2.2.23 Serial peripheral interface (SPI) The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 37.5 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 2.2.24 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. Doc ID 022152 Rev 1 31/154 Description 2.2.25 STM32F405xx, STM32F407xx Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output). 2.2.26 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 2.2.27 Ethernet MAC interface with dedicated DMA and IEEE 1588 support Peripheral available only on the STM32F407xx devices. The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the STM32F407xx. 32/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description The STM32F407xx includes the following features: Supports 10 and 100 Mbit/s rates Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F46x reference manual for details) Tagged MAC frame support (VLAN support) Half-duplex (CSMA/CD) and full-duplex operation MAC control sublayer (control frames) support 32-bit CRC generation and removal Several address filtering modes for physical and multicast address (multicast and group addresses) 32-bit status code for each transmitted or received frame Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input Triggers interrupt when system time becomes greater than target time Doc ID 022152 Rev 1 33/154 Description 2.2.28 STM32F405xx, STM32F407xx Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 2.2.29 Universal serial bus on-the-go full-speed (OTG_FS) The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: 2.2.30 Combined Rx and Tx FIFO size of 320 x 35 bits with dynamic FIFO sizing Supports the session request protocol (SRP) and host negotiation protocol (HNP) 4 bidirectional endpoints 8 host channels with periodic OUT support HNP/SNP/IP inside (no need for any external resistor) For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Internal FS OTG PHY support External FS OTG PHY support through an I2C connection Universal serial bus on-the-go high-speed (OTG_HS) The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. 34/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description The major features are: 2.2.31 Combined Rx and Tx FIFO size of 1 Kbit x 35 with dynamic FIFO sizing Supports the session request protocol (SRP) and host negotiation protocol (HNP) 6 bidirectional endpoints 12 host channels with periodic OUT support Internal FS OTG PHY support External FS OTG PHY support through an I2C connection External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. Internal USB DMA HNP/SNP/IP inside (no need for any external resistor) for OTG/Host modes, a power switch is needed in case bus-powered devices are connected Digital camera interface (DCMI) The camera interface is not available in STM32F405xx devices. STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features: 2.2.32 Programmable polarity for the input pixel clock and synchronization signals Parallel data communication can be 8-, 10-, 12- or 14-bit Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) Supports continuous mode or snapshot (a single frame) mode Capability to automatically crop the image Random number generator (RNG) All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 2.2.33 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 84 MHz. Doc ID 022152 Rev 1 35/154 Description 2.2.34 STM32F405xx, STM32F407xx Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: Simultaneous sample and hold Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 2.2.35 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 2.2.36 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: two DAC converters: one for each output channel 8-bit or 12-bit monotonic output left or right data alignment in 12-bit mode synchronized update capability noise-wave generation triangular-wave generation dual DAC channel independent or simultaneous conversions DMA capability for each channel external triggers for conversion input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 2.2.37 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 36/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Description Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.2.38 Embedded Trace MacrocellTM The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F40x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. Doc ID 022152 Rev 1 37/154 Pinouts and pin description 3 STM32F405xx, STM32F407xx Pinouts and pin description 6$$ 633 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0# 0# 0# 0! 0! Figure 10. STM32F40x LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 ,1&0 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6$$ 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0" 0" 0" 0" 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0" 0" 6#!0? 6$$ 6"!4 0# 0# 0# 0( 0( .234 0# 0# 0# 0# 633! 6$$! 0! 0! 0! AIB 38/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Pinouts and pin description 6$$ 0$2?/. 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 11. STM32F40x LQFP100 pinout ,1&0 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 6#!0? 6$$ 0% 0% 0% 0% 0% 6"!4 0# 0# 0# 633 6$$ 0( 0( .234 0# 0# 0# 0# 6$$ 633! 62%& 6$$! 0! 0! 0! AIB Doc ID 022152 Rev 1 39/154 Pinouts and pin description STM32F405xx, STM32F407xx 6$$ 0$2?/. 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0' 6$$ 633 0' 0' 0' 0' 0' 0' 0$ 0$ 6$$ 633 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 12. STM32F40x LQFP144 pinout ,1&0 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 6$$ 633 0' 0' 0' 0' 0' 0' 0' 0$ 0$ 6$$ 633 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 40/154 Doc ID 022152 Rev 1 6#!0? 6$$ 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0& 0& 633 6$$ 0& 0& 0& 0' 0' 0% 0% 0% 633 6$$ 0% 0% 0% 0% 0% 0% 0" 0" 0% 0% 0% 0% 0% 6"!4 0# 0# 0# 0& 0& 0& 0& 0& 0& 633 6$$ 0& 0& 0& 0& 0& 0( 0( .234 0# 0# 0# 0# 6$$ 633! 62%& 6$$! 0! 0! 0! AIB STM32F405xx, STM32F407xx Pinouts and pin description 0$2?/. 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0' 6$$ 633 0' 0' 0' 0' 0' 0' 0$ 0$ 6$$ 633 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! 6$$ 633 0) 0) 0) 0) 0) 0) 6 $$ Figure 13. STM32F40x LQFP176 pinout 0) 0) 0( 0( 0( 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 6$$ 633 0' 0' 0' 0' 0' 0' 0' 0$ 0$ 6$$ 633 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 6$$ 633 0( Doc ID 022152 Rev 1 6#!0? 6$$ 0( 0( 0( 0( 0( 0( 633 6$$ 0& 0& 0& 0' 0' 0% 0% 0% 633 6$$ 0% 0% 0% 0% 0% 0% 0" 0" ,1&0 0( 0( 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0& 0& 0% 0% 0% 0% 0% 6"!4 0) 0# 0# 0#4 0) 0) 0) 633 6$$ 0& 0& 0& 0& 0& 0& 633 6$$ 0& 0& 0& 0& 0& 0( 0( .234 0# 0# 0# 0# 6$$ 633! 62%& 6$$! 0! 0! 0! 0( 0( -36 41/154 Pinouts and pin description STM32F405xx, STM32F407xx Figure 14. STM32F40x UFBGA176 ballout ! 0% 0% 0% 0% 0" 0" 0' 0' 0" 0" 0$ 0# 0! 0! 0! " 0% 0% 0% 0" 0" 0" 0' 0' 0' 0' 0$ 0$ 0# 0# 0! # 6"!4 0) 0) 0) 6$$ 0$2?/. 6$$ 6$$ 6$$ 0' 0$ 0$ 0) 0) 0! $ 0# 0) 0) 0) 633 "//4 633 633 633 0$ 0$ 0$ 0( 0) 0! % 0# 0& 0) 0) 0( 0( 0) 0! & 0# 633 6$$ 0( 633 633 633 633 633 633 6#!0? 0# 0! ' 0( 633 6$$ 0( 633 633 633 633 633 633 6$$ 0# 0# ( 0( 0& 0& 0( 633 633 633 633 633 633 6$$ 0' 0# * .234 0& 0& 0( 633 633 633 633 633 6$$ 6$$ 0' 0' + 0& 0& 0& 6$$ 633 633 633 633 633 0( 0' 0' 0' , 0& 0& 0& "90!33? 2%' 0( 0( 0$ 0' - 633! 0# 0# 0# 0# 0" 0' 633 633 0( 0( 0( 0$ 0$ . 62%& 0! 0! 0! 0# 0& 0' 6$$ 6$$ 6$$ 0% 0( 0$ 0$ 0$ 0 62%& 0! 0! 0! 0# 0& 0& 0% 0% 0% 0% 0" 0" 0$ 0$ 2 6$$! 0! 0! 0" 0" 0& 0& 0% 0% 0% 0% 0" 0" 0" 0" 6#!0? AIB 42/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 5. Pinouts and pin description STM32F40x pin and ball definitions LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pin name I / O Level Pins Function(1) after reset - 1 1 A2 1 PE2 FT PE2 TRACECLK/ FSMC_A23 / ETH_MII_TXD3 - 2 2 A1 2 PE3 FT PE3 TRACED0/FSMC_A19 - 3 3 B1 3 PE4 FT PE4 TRACED1/FSMC_A20 / DCMI_D4 - 4 4 B2 4 PE5 FT PE5 TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 FT PE6 TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 - 5 5 B3 5 PE6 1 6 6 C1 6 VBAT - - - D2 7 PI8(3) 8 PC13(3) 2 7 7 D1 (3) PC14 -OSC32_IN Alternate functions(2) VBAT (5) FT PI8(4) RTC_AF2 FT PC13(4) RTC_AF1 (4) 3 8 8 E1 9 FT PC14 4 9 9 F1 10 PC15(3)-OSC32_OUT(5) FT PC15(4) OSC32_OUT - - - D3 11 PI9 FT PI9 CAN1_RX - - - E3 12 PI10 FT PI10 ETH_MII_RX_ER - - - E4 13 PI11 FT PI11 OTG_HS_ULPI_DIR - - - F2 14 VSS VSS - - - F3 15 VDD VDD - - 10 E2 16 PF0 FT PF0 FSMC_A0 / I2C2_SDA - - 11 H3 17 PF1 FT PF1 FSMC_A1 / I2C2_SCL - - 12 H2 18 PF2 FT PF2 FSMC_A2 / I2C2_SMBA (5) OSC32_IN - - 13 J2 19 PF3 FT PF3 FSMC_A3/ADC3_IN9 - - 14 J3 20 PF4(5) FT PF4 FSMC_A4/ADC3_IN14 - - 15 K3 21 PF5(5) FT PF5 - 10 16 G2 22 VSS VSS - 11 17 G3 23 VDD VDD (5) FSMC_A5/ADC3_IN15 - - 18 K2 24 PF6 FT PF6 TIM10_CH1 / FSMC_NIORD/ADC3_IN4 - - 19 K1 25 PF7(5) FT PF7 TIM11_CH1/FSMC_NREG/ADC3_IN5 26 PF8(5) FT PF8 TIM13_CH1 / FSMC_NIOWR/ADC3_IN6 27 (5) FT PF9 TIM14_CH1 / FSMC_CD/ADC3_IN7 FT PF10 FSMC_INTR FT PH0 OSC_IN FT PH1 OSC_OUT - - 20 21 L3 L2 - - 22 L1 28 5 12 23 G1 29 6 13 24 7 14 8 15 PF9 PF10 (5) PH0(5)-OSC_IN (5) PH1 -OSC_OUT H1 30 25 J1 31 NRST 26 M2 32 PC0(5) FT PC0 OTG_HS_ULPI_STP/ADC123_IN10 (5) NRST 9 16 27 M3 33 PC1 FT PC1 ETH_MDC/ADC123_IN11 10 17 28 M4 34 PC2(5) FT PC2 SPI2_MISO / OTG_HS_ULPI_DIR / TH_MII_TXD2 /I2S2ext_SD/ADC123_IN12 11 18 29 M5 35 PC3(5) FT PC3 SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK/ADC123_IN13 Doc ID 022152 Rev 1 43/154 Pinouts and pin description STM32F40x pin and ball definitions (continued) LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pins I / O Level Table 5. STM32F405xx, STM32F407xx Pin name - 19 30 G3 36 VDD VDD 12 20 31 M1 37 VSSA VSSA Function(1) after reset Alternate functions(2) - - - N1 - VREF- VREF- - 21 32 P1 38 VREF+ VREF+ 13 22 33 R1 39 VDDA VDDA 14 23 34 N3 40 PA0(6)-WKUP(5) FT PA0-WKUP USART2_CTS/ USART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR/ADC123_IN0/WKUP 15 24 35 N2 41 PA1(5) FT PA1 USART2_RTS / USART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIMM2_CH2/ADC123_IN1 16 25 36 P2 42 PA2(5) FT PA2 USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ADC123_IN2 - - - F4 43 PH2 FT PH2 ETH_MII_CRS - - - G4 44 PH3 FT PH3 ETH_MII_COL - - - H4 45 PH4 FT PH4 I2C2_SCL / OTG_HS_ULPI_NXT - - - J4 46 PH5 FT PH5 I2C2_SDA 17 26 37 R2 47 PA3(5) FT PA3 USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 / OTG_HS_ULPI_D0 / ETH_MII_COL/ADC123_IN3 18 27 38 - 48 VSS_4 VSS_4 L4 - BYPASS_REG BYPASS_ REG VDD 19 28 39 K4 49 VDD 20 29 40 N4 50 PA4(5) FT PA4 SPI1_NSS / SPI3_NSS / USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS/ADC12_IN4 /DAC1_OUT 21 30 41 P4 51 PA5(5) FT PA5 SPI1_SCK/ OTG_HS_ULPI_CK / / TIM2_CH1_ETR/ TIM8_CHIN/ADC12_IN5/DAC2_OUT 22 31 42 P3 52 PA6(5) FT PA6 SPI1_MISO / TIM8_BKIN/TIM13_CH1 / DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN/ADC12_IN6 23 32 43 R3 53 PA7(5) FT PA7 SPI1_MOSI/ TIM8_CH1N / TIM14_CH1 TIM3_CH2/ ETH_MII_RX_DV / TIM1_CH1N / RMII_CRS_DV/ADC12_IN7 24 33 44 N5 54 PC4(5) FT PC4 ETH_RMII_RX_D0 / ETH_MII_RX_D0/ ADC12_IN14 25 34 45 P5 55 PC5(5) FT PC5 ETH_RMII_RX_D1 / ETH_MII_RX_D1/ ADC12_IN15 26 35 46 R5 56 PB0(5) FT PB0 TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/ ETH_MII_RXD2 / TIM1_CH2N/ADC12_IN8 27 36 47 R4 57 PB1(5) FT PB1 TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / OTG_HS_INTN / TIM1_CH3N/ADC12_IN9 28 37 48 M6 58 PB2 FT PB2-BOOT1 - - 49 R6 59 PF11 FT PF11 DCMI_12 - - 50 P6 60 PF12 FT PF12 FSMC_A6 - - 51 M8 61 VSS 44/154 VSS Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx STM32F40x pin and ball definitions (continued) LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pins I / O Level Table 5. Pinouts and pin description Pin name - - 52 N8 62 VDD - - 53 N6 63 PF13 - - 54 R7 64 PF14 FT PF14 FSMC_A8 - - 55 P7 65 PF15 FT PF15 FSMC_A9 - - 56 N7 66 PG0 FT PG0 FSMC_A10 - - 57 M7 67 PG1 FT PG1 FSMC_A11 - 38 58 R8 68 PE7 FT PE7 FSMC_D4/TIM1_ETR - 39 59 P8 69 PE8 FT PE8 FSMC_D5/ TIM1_CH1N - 40 60 P9 70 PE9 FT PE9 FSMC_D6/TIM1_CH1 Function(1) after reset Alternate functions(2) VDD FT PF13 FSMC_A7 - - 61 M9 71 VSS VSS - - 62 N9 72 VDD VDD - 41 63 R9 73 PE10 FT PE10 FSMC_D7/TIM1_CH2N - 42 64 P10 74 PE11 FT PE11 FSMC_D8/TIM1_CH2 - 43 65 R10 75 PE12 FT PE12 FSMC_D9/TIM1_CH3N - 44 66 N11 76 PE13 FT PE13 FSMC_D10/TIM1_CH3 - 45 67 P11 77 PE14 FT PE14 FSMC_D11/TIM1_CH4 - 46 68 R11 78 PE15 FT PE15 FSMC_D12/TIM1_BKIN 29 47 69 R12 79 PB10 FT PB10 SPI2_SCK / I2S2_CK / I2C2_SCL/ USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / OTG_HS_SCL / TIM2_CH3 30 48 70 R13 80 PB11 FT PB11 I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / OTG_HS_SDA / TIM2_CH4 31 49 71 M10 81 VCAP_1 32 50 72 N10 82 VDD - - - M11 83 PH6 FT PH6 I2C2_SMBA / TIM12_CH1 / ETH_MII_RXD2 - - - N12 84 PH7 FT PH7 I2C3_SCL / ETH_MII_RXD3 - - - M12 85 PH8 FT PH8 I2C3_SDA / DCMI_HSYNC - - - M13 86 PH9 FT PH9 I2C3_SMBA / TIM12_CH2/ DCMI_D0 - - - L13 87 PH10 FT PH10 TIM5_CH1_ETR / DCMI_D1 - - - L12 88 PH11 FT PH11 TIM5_CH2 / DCMI_D2 - - - K12 89 PH12 FT PH12 TIM5_CH3 / DCMI_D3 - - - H12 90 VSS VSS - - - J12 91 VDD VDD 33 51 73 P12 92 PB12 FT PB12 SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID 34 52 74 P13 93 PB13 FT PB13 SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ OTG_HS_VBUS VCAP_1 VDD Doc ID 022152 Rev 1 45/154 Pinouts and pin description Table 5. STM32F405xx, STM32F407xx STM32F40x pin and ball definitions (continued) LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pin name I / O Level Pins Function(1) after reset 35 53 75 R14 94 PB14 FT PB14 SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DMUSART3_RTS / TIM8_CH2N/I2S2ext_SD 36 54 76 R15 95 PB15 FT PB15 SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP - 55 77 P15 96 PD8 FT PD8 FSMC_D13 / USART3_TX - 56 78 P14 97 PD9 FT PD9 FSMC_D14 / USART3_RX - 57 79 N15 98 PD10 FT PD10 FSMC_D15 / USART3_CK - 58 80 N14 99 PD11 FT PD11 FSMC_A16/USART3_CTS Alternate functions(2) - 59 81 N13 100 PD12 FT PD12 FSMC_A17/TIM4_CH1 / USART3_RTS - 60 82 M15 101 PD13 FT PD13 FSMC_A18/TIM4_CH2 - - 83 - 102 VSS_8 VSS_8 - - 84 J13 103 VDD - 61 85 M14 104 PD14 FT PD14 FSMC_D0/TIM4_CH3 - 62 86 L14 105 PD15 FT PD15 FSMC_D1/TIM4_CH4 - - 87 L15 106 PG2 FT PG2 FSMC_A12 - - 88 K15 107 PG3 FT PG3 FSMC_A13 - - 89 K14 108 PG4 FT PG4 FSMC_A14 - - 90 K13 109 PG5 FT PG5 FSMC_A15 - - 91 J15 110 PG6 FT PG6 FSMC_INT2 - - 92 J14 111 PG7 FT PG7 FSMC_INT3 /USART6_CK - - 93 H14 112 PG8 FT PG8 USART6_RTS / ETH_PPS_OUT - - 94 G12 113 VSS VSS - - 95 H13 114 VDD VDD 37 63 96 H15 115 PC6 FT PC6 I2S2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1 38 64 97 G15 116 PC7 FT PC7 I2S3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2 39 65 98 G14 117 PC8 FT PC8 TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2 40 66 99 F14 118 PC9 FT PC9 I2S_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4 41 67 100 F15 119 PA8 FT PA8 MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF 42 68 101 E15 120 PA9 FT PA9 USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/OTG_FS_VBUS 43 69 102 D15 121 PA10 FT PA10 USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1 44 70 103 C15 122 PA11 FT PA11 USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM 45 71 104 B15 123 PA12 FT PA12 USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP 46 72 105 A15 124 PA13 FT JTMS-SWDIO JTMS-SWDIO 47 73 106 F13 125 VCAP_2 VCAP_2 - 74 107 F12 126 VSS VSS 46/154 VDD Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx STM32F40x pin and ball definitions (continued) LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pins Pin name 48 75 108 G13 127 VDD - - - E12 128 PH13 I / O Level Table 5. Pinouts and pin description Function(1) after reset Alternate functions(2) VDD FT PH13 TIM8_CH1N / CAN1_TX - - - E13 129 PH14 FT PH14 TIM8_CH2N / DCMI_D4 - - - D13 130 PH15 FT PH15 TIM8_CH3N / DCMI_D11 - - - E14 131 PI0 FT PI0 TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13 - - - D14 132 PI1 FT PI1 SPI2_SCK / I2S2_CK / DCMI_D8 - - - C14 133 PI2 FT PI2 TIM8_CH4 /SPI2_MISO / DCMI_D9 / I2S2ext_SD - - - C13 134 PI3 FT PI3 TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10 - - - D9 135 VSS VSS - - - C9 136 VDD 49 76 109 A14 137 PA14 FT JTCK-SWCLK VDD JTCK-SWCLK 50 77 110 A13 138 PA15 FT JTDI JTDI/ SPI3_NSS/ I2S3_WS/TIM2_CH1_ETR / SPI1_NSS 51 78 111 B14 139 PC10 FT PC10 SPI3_SCK / I2S3_CK/ UART4_TX/SDIO_D2 / DCMI_D8 / USART3_TX 52 79 112 B13 140 PC11 FT PC11 UART4_RX/ SPI3_MISO / SDIO_D3 / DCMI_D4/USART3_RX / I2S3ext_SD 53 80 113 A12 141 PC12 FT PC12 UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI / I2S3_SD / USART3_CK - 81 114 B12 142 PD0 FT PD0 FSMC_D2/CAN1_RX - 82 115 C12 143 PD1 FT PD1 FSMC_D3 / CAN1_TX 54 83 116 D12 144 PD2 FT PD2 TIM3_ETR/UART5_RX SDIO_CMD / DCMI_D11 - 84 117 D11 145 PD3 FT PD3 FSMC_CLK/USART2_CTS - 85 118 D10 146 PD4 FT PD4 FSMC_NOE/USART2_RTS - 86 119 C11 147 PD5 FT PD5 FSMC_NWE/USART2_TX - - 120 D8 148 VSS VSS - - 121 C8 149 VDD VDD - 87 122 B11 150 PD6 FT PD6 FSMC_NWAIT/USART2_RX - 88 123 A11 151 PD7 FT PD7 USART2_CK/FSMC_NE1/FSMC_NCE2 - - 124 C10 152 PG9 FT PG9 USART6_RX / FSMC_NE2/ FSMC_NCE3 - - 125 B10 153 PG10 FT PG10 FSMC_NCE4_1/ FSMC_NE3 - - 126 B9 154 PG11 FT PG11 FSMC_NCE4_2 / ETH_MII_TX_EN/ ETH _RMII_TX_EN - - 127 B8 155 PG12 FT PG12 FSMC_NE4 / USART6_RTS - - 128 A8 156 PG13 FT PG13 FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ETH_RMII_TXD0 - - 129 A7 157 PG14 FT PG14 FSMC_A25 / USART6_TX /ETH_MII_TXD1/ETH_RMII_TXD1 - - 130 D7 158 VSS VSS - - 131 C7 159 VDD VDD Doc ID 022152 Rev 1 47/154 Pinouts and pin description Table 5. STM32F405xx, STM32F407xx STM32F40x pin and ball definitions (continued) LQFP64 LQFP100 LQFP144 UFBGA176 LQFP176 Pin name I / O Level Pins Function(1) after reset - - 132 B7 160 PG15 FT PG15 USART6_CTS / DCMI_D13 55 89 133 A10 161 PB3 FT JTDO/ TRACESWO JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCK 56 90 134 A9 162 PB4 FT NJTRST NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO / I2S3ext_SD 57 91 135 A6 163 PB5 FT PB5 I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / ETH_PPS_OUT/TIM3_CH2 / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SD 58 92 136 B6 164 PB6 FT PB6 I2C1_SCL/ TIM4_CH1 / CAN2_TX /OTG_FS_INTN / DCMI_D5/USART1_TX 59 93 137 B5 165 PB7 FT PB7 I2C1_SDA / FSMC_NL / DCMI_VSYNC / USART1_RX/ TIM4_CH2 60 94 138 D6 166 BOOT0 Alternate functions(2) BOOT0 VPP 61 95 139 A5 167 PB8 FT PB8 TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 / OTG_FS_SCL/ ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX 62 96 140 B4 168 PB9 FT PB9 SPI2_NSS/ I2S2_WS / TIM4_CH4/ TIM11_CH1/ OTG_FS_SDA/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX - 97 141 A4 169 PE0 FT PE0 TIM4_ETR / FSMC_NBL0 / DCMI_D2 - 98 142 A3 170 PE1 FT PE1 FSMC_NBL1 / DCMI_D3 63 - - D5 - VSS_3 VSS_3 - 99 143 C6 171 PDR_ON PDR_ON 100 144 64 C5 172 VDD - - - D4 173 PI4 FT PI4 TIM8_BKIN / DCMI_D5 - - - C4 174 PI5 FT PI5 TIM8_CH1 / DCMI_VSYNC - - - C3 175 PI6 FT PI6 TIM8_CH2 / DCMI_D6 - - - C2 176 PI7 FT PI7 TIM8_CH3 / DCMI_D7 VDD 1. Function availability depends on the chosen device. 2. The functions in bold are remapped through peripheral registers. 3. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F46x reference manual, available from the STMicroelectronics website: www.st.com. 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 6. If the device is delivered in an UFBGA176 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low). 48/154 Doc ID 022152 Rev 1 Alternate function mapping AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 USART2_CTS UART4_TX ETH_MII_CRS UART4_RX ETH_MII _RX_CLK ETH_RMII _REF_CLK EVENTOUT ETH_MDIO EVENTOUT Port SYS PA0 TIM1/2 TIM3/4/5 TIM8/9/10/11 TIM2_CH1 TIM2_ETR TIM 5_CH1 TIM8_ETR PA1 TIM2_CH2 TIM5_CH2 PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_RTS PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 AF9 CAN1/CAN2/ OTG_FS/ OTG_HS TIM12/13/14 USART2_TX USART2_RX PA4 SPI1_NSS SPI3_NSS I2S3_WS OTG_HS_ULPI_D0 AF12 AF13 ETH FSMC/SDIO/ OTG_FS DCMI TIM8_CH1N SPI1_SCK PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 AF014 AF15 EVENTOUT ETH _MII_COL EVENTOUT OTG_HS_SOF TIM2_CH1 TIM2_ETR MCO1 AF11 USART2_CK PA5 PA8 AF10 DCMI_HSYNC OTG_HS_ULPI_CK EVENTOUT EVENTOUT DCMI_PIXCK ETH_MII _RX_DV ETH_RMII _CRS_DV EVENTOUT EVENTOUT Doc ID 022152 Rev 1 TIM1_CH1 I2C3_SCL USART1_CK PA9 TIM1_CH2 I2C3_SMBA USART1_TX PA10 TIM1_CH3 USART1_RX PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT PA13 JTMS-SWDIO PA14 JTCK-SWCLK PA15 JTDI OTG_FS_SOF EVENTOUT OTG_FS_ID DCMI_D0 EVENTOUT DCMI_D1 EVENTOUT EVENTOUT EVENTOUT TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI3_NSS/ I2S3S_WS EVENTOUT PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_D1 ETH _MII_RXD2 PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_D2 ETH _MII_RXD3 EVENTOUT OTG_HS_INTN EVENTOUT PB2 EVENTOUT PB3 JTDO/ TRACESWO PB4 JTRST SPI1_MISO SPI3_MISO I2C1_SMBA SPI1_MOSI SPI3_MOSI I2S3_SD I2S2_WS TIM3_CH1 TIM3_CH2 PB6 TIM4_CH1 I2C1_SCL PB7 TIM4_CH2 I2C1_SDA PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA TIM2_CH3 I2C2_SCL 49/154 PB11 TIM2_CH4 I2C2_SDA PB12 TIM1_BKIN I2C2_SMBA PB13 TIM1_CH1N PB14 TIM1_CH2N TIM8_CH2N EVENTOUT I2S3ext_SD USART1_TX EVENTOUT CAN2_RX OTG_HS_ULPI_D7 CAN2_TX OTG_FS_INTN ETH _PPS_OUT USART1_RX SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK CAN1_RX OTG_FS_SCL CAN1_TX OTG_FS_SDA USART3_TX OTG_HS_ULPI_D3 USART3_RX SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK SPI2_MISO I2S2ext_SD OTG_HS_ULPI_D4 USART3_CK CAN2_RX OTG_HS_ULPI_D5 USART3_CTS CAN2_TX OTG_HS_ULPI_D6 USART3_RTS TIM12_CH1 ETH _MII_TXD3 ETH_ MII_RX_ER ETH _MII_TX_EN ETH _RMII_TX_EN ETH _MII_TXD0 ETH _RMII_TXD0 ETH _MII_TXD1 ETH _RMII_TXD1 DCMI_D10 EVENTOUT DCMI_D5 EVENTOUT FSMC_NL DCMI_VSYNC EVENTOUT SDIO_D4 DCMI_D6 EVENTOUT SDIO_D5 DCMI_D7 EVENTOUT OTG_HS_SCL EVENTOUT OTG_HS_SDA EVENTOUT OTG_HS_ID EVENTOUT EVENTOUT OTG_HS_DM EVENTOUT Pinouts and pin description SPI1_SCK SPI3_SCK I2S3_CK TIM2_CH2 PB5 PB10 STM32F405xx, STM32F407xx Table 6. Alternate function mapping (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 Port PB15 SYS TIM1/2 RTC_50Hz TIM1_CH3N TIM3/4/5 TIM8/9/10/11 SPI2_MOSI I2S2_SD TIM8_CH3N AF9 AF10 CAN1/CAN2/ OTG_FS/ OTG_HS TIM12/13/14 AF12 AF13 ETH FSMC/SDIO/ OTG_FS DCMI TIM12_CH2 PC0 AF014 OTG_HS_DP EVENTOUT ETH_MDC PC2 SPI2_MISO PC3 SPI2_MOSI I2S2_SD I2S2ext_SD OTG_HS_ULPI_DIR OTG_HS_ULPI_NXT PC4 PC5 PC6 TIM3_CH1 TIM8_CH1 PC7 TIM3_CH2 TIM8_CH2 PC8 MCO2 TIM3_CH3 TIM8_CH3 TIM3_CH4 TIM8_CH4 I2S2_MCK I2S3_MCK I2C3_SDA Doc ID 022152 Rev 1 PC10 PC11 PC12 EVENTOUT ETH _MII_TXD2 EVENTOUT ETH _MII_TX_CLK ETH _RMII_TX_CLK ETH_MII_RXD0 ETH_RMII_RXD0 ETH _MII_RXD1 ETH _RMII_RXD1 EVENTOUT EVENTOUT EVENTOUT USART6_TX SDIO_D6 DCMI_D0 EVENTOUT USART6_RX SDIO_D7 DCMI_D1 EVENTOUT USART6_CK SDIO_D0 DCMI_D2 EVENTOUT SDIO_D1 DCMI_D3 EVENTOUT I2S_CKIN SPI3_SCK/ I2S3S_CK SPI3_MISO I2S3ext_SD/ SPI3_MOSI I2S3_SD AF15 EVENTOUT OTG_HS_ULPI_STP PC1 PC9 AF11 USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT Pinouts and pin description 50/154 Table 6. PC13 PC14 PC15 PD0 CAN1_RX FSMC_D2 EVENTOUT PD1 CAN1_TX FSMC_D3 EVENTOUT PD2 TIM3_ETR UART5_RX SDIO_CMD FSMC_CLK DCMI_D11 EVENTOUT USART2_CTS EVENTOUT PD4 USART2_RTS FSMC_NOE EVENTOUT PD5 USART2_TX FSMC_NWE EVENTOUT PD6 USART2_RX FSMC_NWAIT EVENTOUT EVENTOUT PD7 USART2_CK FSMC_NE1/ FSMC_NCE2 PD8 USART3_TX FSMC_D13 EVENTOUT PD9 USART3_RX FSMC_D14 EVENTOUT PD10 USART3_CK FSMC_D15 EVENTOUT USART3_CTS FSMC_A16 EVENTOUT USART3_RTS FSMC_A17 EVENTOUT PD11 PD12 TIM4_CH1 PD13 TIM4_CH2 FSMC_A18 EVENTOUT PD14 TIM4_CH3 FSMC_D0 EVENTOUT STM32F405xx, STM32F407xx PD3 Alternate function mapping (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 Port SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 AF9 AF10 CAN1/CAN2/ OTG_FS/ OTG_HS TIM12/13/14 AF11 AF12 AF13 ETH FSMC/SDIO/ OTG_FS DCMI AF014 AF15 PD15 TIM4_CH4 FSMC_D1 PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT FSMC_BLN1 DCMI_D3 EVENTOUT PE1 ETH _MII_TXD3 EVENTOUT PE2 TRACECLK FSMC_A23 PE3 TRACED0 EVENTOUT FSMC_A19 EVENTOUT PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT PE7 TIM1_ETR FSMC_D4 EVENTOUT PE8 TIM1_CH1N FSMC_D5 EVENTOUT Doc ID 022152 Rev 1 PE9 TIM1_CH1 FSMC_D6 EVENTOUT PE10 TIM1_CH2N FSMC_D7 EVENTOUT PE11 TIM1_CH2 FSMC_D8 EVENTOUT PE12 TIM1_CH3N FSMC_D9 EVENTOUT PE13 TIM1_CH3 FSMC_D10 EVENTOUT PE14 TIM1_CH4 FSMC_D11 EVENTOUT PE15 TIM1_BKIN EVENTOUT FSMC_A0 EVENTOUT PF1 I2C2_SCL FSMC_A1 EVENTOUT PF2 I2C2_SMBA FSMC_A2 EVENTOUT PF3 FSMC_A3 EVENTOUT PF4 FSMC_A4 EVENTOUT PF5 FSMC_A5 EVENTOUT PF6 TIM10_CH1 FSMC_NIORD EVENTOUT PF7 TIM11_CH1 FSMC_NREG EVENTOUT PF8 TIM13_CH1 FSMC_NIOWR EVENTOUT PF9 TIM14_CH1 FSMC_CD EVENTOUT PF10 FSMC_INTR PF11 EVENTOUT DCMI_D12 EVENTOUT 51/154 PF12 FSMC_A6 EVENTOUT PF13 FSMC_A7 EVENTOUT PF14 FSMC_A8 EVENTOUT PF15 FSMC_A9 EVENTOUT Pinouts and pin description FSMC_D12 I2C2_SDA PF0 STM32F405xx, STM32F407xx Table 6. Alternate function mapping (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 Port SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 AF9 AF10 CAN1/CAN2/ OTG_FS/ OTG_HS TIM12/13/14 AF11 AF12 AF13 ETH FSMC/SDIO/ OTG_FS DCMI AF014 AF15 PG0 FSMC_A10 EVENTOUT PG1 FSMC_A11 EVENTOUT PG2 FSMC_A12 EVENTOUT PG3 FSMC_A13 EVENTOUT PG4 FSMC_A14 EVENTOUT PG5 FSMC_A15 EVENTOUT PG6 FSMC_INT2 EVENTOUT FSMC_INT3 EVENTOUT PG7 USART6_CK PG8 USART6_RTS PG9 USART6_RX ETH _PPS_OUT Doc ID 022152 Rev 1 ETH _MII_TX_EN ETH _RMII_TX_EN PG11 PG12 USART6_RTS PG13 UART6_CTS PG14 USART6_TX PG15 USART6_CTS EVENTOUT FSMC_NE2/ FSMC_NCE3 FSMC_NCE4_1/ FSMC_NE3 PG10 ETH _MII_TXD0 ETH _RMII_TXD0 ETH _MII_TXD1 ETH _RMII_TXD1 Pinouts and pin description 52/154 Table 6. EVENTOUT EVENTOUT FSMC_NCE4_2 EVENTOUT FSMC_NE4 EVENTOUT FSMC_A24 EVENTOUT FSMC_A25 EVENTOUT DCMI_D13 EVENTOUT PH0 PH1 PH2 ETH _MII_CRS EVENTOUT PH3 ETH _MII_COL EVENTOUT I2C2_SCL PH5 I2C2_SDA PH6 I2C2_SMBA PH7 I2C3_SCL PH8 I2C3_SDA PH9 I2C3_SMBA OTG_HS_ULPI_NXT EVENTOUT EVENTOUT TIM12_CH1 ETH _MII_RXD2 EVENTOUT ETH _MII_RXD3 EVENTOUT DCMI_HSYNC DCMI_D0 EVENTOUT PH10 TIM5_CH1TIM5_ETR DCMI_D1 EVENTOUT PH11 TIM5_CH2 DCMI_D2 EVENTOUT PH12 TIM5_CH3 DCMI_D3 PH13 TIM8_CH1N PH14 TIM8_CH2N TIM12_CH2 EVENTOUT CAN1_TX EVENTOUT EVENTOUT DCMI_D4 EVENTOUT STM32F405xx, STM32F407xx PH4 Alternate function mapping (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 Port SYS TIM1/2 TIM3/4/5 PH15 PI0 TIM8/9/10/11 AF9 AF10 CAN1/CAN2/ OTG_FS/ OTG_HS TIM12/13/14 AF11 AF12 AF13 ETH FSMC/SDIO/ OTG_FS DCMI TIM8_CH3N SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK TIM5_CH4 PI1 I2S2ext_SD AF014 AF15 DCMI_D11 EVENTOUT DCMI_D13 EVENTOUT DCMI_D8 EVENTOUT PI2 TIM8_CH4 SPI2_MISO PI3 TIM8_ETR SPI2_MOSI I2S2_SD DCMI_D9 EVENTOUT DCMI_D10 EVENTOUT PI4 TIM8_BKIN DCMI_D5 EVENTOUT PI5 TIM8_CH1 DCMI_VSYNC EVENTOUT PI6 TIM8_CH2 DCMI_D6 EVENTOUT PI7 TIM8_CH3 DCMI_D7 EVENTOUT STM32F405xx, STM32F407xx Table 6. PI8 PI9 CAN1_RX EVENTOUT Doc ID 022152 Rev 1 PI10 PI11 ETH _MII_RX_ER OTG_HS_ULPI_DIR EVENTOUT EVENTOUT Pinouts and pin description 53/154 Memory map 4 STM32F405xx, STM32F407xx Memory map The memory map is shown in Figure 15. Figure 15. Memory map 2ESERVED !(" 2ESERVED !(" 2ESERVED !(" X&&&& &&&& X% X$&&& &&&& 2ESERVED -BYTE BLOCK #ORTEX -gS INTERNAL PERIPHERALS !(" 2ESERVED -BYTE BLOCK .OT USED -BYTE BLOCK &3-# REGISTERS X X&&& &&&& X X&&& &&&& X X # X&&& &&&& X X &&& X && X X && X X X &&&& X &&&& X X X&&& &&&& X X &&&& !(" X# X"&&& &&&& X! X&&& &&&& X! X"&&& &&&& X! &&& 2ESET CLOCK CONTROLLER 2## 2ESERVED #2# 2ESERVED -BYTE BLOCK &3-# BANK BANK !(" 2ESERVED X # X X X X X && X "&& X && X && X &&& X X # X &&&& X "&& !0" -BYTE BLOCK &3-# BANK BANK %84) 393#&' 2ESERVED X X # X &&& X X "&& X X && X && -BYTE BLOCK 0ERIPHERALS !0" X X&&& &&&& -BYTE BLOCK 32!X X&&& &&&& -BYTE BLOCK #ODE X 2ESERVED 32!- +" ALIASED BY BIT BANDING 32!- +" ALIASED BY BIT BANDING 2ESERVED /PTION "YTES 2ESERVED 3YSTEM MEMORY 2ESERVED 4#- DATA 2! +" DATA 32!2ESERVED &LASH 2ESERVED !LIASED TO &LASH SYSTEM MEMORY OR 32!- DEPENDING ON THE "//4 PINS X X&&& &&&& X # X &&&& 2ESERVED X X X &&&& X && X X "&&& X&&& # X&&& # X&&& ! X&&& X X&&& &&&& X&&& # X&&& &&& X&&& !& X&&% &&&& !0" X X &&&& X X&&& &&&& X X& &&&& X X&& &&&& X X& &&&& 2ESERVED X X X && X && !0" X -36 54/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 16. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 17. Figure 16. Pin loading conditions Figure 17. Pin input voltage 34-& PIN # P& 34-& PIN /3#?/54 (I : WHEN USING (3% OR ,3% -36 Doc ID 022152 Rev 1 6). /3#?/54 (I : WHEN USING (3% OR ,3% -36 55/154 Electrical characteristics 5.1.6 STM32F405xx, STM32F407xx Power supply scheme Figure 18. Power supply scheme 6"!4 /54 '0 )/S ). & )/ ,OGIC +ERNEL LOGIC #05 DIGITAL 2!- 6#!0? 6#!0? 6$$ N& & ,EVEL SHIFTER 6"!4 TO 6 6$$ "ACKUP CIRCUITRY /3#+ 24# 7AKEUP LOGIC "ACKUP REGISTERS BACKUP 2!- 0O WER SWI TCH 6OLTAGE REGULATOR 633 &LASH MEMORY "90!33?2%' 0$2?/. 6$$ 6$$! 62%& N& & 2ESET CONTROLLER N& & 62%& 62%& !$# !NALOG 2#S 0,, 633! -36 1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.17: Real-time clock (RTC), backup SRAM and backup registers. 3. The two 2.2 F ceramic capacitors should not be connected when the voltage regulator is OFF. 4. The 4.7 F ceramic capacitor must be connected to one of the VDDx pin. 5. VDDA=VDD and VSSA=VSS. 56/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 5.1.7 Electrical characteristics Current consumption measurement Figure 19. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Voltage characteristics Symbol Ratings Min Max VDD-VSS External main supply voltage (including VDDA, VDD)(1) -0.3 4.0 VSS-0.3 VDD+4 VSS-0.3 4.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 Input voltage on five-volt tolerant VIN |VDDx| |VSSX - VSS| VESD(HBM) pin(2) Input voltage on any other pin Electrostatic discharge voltage (human body model) Unit V mV see Section 5.3.14: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum value must always be respected. Refer to Table 8 for the values of the maximum allowed injected current. Doc ID 022152 Rev 1 57/154 Electrical characteristics STM32F405xx, STM32F407xx Current characteristics(1) Table 8. Symbol Ratings Max. IVDD Total current into VDD power lines (source)(2) TBD IVSS (2) TBD Total current out of VSS ground lines (sink) IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin 25 (4) Injected current on five-volt tolerant I/O IINJ(PIN) (3) IINJ(PIN) Injected current on any other pin (5) mA -5/+0 (5) Total injected current (sum of all I/O and control pins) Unit 5 (6) 25 1. TBD stands for "to be defined". 2. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC characteristics. 4. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz. 4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. In this case HCLK = system clock/2. 64/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 17. Electrical characteristics Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM (1)(2) Max(3) Typ Symbol Parameter Conditions External clock(4), all peripherals enabled(5) fHCLK TA = 25 C TA = 85 C TA = 105 C 168 MHz 86.8 TBD TBD 144 MHz 67 TBD TBD 120 MHz 56.2 TBD TBD 90 MHz 43.5 TBD TBD 60 MHz 29.7 TBD TBD 30 MHz 16.3 TBD TBD 25 MHz 12.4 TBD TBD 8.7 TBD TBD 8 MHz 5.1 TBD TBD 4 MHz 3.3 TBD TBD 2 MHz 2.4 TBD TBD 168 MHz 39.8 TBD TBD 144 MHz 30.8 TBD TBD 120 MHz 26 TBD TBD 90 MHz 20.4 TBD TBD 60 MHz 14.3 TBD TBD 30 MHz 8.2 TBD TBD 25 MHz 6.4 TBD TBD 4.75 TBD TBD 8 MHz 3 TBD TBD 4 MHz 2.3 TBD TBD 2 MHz 2 TBD TBD 16 IDD Supply current in Run mode External clock(4), all peripherals disabled 16 MHz(6) MHz(6) Unit mA 1. Code and data processing running from SRAM1 using boot pins. 2. TBD stands for "to be defined". 3. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 4. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 5. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 6. In this case HCLK = system clock/2. Doc ID 022152 Rev 1 65/154 Electrical characteristics Table 18. STM32F405xx, STM32F407xx Typical and maximum current consumption in Sleep mode(1) Max(2) Typ Symbol Parameter Conditions External clock(3), all peripherals enabled(4) IDD Supply current in Sleep mode External clock(3), all peripherals disabled fHCLK TA = 25 C TA = 85 C TA = 105 C 168 MHz TBD TBD TBD 144 MHz TBD TBD TBD 120 MHz 38 TBD TBD 90 MHz 30 TBD TBD 60 MHz 20 TBD TBD 30 MHz 11 TBD TBD 25 MHz 8 TBD TBD 16 MHz 6 TBD TBD 8 MHz 3.6 TBD TBD 4 MHz 2.4 TBD TBD 2 MHz 1.9 TBD TBD 168 MHz TBD TBD TBD 144 MHz TBD TBD TBD 120 MHz 8 TBD TBD 90 MHz 7 TBD TBD 60 MHz 5 TBD TBD 30 MHz 3.5 TBD TBD 25 MHz 2.5 TBD TBD 16 MHz 2.1 TBD TBD 8 MHz 1.7 TBD TBD 4 MHz 1.5 TBD TBD 2 MHz 1.4 TBD TBD Unit mA 1. TBD stands for "to be defined". 2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 4. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 66/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 19. Electrical characteristics Typical and maximum current consumptions in Stop mode(1)(2) Typ Symbol Parameter Max Conditions TA = 105 C TA = 25 C TA = 85 C Supply current in Stop mode with main regulator in Run mode IDD_STOP Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 1.00 TBD TBD Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.98 TBD TBD Flash in Stop mode, low-speed and high-speed Supply current internal RC oscillators and high-speed oscillator in Stop mode OFF (no independent watchdog) with main Flash in Deep power down mode, low-speed regulator in and high-speed internal RC oscillators and Low Power high-speed oscillator OFF (no independent mode watchdog) Unit mA 0.66 TBD TBD 0.63 TBD TBD 1. All typical and maximum values will be further reduced by up to 50% as part of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect these changes. 2. TBD stands for "to be defined". Table 20. Symbol Typical and maximum current consumptions in Standby mode(1) Parameter Conditions Backup SRAM ON, RTC ON Supply current Backup SRAM OFF, RTC ON IDD_STBY in Standby Backup SRAM ON, RTC OFF mode Backup SRAM OFF, RTC OFF Typ Max TA = 25 C TA = 85 C TA = 105 C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V TBD TBD TBD TBD(2) TBDS(2) TBD TBD TBD TBDS(2) TBDS(2) TBD TBD TBD TBDS(2) TBDS(2) TBD TBD TBD TBDS(2) TBDS(2) Unit VDD = 3.6 V A 1. TBD stands for "to be defined". 2. Based on characterization, not tested in production. Doc ID 022152 Rev 1 67/154 Electrical characteristics Table 21. STM32F405xx, STM32F407xx Typical and maximum current consumptions in VBAT mode(1) Typ Symbol Parameter Max TA = 25 C Conditions Backup SRAM ON, RTC ON Backup SRAM OFF, low-speed Backup IDD_VBAT domain supply oscillator and RTC ON current Backup SRAM ON, RTC OFF Backup SRAM OFF, RTC OFF TA = 85 C TA = 105 C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V TBD TBD TBD TBD(2) TBD(2) TBD TBD TBD TBD(2) TBD(2) TBD TBD (2) (2) TBD TBD(2) TBD TBD TBD TBD Unit VDD = 3.6 V TBD A TBD(2) 1. TBD stands for "to be defined". 2. Based on characterization, not tested in production. I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 43: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog pins. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 23: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD x f SW x C 68/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the /O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Table 22. Symbol Switching output I/O current consumption(1) Parameter Conditions VDD = 3.3 V Cext = 20 pF VDD = 3.3 V Cext = 50 pF IDDIO Supply current VDD = 2.4V Cext = 20pF VDD = 2.4V Cext = 50pF I/O toggling frequency (fSW) Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Unit mA 1. TBD stands for "to be defined". Doc ID 022152 Rev 1 69/154 Electrical characteristics STM32F405xx, STM32F407xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 23. The MCU is placed under the following conditions: At startup, all I/O pins are configured as analog pins by firmware. All peripherals are disabled unless otherwise mentioned The given value is calculated by measuring the current consumption - with all peripherals clocked off - with one peripheral clocked on (with only the clock applied) The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz, 4 wait states at 144 MHz, and 5 wait states at 168 MHz. Prefetch and Cache ON When the peripherals are enabled, HCLK = 120/144/168 MHz, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2 The typical values are obtained for VDD = 3.3 V and TA= 25 C, unless otherwise specified. Table 23. Peripheral current consumption(1) Peripheral(2) AHB1 Typical consumption at 25 C GPIO A TBD GPIO B TBD GPIO C TBD GPIO D TBD GPIO E TBD GPIO F TBD GPIO G TBD GPIO H TBD GPIO I TBD OTG_HS + ULPI TBD CRC TBD BKPSRAM TBD DMA1 TBD DMA2 TBD ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP TBD OTG_FS TBD DCMI TBD FSMC TBD AHB2 AHB3 70/154 Doc ID 022152 Rev 1 Unit mA STM32F405xx, STM32F407xx Table 23. Electrical characteristics Peripheral current consumption(1) (continued) Peripheral(2) Typical consumption at 25 C TIM2 TBD TIM3 TBD TIM4 TBD TIM5 TBD TIM6 TBD TIM7 TBD TIM12 TBD TIM13 TBD TIM14 TBD USART2 TBD USART3 TBD UART4 TBD UART5 TBD I2C1 TBD I2C2 TBD I2C3 TBD SPI2 TBD SPI3 TBD CAN1 TBD APB1 Unit mA CAN2 TBD (3) DAC channel 1 TBD DAC channel 1(4) TBD PWR TBD WWDG TBD Doc ID 022152 Rev 1 71/154 Electrical characteristics Table 23. STM32F405xx, STM32F407xx Peripheral current consumption(1) (continued) Peripheral(2) Typical consumption at 25 C SDIO TBD TIM1 TBD TIM8 TBD TIM9 TBD TIM10 TBD TIM11 TBD APB2 mA (5) TBD ADC2(5) TBD (5) TBD ADC1 ADC3 Unit SPI1 TBD USART1 TBD USART6 TBD 1. TBD stands for "to be defined". 2. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on. 3. EN1 bit is set in DAC_CR register. 4. EN2 bit is set in DAC_CR register. 5. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register. 5.3.7 Wakeup time from low-power mode The wakeup times given in Table 24 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: Stop or Standby mode: the clock source is the RC oscillator Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 24. Low-power mode wakeup timings Symbol tWUSLEEP(2) tWUSTOP(2) tWUSTDBY(2)(3) Min(1) Typ(1) Max(1) Unit Wakeup from Sleep mode - 1 - s Wakeup from Stop mode (regulator in Run mode) - 13 - Wakeup from Stop mode (regulator in low power mode) - 17 40 Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode) - 110 - 260 375 480 Parameter Wakeup from Standby mode s s 1. Based on characterization, not tested in production. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY minimum and maximum values are given at 105 C and -45 C, respectively. 72/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 5.3.8 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 25 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 25. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit 1 8 26 MHz fHSE_ext External user clock source frequency(1) VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 5 - - tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 OSC_IN input capacitance(1) - 5 - pF 45 - 55 % - - 1 A Cin(HSE) ns DuCy(HSE) Duty cycle IL V VSS VIN VDD OSC_IN Input leakage current 1. Guaranteed by design, not tested in production. Low-speed external user clock generated from an external source The characteristics given in Table 26 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 26. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit - 32.768 1000 kHz fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 OSC32_IN input capacitance(1) - TBD(2) - pF 30 - 70 % - - 1 A Cin(LSE) DuCy(LSE) IL V ns Duty cycle OSC32_IN Input leakage current VSS VIN VDD 1. Guaranteed by design, not tested in production. 2. TBD stands for "to be defined". Doc ID 022152 Rev 1 73/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 21. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE External clock source fHSE_ext OSC _IN IL STM32F ai17528 Figure 22. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE External clock source fLSE_ext STM32F ai17529 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 27. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 74/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 27. Symbol Electrical characteristics HSE 4-26 MHz oscillator characteristics(1) (2) Min Typ Max Unit Oscillator frequency 4 - 26 MHz RF Feedback resistor - 200 - k C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 - 15 - pF i2 HSE driving current VDD = 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 5 - - mA/V VDD is stabilized - 2 - ms fOSC_IN tSU(HSE(4) Parameter Conditions Startup time 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com. Figure 23. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 fHSE OSC_IN 8 MH z resonator CL2 REXT(1) RF OSC_OU T Bias controlled gain STM32F ai17530 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 28. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Doc ID 022152 Rev 1 75/154 Electrical characteristics Table 28. STM32F405xx, STM32F407xx LSE oscillator characteristics (fLSE = 32.768 kHz) (1)(2) Symbol Parameter Conditions RF Feedback resistor C(3) Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(4) I2 LSE driving current gm Oscillator Transconductance tSU(LSE)(5) Min Typ Max Unit - TBD - M RS = 30 k - - TBD pF VDD = 3.3 V, VIN = VSS - - TBD A TBD - - A/V - TBD - s startup time VDD is stabilized 1. Based on characterization, not tested in production. 2. TBD stands for "to be defined". 3. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers". 4. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details 5. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Note: For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 24). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Figure 24. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 kH z resonator CL2 RF Bias controlled gain OSC32_OU T STM32F ai17531 76/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 5.3.9 Electrical characteristics Internal clock source characteristics The parameters given in Table 29 and Table 30 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. High-speed internal (HSI) RC oscillator Low-speed internal (LSI) RC oscillator Table 29. Symbol HSI oscillator characteristics (1) Parameter Conditions Min Typ Max Unit - 16 - MHz - - 1 % TA = -40 to 105 C -8 - 4.5 % TA = -10 to 85 C -4 - 4 % TA = 25 C -1 - 1 % HSI oscillator startup time - 2.2 4 s HSI oscillator power consumption - 60 80 A Frequency fHSI User-trimmed with the RCC_CR register(2) Accuracy of the HSI oscillator Factorycalibrated ACCHSI tsu(HSI)(3) IDD(HSI) 1. VDD = 3.3 V, TA = -40 to 105 C unless otherwise specified. 2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. Table 30. LSI oscillator characteristics (1) Symbol fLSI(2) tsu(LSI) (3) IDD(LSI)(3) Parameter Min Typ Max Unit 17 32 47 kHz LSI oscillator startup time - 15 40 s LSI oscillator power consumption - 0.4 0.6 A Frequency 1. VDD = 3 V, TA = -40 to 105 C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Doc ID 022152 Rev 1 77/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 25. ACCLSI versus temperature MAX AVG MIN .ORMALIZED DEVIATI ON 4EMPERAT URE # -36 5.3.10 PLL characteristics The parameters given in Table 31 and Table 32 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 10. Table 31. Symbol Main PLL characteristics Parameter fPLL_IN PLL input clock(1) fPLL_OUT PLL multiplier output clock fPLL48_OUT 48 MHz PLL multiplier output clock fVCO_OUT PLL VCO output tLOCK PLL lock time 78/154 Conditions Min Typ Max Unit 0.95(2) 1 2.0(3) MHz 24 - 168 MHz - 48 - MHz 192 - 432 MHz VCO freq = 192 MHz 75 - 200 VCO freq = 432 MHz 100 - 300 s Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 31. Symbol Electrical characteristics Main PLL characteristics (continued) Parameter Conditions Min Typ Max RMS - 25 - peak to peak - 150 - RMS - 15 - peak to peak - 200 - Main clock output (MCO) for RMII Ethernet Cycle to cycle at 50 MHz on 1000 samples - 32 - Main clock output (MCO) for MII Ethernet Cycle to cycle at 25 MHz on 1000 samples - 40 - Bit Time CAN jitter Cycle to cycle at 1 MHz on 1000 samples - 330 - Main clock output (MCO) for RMMI Ethernet Long term Jitter, PLL input=6.25MHz - 1.6 - ns IDD(PLL)(5) PLL power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLL)(5) PLL power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA Cycle-to-cycle jitter System clock 120 MHz Period Jitter Jitter(4) Unit ps 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design, not tested in production. 3. Maximum input PLL frequency is recommended for applications sensitive of long term jitter. 4. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 5. Based on characterization, not tested in production. Table 32. Symbol PLLI2S (audio PLL) characteristics(1) Parameter fPLLI2S_IN PLLI2S input clock(2) fPLLI2S_OUT PLLI2S multiplier output clock fVCO_OUT PLLI2S VCO output tLOCK PLLI2S lock time Conditions Min Typ Max Unit 0.95(3) 1 2.0(4) MHz - - 216 MHz 192 - 432 MHz VCO freq = 192 MHz 75 - 200 VCO freq = 432 MHz 100 - 300 s Doc ID 022152 Rev 1 79/154 Electrical characteristics Table 32. STM32F405xx, STM32F407xx PLLI2S (audio PLL) characteristics(1) (continued) Symbol Parameter Conditions Cycle to cycle at 12,343 MHz on 48KHz period, N=432, P=4, R=5 Master I2S clock jitter Min Typ Max RMS - 90 - peak to peak - 280 - ps TBD - TBD ps - 400 - ps 0.15 0.45 - 0.40 0.75 mA - 0.40 0.85 mA Average frequency of 12,343 MHz N=432, P=4, R=5 on 256 samples (5) Jitter WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples IDD(PLLI2S)(6) PLLI2S power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz IDDA(PLLI2S)(6) PLLI2S power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 1. TBD stands for "to be defined". 2. Take care of using the appropriate division factor M to have the specified PLL input clock values. 3. Guaranteed by design, not tested in production. 4. Maximum input PLL frequency is recommended for applications sensitive of long term jitter. 5. Value given with main PLL running. 6. Based on characterization, not tested in production. 80/154 Doc ID 022152 Rev 1 Unit STM32F405xx, STM32F407xx 5.3.11 Electrical characteristics PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 39: EMI characteristics). It is available only on the main PLL. Table 33. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % - 215 - MODEPER * INCSTEP - -1 1. Guaranteed by design, not tested in production. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: MODEPER = round [ f PLL_IN ( 4 x fMod ) ] fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: 6 3 MODEPER = round [ 10 ( 4 x 10 ) ] = 25 Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): INCSTEP = round [ ( ( 2 15 - 1 ) x md x f VCO_OUT ) ( 100 x 5 x MODEPER ) ] fVCO_OUT must be expressed in MHz. With a modulation depth (md) = 2 % (4 % peak to peak), and fVCO_OUT = 240 (in MHz): INCSTEP = round [ ( ( 2 15 - 1 ) x 2 x 240 ) ( 100 x 5 x 25 ) ] = 1258md(quantitazed)% An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: md quantized % = ( MODEPER x INCSTEP x 100 x 5 ) ( ( 2 15 - 1 ) x f VCO_OUT ) As a result: md quantized % = ( 25 x 1258 x 100 x 5 ) ( ( 2 15 - 1 ) x 240 ) = 1.99954%(peak) The error in modulation depth is consequently: 2.0 - 1.99954 = 0.00046%. Doc ID 022152 Rev 1 81/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 26 and Figure 27 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. Figure 26. PLL output clock waveforms in center spread mode &REQUENCY 0,,?/54 MD & MD TMODE 4IME TMODE AI Figure 27. PLL output clock waveforms in down spread mode &REQUENCY 0,,?/54 & MD TMODE 4IME TMODE AI 5.3.12 Memory characteristics Flash memory The characteristics are given at TA = -40 to 105 C unless otherwise specified. Table 34. Symbol IDD Flash memory characteristics(1) Parameter Supply current Conditions Min Max Unit Read mode fHCLK = 168 MHz with 4 wait states, VDD = 3.3 V - TBD mA Write / Erase modes fHCLK = 168 MHz, VDD = 3.3 V - TBD mA 1. TBD stands for "to be defined". 82/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 35. Symbol tprog Electrical characteristics Flash memory programming(1) Word programming time tERASE16KB Sector (16 KB) erase time tERASE64KB Sector (64 KB) erase time tERASE128KB Sector (128 KB) erase time tME Vprog Conditions Min(2) Typ Max(2) Unit Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(3) Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 Program/erase parallelism (PSIZE) = x 8 - 16 TBD Program/erase parallelism (PSIZE) = x 16 - 11 TBD Program/erase parallelism (PSIZE) = x 32 - 8 TBD 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.8 - 3.6 V Parameter Mass erase time Programming voltage s ms ms s s 1. TBD stands for "to be defined". 2. Based on characterization, not tested in production. 3. The maximum programming time is measured after 100K erase operations. Doc ID 022152 Rev 1 83/154 Electrical characteristics STM32F405xx, STM32F407xx Flash memory programming with VPP(1) Table 36. Min(2) Typ Max(2) Double word programming - 16 100(3) tERASE16KB Sector (16 KB) erase time - TBD - tERASE64KB Sector (64 KB) erase time - TBD - - TBD - - 6.8 - 2.7 - 3.6 V Symbol Parameter tprog Conditions tERASE128KB Sector (128 KB) erase time tME Mass erase time TA = 0 to +40 C Unit s Vprog Programming voltage VPP VPP voltage range 7 - 9 V IPP Minimum current sunk on the VPP pin 10 - - mA - - 1 hour tVPP(4) Cumulative time during which VPP is applied 1. TBD stands for "to be defined". 2. Guaranteed by design, not tested in production. 3. The maximum programming time is measured after 100K erase operations. 4. VPP should only be connected during programming/erasing. Table 37. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions Min(1) TA = -40 to +85 C (6 suffix versions) TA = -40 to +105 C (7 suffix versions) 10 1 kcycle(2) at TA = 85 C 30 1 kcycle(2) at TA = 105 C 10 10 kcycles (2) at TA = 55 C Unit kcycles Years 20 1. Based on characterization, not tested in production. 2. Cycling performed over the whole temperature range. 5.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: 84/154 Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics A device reset allows normal operations to be resumed. The test results are given in Table 38. They are based on the EMS levels and classes defined in application note AN1709. Table 38. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 C, Voltage limits to be applied on any I/O pin to fHCLK = 84 MHz, conforms to induce a functional disturbance IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 C, fHCLK = 84 MHz, conforms to IEC 61000-4-2 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: Corrupted program counter Unexpected reset Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Doc ID 022152 Rev 1 85/154 Electrical characteristics STM32F405xx, STM32F407xx Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC(R) code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. Table 39. Symbol EMI characteristics(1) Parameter Max vs. [fHSE/fCPU] Monitored frequency band Conditions Unit 8/120 MHz VDD = 3.3 V, TA = 25 C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled SEMI 0.1 to 30 MHz TBD 30 to 130 MHz TBD 130 MHz to 1GHz TBD SAE EMI Level TBD 0.1 to 30 MHz TBD 30 to 130 MHz TBD 130 MHz to 1GHz TBD SAE EMI level TBD dBV - Peak level VDD = 3.3 V, TA = 25 C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled, PLL spread spectrum enabled dBV - 1. TBD stands for "to be defined". 5.3.14 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 40. Symbol ESD absolute maximum ratings Conditions Class Maximum value(1) TA = +25 C conforming to JESD22-A114 2 2000(2) Ratings VESD(HBM) Electrostatic discharge voltage (human body model) VESD(CDM) Electrostatic discharge voltage (charge device model) Unit V TA = +25 C conforming to JESD22-C101 1. Based on characterization results, not tested in production. 2. On VBAT pin, VESD(HBM) is limited to 1000 V. 86/154 Doc ID 022152 Rev 1 II 500 STM32F405xx, STM32F407xx Electrical characteristics Static latchup Two complementary static tests are required on six parts to assess the latchup performance: A supply overvoltage is applied to each power supply pin A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latchup standard. Table 41. Electrical sensitivities Symbol LU 5.3.15 Parameter Static latch-up class Conditions Class TA = +105 C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 42. Table 42. I/O current injection susceptibility Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 Unit mA Doc ID 022152 Rev 1 87/154 Electrical characteristics 5.3.16 STM32F405xx, STM32F407xx I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 43. I/O static characteristics Symbol VIL VIH(1) VIL Parameter Conditions Typ Max VSS-0.3 - 0.8 2.0 - VDD+0.3 2.0 - 5.5 VSS-0.3 - 0.3VDD - 3.6(4) - 5.2(4) - 5.5(4) - 200 - 5% VDD(4) - - VSS VIN VDD - - 1 VIN = 5 V - - 3 30 40 50 8 11 15 Input low level voltage TTL ports 2.7 V VDD 3.6 V TT(2) I/O input high level voltage (3) FT I/O input high level voltage Input low level voltage CMOS ports 1.8 V VDD 3.6 V TT I/O input high level voltage VIH(1) Min 0.7VDD FT I/O input high level voltage CMOS ports 2.0 V VDD 3.6 V I/O Schmitt trigger voltage hysteresis(5) Vhys IO FT Schmitt trigger voltage hysteresis(5) I/O input leakage current (6) Ilkg RPU I/O FT input leakage current Weak pull-up equivalent resistor(7) (6) All pins except for PA10 and PB12 Unit V mV A VIN = VSS PA10 and PB12 k RPD Weak pull-down equivalent resistor All pins except for PA10 and PB12 PA10 and PB12 CIO(8) 30 40 50 8 11 15 VIN = VDD I/O pin capacitance 5 1. If VIH maximum value cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum value. 2. TT = 3.6 V tolerant. 3. FT = 5 V tolerant. 4. With a minimum of 100 mV. 5. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 8. Guaranteed by design, not tested in production. 88/154 Doc ID 022152 Rev 1 pF STM32F405xx, STM32F407xx Electrical characteristics All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. Output driving current The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or source 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular: The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 8). The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 8). Output voltage levels Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 44. Symbol VOL(2) VOH (3) VOL (2) VOH (3) Output voltage characteristics(1) Parameter Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL(2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL(2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time Conditions Min Max TTL port IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 CMOS port IIO =+ 8mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V Unit V VDD-0.4 - - 0.4 V 2.4 - - 1.3 V VDD-1.3 - - 0.4 V VDD-0.4 - 1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data, not tested in production. Doc ID 022152 Rev 1 89/154 Electrical characteristics STM32F405xx, STM32F407xx Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 28 and Table 45, respectively. Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 45. OSPEEDRy [1:0] bit value(1) I/O AC characteristics(1)(2) Symbol Parameter Conditions fmax(IO)out Maximum frequency(3) 00 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(3) 01 Typ Max CL = 50 pF, VDD > 2.70 V - - 2 CL = 50 pF, VDD > 1.8 V - - 2 CL = 10 pF, VDD > 2.70 V - - TBD CL = 10 pF, VDD > 1.8 V - - TBD - - TBD CL = 50 pF, VDD = 1.8 V to 3.6 V ns - - TBD CL = 50 pF, VDD > 2.70 V - - 25 CL = 50 pF, VDD > 1.8 V - - 12.5(4) CL = 10 pF, VDD > 2.70 V - - 50(4) CL = 10 pF, VDD > 1.8 V - - TBD Output high to low level fall time CL = 50 pF, VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD CL = 50 pF, VDD < 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 10 pF, VDD > 2.7 V - - TBD CL = 40 pF, VDD > 2.70 V - - 50(4) CL = 40 pF, VDD > 1.8 V - - 25 CL = 10 pF, VDD > 2.70 V - - 100(4) CL = 10 pF, VDD > 1.8 V - - TBD CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Doc ID 022152 Rev 1 Unit MHz tf(IO)out fmax(IO)out Maximum frequency(3) 90/154 Min MHz ns MHz ns STM32F405xx, STM32F407xx Table 45. OSPEEDRy [1:0] bit value(1) Electrical characteristics I/O AC characteristics(1)(2) (continued) Symbol Parameter Conditions Fmax(IO)out Maximum frequency(3) 11 - tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller Min Typ Max CL = 30 pF, VDD > 2.70 V - - 100(4) CL = 30 pF, VDD > 1.8 V - - 50(4) CL = 10 pF, VDD > 2.70 V - - 200(4) CL = 10 pF, VDD > 1.8 V - - TBD CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD 10 - - Unit MHz ns ns 1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 2. TBD stands for "to be defined". 3. The maximum frequency is defined in Figure 28. 4. For maximum frequencies above 50 MHz, the compensation cell should be used. Figure 28. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 Doc ID 022152 Rev 1 91/154 Electrical characteristics 5.3.17 STM32F405xx, STM32F407xx NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 43). Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 46. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST)(1) NRST Input low level voltage -0.5 - 0.8 VIH(NRST)(1) NRST Input high level voltage 2 - VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV 30 40 50 k - - 100 ns Weak pull-up equivalent resistor(2) RPU VF(NRST) V (1) VIN = VSS NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - s 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 29. Recommended NRST pin protection 6$$ %XTERNAL RESET CIRCUIT .234 205 )NTERNAL 2ESET &ILTER & 34-&XXX AIC 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 46. Otherwise the reset is not taken into account by the device. 92/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx 5.3.18 Electrical characteristics TIM timer characteristics The parameters given in Table 47 and Table 48 are guaranteed by design. Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 47. Symbol tres(TIM) Characteristics of TIMx connected to the APB1 domain(1)(2) Parameter Timer resolution time Conditions AHB/APB1 prescaler distinct from 1, fTIMxCLK = 84 MHz AHB/APB1 prescaler = 1, fTIMxCLK = 42 MHz fEXT ResTIM tCOUNTER Min Max Unit 1 - tTIMxCLK 11.9 - ns 1 - tTIMxCLK 23.8 - ns Timer external clock frequency on CH1 to CH4 0 fTIMxCLK/2 MHz 0 42 MHz Timer resolution - 16/32 bit 65536 tTIMxCLK TBD s - tTIMxCLK TBD s - 65536 x 65536 tTIMxCLK - TBD s 16-bit counter clock period 1 when internal clock is fTIMxCLK = 84 MHz 0.0119 selected APB1= 42 MHz 32-bit counter clock period 1 when internal clock is 0.0119 selected tMAX_COUNT Maximum possible count 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers. 2. TBD stands for "to be defined". Doc ID 022152 Rev 1 93/154 Electrical characteristics Table 48. Symbol tres(TIM) STM32F405xx, STM32F407xx Characteristics of TIMx connected to the APB2 domain(1) Parameter Timer resolution time Conditions AHB/APB2 prescaler distinct from 1, fTIMxCLK = 168 MHz AHB/APB2 prescaler = 1, fTIMxCLK = 84 MHz fEXT ResTIM Timer external clock frequency on CH1 to CH4 Timer resolution fTIMxCLK = 168 MHz tCOUNTER 16-bit counter clock period when internal clock APB2 = 84 MHz is selected tMAX_COUNT Maximum possible count Min Max Unit 1 - tTIMxCLK 5.95 - ns 1 - tTIMxCLK 11.9 - ns 0 fTIMxCLK/2 MHz 0 84 MHz - 16 bit 1 65536 tTIMxCLK 0.00595 TBD s - 65536 x 65536 tTIMxCLK - TBD(2) s 1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers. 2. TBD stands for "to be defined". 5.3.19 Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 10. The STM32F405xx and STM32F407xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 49. Refer also to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). 94/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 49. Electrical characteristics I2C characteristics Standard mode I2C(1) Symbol Fast mode I2C(1)(2) Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - - (4) s (3) 900(3) th(SDA) SDA data hold time tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - s tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - s Cb Capacitive load for each bus line - 400 - 400 pF 0 0 ns s 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Doc ID 022152 Rev 1 95/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 30. I2C bus AC waveforms and measurement circuit 6$$ 6$$ K K )# BUS 34-&XX 3$! 3#, 3 4!24 2%0%!4%$ 3 4!24 3 4!24 TSU34! 3$! TF3$! TR3$! TH34! 3#, TW3#,( TSU3$! TW3#,, TR3#, TW34/34! 3 4/0 TH3$! TSU34/ TF3#, AIB 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 50. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 k 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE 2 1. RP = External pull-up resistance, fSCL = I C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application. 96/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics I2S - SPI interface characteristics Unless otherwise specified, the parameters given in Table 51 for SPI or in Table 52 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 51. Symbol fSCK 1/tc(SCK) SPI characteristics(1)(2) Parameter Conditions Min Max Master mode - 37.5 Slave mode - 37.5 - 8 ns % SPI clock frequency MHz tr(SCL) tf(SCL) SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 tsu(NSS)(3) NSS setup time Slave mode 4 tPCLK - th(NSS)(3) NSS hold time Slave mode 2 tPCLK - tw(SCLH) tw(SCLL)(3) SCK high and low time Master mode, fPCLK = 42 MHz, presc = 4 TBD TBD tsu(MI) (3) tsu(SI)(3) Master mode 5 - Data input setup time Slave mode 5 - th(MI) (3) th(SI)(3) Master mode 5 - Data input hold time Slave mode 4 - ta(SO)(3)(4) Data output access time Slave mode, fPCLK = 20 MHz 0 3 tPCLK tdis(SO)(3)(5) Data output disable time Slave mode 2 10 tv(SO) (3)(1) Data output valid time Slave mode (after enable edge) - 25 (3)(1) Data output valid time Master mode (after enable edge) - 5 Slave mode (after enable edge) 15 - Master mode (after enable edge) 2 - (3) tv(MO) th(SO)(3) th(MO)(3) Unit ns Data output hold time 1. Remapped SPI1 characteristics to be determined. 2. TBD stands for "to be defined". 3. Based on characterization, not tested in production. 4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Doc ID 022152 Rev 1 97/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 31. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) tSU(NSS) SCK Input CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 32. SPI timing diagram - slave mode and CPHA = 1(1) NSS input tSU(NSS) SCK Input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 98/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 33. SPI timing diagram - master mode(1) High NSS input SCK Input SCK Input tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) MS BIN BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Doc ID 022152 Rev 1 99/154 Electrical characteristics Table 52. STM32F405xx, STM32F407xx I2S characteristics(1) Symbol Parameter Conditions Min Max Master TBD 37.5 Slave 0 37.5 - TBD fCK 1/tc(CK) I2S clock frequency tr(CK) tf(CK) I2S clock rise and fall time capacitive load CL = 50 pF tv(WS) (2) WS valid time Master TBD - th(WS) (2) WS hold time Master TBD - WS setup time Slave TBD - WS hold time Slave TBD - tw(CKH) tw(CKL) (2) CK high and low time Master fPCLK= TBD, presc = TBD TBD - tsu(SD_MR) (2) tsu(SD_SR) (2) Data input setup time Master receiver Slave receiver TBD TBD - th(SD_MR)(2)(3) th(SD_SR) (2)(3) Data input hold time Master receiver Slave receiver TBD TBD - Data input hold time Master fPCLK = TBD Slave fPCLK = TBD TBD TBD - Slave transmitter (after enable edge) - TBD fPCLK = TBD - TBD Slave transmitter (after enable edge) TBD - Master transmitter (after enable edge) - TBD fPCLK = TBD TBD TBD Master transmitter (after enable edge) TBD - tsu(WS) th(WS) (2) (2) (2) th(SD_MR) (2) th(SD_SR) (2) tv(SD_ST) (2)(3) Data output valid time th(SD_ST) (2) Data output hold time tv(SD_MT) (2)(3) Data output valid time th(SD_MT) (2) Data output hold time MHz 1. TBD stands for "to be defined". 2. Based on design simulation and/or characterization results, not tested in production. 3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns. 100/154 Unit Doc ID 022152 Rev 1 ns STM32F405xx, STM32F407xx Electrical characteristics Figure 34. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 35. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Doc ID 022152 Rev 1 101/154 Electrical characteristics STM32F405xx, STM32F407xx USB OTG FS characteristics The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers. Table 53. USB OTG FS startup time Symbol tSTARTUP(1) Parameter USB OTG FS transceiver startup time Max Unit 1 s 1. Guaranteed by design, not tested in production. Table 54. USB OTG FS DC electrical characteristics Symbol VDD Input levels Parameter Conditions USB OTG FS operating voltage Min.(1) Typ. Max.(1) Unit 3.0(2) - 3.6 VDI(3) Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM(3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE(3) Single ended receiver threshold 1.3 - 2.0 VOL Static output level low - - 0.3 2.8 - 3.6 17 21 24 0.65 1.1 2.0 Output levels VOH Static output level high RL of 1.5 k to 3.6 V(4) RL of 15 k to VSS(4) PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) RPD RPU PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) V V V VIN = VDD k PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 2.1 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 1. All the voltages are measured from the local ground potential. 2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 3. Guaranteed by design, not tested in production. 4. RL is the load connected on the USB OTG FS drivers 102/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 36. USB OTG FS timings: definition of data signal rise and fall time Crossover points Differen tial data lines VCRS VS S Table 55. tr tf ai14137 USB OTG FS electrical characteristics(1) Driver characteristics Symbol tr tf trfm VCRS Parameter Rise time(2) Fall time(2) Conditions Min Max Unit CL = 50 pF 4 20 ns CL = 50 pF 4 20 ns tr/tf 90 110 % 1.3 2.0 V Rise/ fall time matching Output signal crossover voltage 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). Table 56. USB FS clock timing parameters(1)(2) Parameter Symbol Min Nominal Max Unit fHCLK value to guarantee proper operation of USB FS interface - TBD MHz AHB frequency for correct USB FS operation - 14.2 MHz FSTART_8BIT TBD TBD TBD MHz Frequency (steady state) 500 ppm FSTEADY TBD TBD TBD MHz Duty cycle (first transition) DSTART_8BIT TBD TBD TBD % DSTEADY TBD TBD TBD % - - TBD ms Frequency (first transition) 8-bit 10% 8-bit 10% Duty cycle (steady state) 500 ppm Time to reach the steady state frequency and TSTEADY duty cycle after the first transition Clock startup time after the de-assertion of SuspendM Peripheral TSTART_DEV - - TBD Host TSTART_HOST - - - - - - PHY preparation time after the first transition TPREP of the input clock ms s 1. Guaranteed by design, not tested in production. 2. TBD stands for "to be defined". Doc ID 022152 Rev 1 103/154 Electrical characteristics STM32F405xx, STM32F407xx USB HS characteristics Table 57 shows the USB HS operating voltage. Table 57. USB HS DC electrical characteristics Symbol Input level Parameter VDD Ethernet operating voltage Min.(1) Max.(1) Unit 2.7 3.6 V Nominal Max 1. All the voltages are measured from the local ground potential. Table 58. USB HS clock timing parameters(1) Parameter Symbol Min fHCLK value to guarantee proper operation of USB HS interface Frequency (first transition) 8-bit 10% TBD FSTART_8BIT Frequency (steady state) 500 ppm FSTEADY Duty cycle (first transition) DSTART_8BIT 8-bit 10% Duty cycle (steady state) 500 ppm DSTEADY Time to reach the steady state frequency and TSTEADY duty cycle after the first transition Clock startup time after the de-assertion of SuspendM Unit MHz 54 60 66 MHz 59.97 60 60.03 MHz 40 50 60 % 49.975 50 50.025 % - - 1.4 ms Peripheral TSTART_DEV - - 5.6 Host TSTART_HOST - - - - - - ms PHY preparation time after the first transition TPREP of the input clock s 1. Guaranteed by design, not tested in production. Figure 37. ULPI timing diagram #LOCK #ONTROL )N STP T3# T3$ T(# T($ DATA )N BIT T$# #ONTROL OUT DIR NXT T$# T$$ DATA OUT BIT T$$$ T$$$ DATA OUT BIT AIB 104/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 59. Electrical characteristics ULPI timing Value(1) Parameter Output clock Input clock (optional) Symbol Unit Min. Max. Setup time (control in) tSC, tSD - 6.0 ns Hold time (control in) tHC, tHD 0.0 - ns Output delay (control out) tDC, tDD - 9.0 ns Setup time (control in) tSC, tSD - 3.0 ns Hold time (control in) tHC, tHD 1.5 - ns Output delay (control out) tDC, tDD - 6.0 ns 1. VDD = 2.7 V to 3.6 V and TA = -40 to 85 C. Ethernet characteristics Table 60 shows the Ethernet operating voltage. Table 60. Ethernet DC electrical characteristics Symbol Input level Parameter VDD Ethernet operating voltage Min.(1) Max.(1) Unit 2.7 3.6 V 1. All the voltages are measured from the local ground potential. Table 61 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 38 shows the corresponding timing diagram. Figure 38. Ethernet SMI timing diagram tMDC ETH_MDC td(MDIO) ETH_MDIO(O) tsu(MDIO) th(MDIO) ETH_MDIO(I) ai15666c Table 61. Symbol Dynamics characteristics: Ethernet MAC signals for SMI(1) Rating Min Typ Max Unit tMDC MDC cycle time (1.71 MHz, AHB = 72 MHz) TBD TBD TBD ns td(MDIO) MDIO write data valid time TBD TBD TBD ns TBD TBD TBD ns TBD TBD TBD ns tsu(MDIO) Read data setup time th(MDIO) Read data hold time 1. TBD stands for "to be defined". Doc ID 022152 Rev 1 105/154 Electrical characteristics STM32F405xx, STM32F407xx Table 62 gives the list of Ethernet MAC signals for the RMII and Figure 39 shows the corresponding timing diagram. Figure 39. Ethernet RMII timing diagram RMII_REF_CLK td(TXEN) td(TXD) RMII_TX_EN RMII_TXD[1:0] tsu(RXD) tsu(CRS) tih(RXD) tih(CRS) RMII_RXD[1:0] RMII_CRS_DV ai15667 Table 62. Dynamics characteristics: Ethernet MAC signals for RMII(1) Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time TBD TBD TBD ns tih(RXD) Receive data hold time TBD TBD TBD ns tsu(CRS) Carrier sense set-up time TBD TBD TBD ns tih(CRS) Carrier sense hold time TBD TBD TBD ns td(TXEN) Transmit enable valid delay time 0 9.6 21.9 ns td(TXD) Transmit data valid delay time 0 9.9 21 ns 1. TBD stands for "to be defined". Table 63 gives the list of Ethernet MAC signals for MII and Figure 39 shows the corresponding timing diagram. Figure 40. Ethernet MII timing diagram MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER tsu(RXD) tsu(ER) tsu(DV) tih(RXD) tih(ER) tih(DV) MII_TX_CLK td(TXEN) td(TXD) MII_TX_EN MII_TXD[3:0] ai15668 106/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 63. Electrical characteristics Dynamics characteristics: Ethernet MAC signals for MII(1) Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time TBD TBD TBD ns tih(RXD) Receive data hold time TBD TBD TBD ns tsu(DV) Data valid setup time TBD TBD TBD ns tih(DV) Data valid hold time TBD TBD TBD ns tsu(ER) Error setup time TBD TBD TBD ns tih(ER) Error hold time TBD TBD TBD ns td(TXEN) Transmit enable valid delay time 13.4 15.5 17.7 ns td(TXD) Transmit data valid delay time 12.9 16.1 19.4 ns 1. TBD stands for "to be defined". CAN (controller area network) interface Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX). 5.3.20 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 64 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 10. Table 64. Symbol VDDA VREF+(3) fADC fTRIG(5) VAIN RAIN(5) ADC characteristics(1) Parameter Conditions Min Typ Max Unit 1.8(2) - 3.6 V 1.8(2)(4) - VDDA V VDDA = 1.8(2) to 2.4 V 0.6 - TBD MHz VDDA = 2.4 to 3.6 V 0.6 - TBD MHz fADC = 36 MHz - - TBD kHz - - 17 1/fADC 0 (VSSA or VREFtied to ground) - VREF+ V - - 50 k 1.5 - 6 k 4 - TBD pF - - 0.100 s - - 3(8) 1/fADC - - 0.067 s - 2(8) 1/fADC Power supply Positive reference voltage ADC clock frequency External trigger frequency Conversion voltage range(6) External input impedance See Equation 1 for details RADC(5)(7) Sampling switch resistance CADC(5) Internal sample and hold capacitor tlat(5) Injection trigger conversion latency tlatr(5) Regular trigger conversion latency fADC = 36 MHz fADC = 36 MHz - Doc ID 022152 Rev 1 107/154 Electrical characteristics Table 64. ADC characteristics(1) (continued) Symbol Parameter tS(5) Sampling time tSTAB(5) Power-up time tCONV(5) STM32F405xx, STM32F407xx Total conversion time (including sampling time) Conditions Min Typ Max Unit fADC = 36 MHz 0.100 - 16 s 3 - 416 1/fADC - 2 3 s fADC = 36 MHz 12-bit resolution 0.416 - 12.95 s fADC = 36 MHz 10-bit resolution 0.360 - 12.89 s fADC = 36 MHz 8-bit resolution 0.305 - 12.84 s fADC = 36 MHz 6-bit resolution 0.250 - 12.79 s 9 to 492 (tS for sampling +n-bit resolution for successive approximation) fS(5) IVREF+(5) IDDA(5) Sampling rate (fADC = 36 MHz) 1/fADC 12-bit resolution Single ADC - - 2.4 Msps 12-bit resolution Interleave Dual ADC mode - - 4.8 Msps 12-bit resolution Interleave Triple ADC mode - - 7.2 Msps fADC = 36 MHz 3 sampling time 12-bit resolution - 300 500 A fADC = 36 MHz 480 sampling time 12-bit resolution - - TBD A fADC = 36 MHz 3 sampling time 12-bit resolution - 1.6 1.8 fADC = 36 MHz 480 sampling time 12-bit resolution - ADC VREF DC current consumption in conversion mode ADC VDDA DC current consumption in conversion mode mA - TBD 1. TBD stands for "to be defined". 2. If PDR_ON is set to VSS, this value can be lowered to 1.7 V when the device operates in a reduced temperature range (0 to 70 C). 3. VDDA -VREF+ < 1.2 V. 4. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V. 5. Based on characterization, not tested in production. 6. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 7. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V. 8. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 64. 108/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Equation 1: RAIN max formula R AIN ( k - 0.5 ) - - R ADC = ------------------------------------------------------------N+2 f ADC x C ADC x ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. Table 65. ADC accuracy (1)(2) Symbol Parameter a Test conditions ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK2 = 84 MHz, fADC = 36 MHz, RAIN < 10 k, VDDA = 1.8(4) to 3.6 V Typ Max(3) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Unit LSB 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. TBD stands for "to be defined". 3. Based on characterization, not tested in production. 4. If PDR_ON is set to VSS, this value can be lowered to 1.7 V when the device operates in a reduced temperature range (0 to 70 C). Note: ADC accuracy vs. negative injection current: Injecting a negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.16 does not affect the ADC accuracy. Doc ID 022152 Rev 1 109/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 41. ADC accuracy characteristics 6 6 ;,3")$%!, 2%& OR $$! DEPENDING ON PACKAGE = %' %4 %/ %, %$ , 3")$%!, 633! 6$$! AIC 1. See also Table 65. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 42. Typical connection diagram using the ADC STM32F VDD RAIN(1) Sample and hold ADC converter VT 0.6 V RADC(1) AINx VAIN Cparasitic VT 0.6 V IL1 A 12-bit converter CADC(1) ai17534 1. Refer to Table 64 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. 110/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 43 or Figure 44, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 43. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F V REF+ (See note 1) 1 F // 10 nF V DDA 1 F // 10 nF V SSA/V REF(See note 1) ai17535 1. VREF+ and VREF- inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA. Figure 44. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F VREF+/VDDA (See note 1) 1 F // 10 nF VREF-/VSSA (See note 1) ai17536 1. VREF+ and VREF- inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA. Doc ID 022152 Rev 1 111/154 Electrical characteristics STM32F405xx, STM32F407xx 5.3.21 Temperature sensor characteristics Table 66. TS characteristics Symbol Parameter TL(1) Avg_Slope (1) V25(1) tSTART(2) TS_temp (3)(2) Min Typ Max Unit VSENSE linearity with temperature - 1 2 C Average slope - 2.5 mV/C Voltage at 25 C - 0.76 V Startup time - 6 10 s 10 - - s ADC sampling time when reading the temperature (1 C accuracy) 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. 5.3.22 VBAT monitoring characteristics Table 67. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit K R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1 mV accuracy 5 - - s (1) Er TS_vbat(2)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 5.3.23 Embedded reference voltage The parameters given in Table 68 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 68. Embedded internal reference voltage Symbol VREFINT TS_vrefint(1) VRERINT_s(2) Parameter Internal reference voltage Conditions Min Typ Max Unit -40 C < TA < +105 C 1.18 1.21 1.24 V 10 - - s - 3 5 mV ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range VDD = 3 V TCoeff(2) Temperature coefficient - 30 50 ppm/C tSTART(2) Startup time - 6 10 s 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production. 112/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics 5.3.24 DAC electrical characteristics Table 69. DAC characteristics Symbol Parameter Min Typ Max Unit Comments VDDA Analog supply voltage 1.8(1) - 3.6 V VREF+ Reference supply voltage 1.8(1) - 3.6 V VSSA Ground 0 - 0 V RLOAD(2) Resistive load with buffer ON 5 - - k RO(2) Impedance output with buffer OFF - - 15 k When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 M CLOAD(2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT Lower DAC_OUT voltage min(2) with buffer ON 0.2 - - V DAC_OUT Higher DAC_OUT voltage with buffer ON max(2) - - VDDA - 0.2 V DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF - 0.5 - mV DAC_OUT Higher DAC_OUT voltage with buffer OFF max(2) - - VREF+ - 1LSB - 170 240 IVREF+(3) IDDA(3) DNL(3) Differential non linearity Difference between two consecutive code-1LSB) It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.8 V It gives the maximum output excursion of the DAC. DAC DC VREF current consumption in quiescent mode (Standby mode) DAC DC VDDA current consumption in quiescent mode (Standby mode) VREF+ VDDA V With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs A With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs - 50 75 - 280 380 A With no load, middle code (0x800) on the inputs - 475 625 A With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs - - 0.5 LSB Given for the DAC in 10-bit configuration. - - 2 LSB Given for the DAC in 12-bit configuration. Doc ID 022152 Rev 1 113/154 Electrical characteristics Table 69. Symbol INL(3) Offset(3) Gain error(3) STM32F405xx, STM32F407xx DAC characteristics (continued) Parameter Min Typ Max Unit - - 1 LSB Given for the DAC in 10-bit configuration. - - 4 LSB Given for the DAC in 12-bit configuration. - - 10 mV Given for the DAC in 12-bit configuration - - 3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - 12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V - - 0.5 % Given for the DAC in 12-bit configuration - 3 6 s CLOAD 50 pF, RLOAD 5 k Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) Gain error Settling time (full scale: for a 10-bit input code transition (3) between the lowest and the tSETTLING highest input codes when DAC_OUT reaches final value 4LSB Comments THD(3) Total Harmonic Distortion Buffer ON - - - dB CLOAD 50 pF, RLOAD 5 k Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD 50 pF, RLOAD 5 k - 6.5 10 s CLOAD 50 pF, RLOAD 5 k input code between lowest and highest possible ones. - -67 -40 dB No RLOAD, CLOAD = 50 pF Wakeup time from off state tWAKEUP(3) (Setting the ENx bit in the DAC Control register) PSRR+ (2) Power supply rejection ratio (to VDDA) (static DC measurement) 1. If PDR_ON is set to VSS, this value can be lowered to 1.7 V when the device operates in a reduced temperature range (0 to 70 C). 2. Guaranteed by design, not tested in production. 3. Guaranteed by characterization, not tested in production. 114/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 45. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. Doc ID 022152 Rev 1 115/154 Electrical characteristics 5.3.25 STM32F405xx, STM32F407xx FSMC characteristics Asynchronous waveforms and timings Figure 46 through Figure 49 represent asynchronous waveforms and Table 70 through Table 73 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: AddressSetupTime = 0 AddressHoldTime = 1 DataSetupTime = 1 Figure 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW.% &3-#?.% TV./%?.% T W./% T H.%?./% &3-#?./% &3-#?.7% TV!?.% &3-#?!;= T H!?./% !DDRESS TV",?.% T H",?./% &3-#?.",;= T H$ATA?.% T SU$ATA?./% TH$ATA?./% T SU$ATA?.% $ATA &3-#?$;= T V.!$6?.% TW.!$6 &3-#?.!$6 AIC 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 70. Symbol 116/154 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)(3) Parameter Min Max Unit tw(NE) FSMC_NE low time TBD TBD ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low TBD TBD ns tw(NOE) FSMC_NOE low time TBD TBD ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time TBD - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - TBD ns th(A_NOE) Address hold time after FSMC_NOE high TBD - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)(3) Table 70. Symbol Parameter Min Max Unit th(BL_NOE) FSMC_BL hold time after FSMC_NOE high TBD - ns tsu(Data_NE) Data to FSMC_NEx high setup time TBD - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time TBD - ns th(Data_NOE) Data hold time after FSMC_NOE high TBD - ns th(Data_NE) Data hold time after FSMC_NEx high TBD - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - TBD ns tw(NADV) FSMC_NADV low time - TBD ns 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". Figure 47. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:0] th(A_NWE) Address tv(BL_NE) FSMC_NBL[1:0] th(BL_NWE) NBL tv(Data_NE) th(Data_NWE) Data FSMC_D[15:0] t v(NADV_NE) tw(NADV) FSMC_NADV(1) ai14990 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 71. Symbol Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)(3) Parameter Min Max Unit tw(NE) FSMC_NE low time TBD TBD ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low TBD TBD ns tw(NWE) FSMC_NWE low time TBD TBD ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time TBD - ns Doc ID 022152 Rev 1 117/154 Electrical characteristics STM32F405xx, STM32F407xx Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)(3) Table 71. Symbol Parameter Min Max Unit - TBD ns TBD - ns - TBD ns TBD - ns - TBD ns tv(A_NE) FSMC_NEx low to FSMC_A valid th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NE) FSMC_NEx low to Data valid th(Data_NWE) Data hold time after FSMC_NWE high TBD - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - TBD ns tw(NADV) FSMC_NADV low time - TBD ns 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". Figure 48. Asynchronous multiplexed PSRAM/NOR read waveforms tw(NE) FSMC_NE tv(NOE_NE) t h(NE_NOE) FSMC_NOE t w(NOE) FSMC_NWE tv(A_NE) FSMC_A[25:16] t h(A_NOE) Address tv(BL_NE) th(BL_NOE) FSMC_NBL[1:0] NBL th(Data_NE) tsu(Data_NE) t v(A_NE) FSMC_AD[15:0] tsu(Data_NOE) Address t v(NADV_NE) th(Data_NOE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14892b 118/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Table 72. Electrical characteristics Asynchronous multiplexed PSRAM/NOR read timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time TBD TBD ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low TBD TBD ns tw(NOE) FSMC_NOE low time TBD TBD ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time TBD - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - TBD ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low TBD TBD ns tw(NADV) FSMC_NADV low time TBD TBD ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high TBD - ns th(A_NOE) Address hold time after FSMC_NOE high TBD - ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high TBD - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - TBD ns tsu(Data_NE) Data to FSMC_NEx high setup time TBD - ns tsu(Data_NOE) Data to FSMC_NOE high setup time TBD - ns th(Data_NE) Data hold time after FSMC_NEx high TBD - ns th(Data_NOE) Data hold time after FSMC_NOE high TBD - ns 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". Doc ID 022152 Rev 1 119/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 49. Asynchronous multiplexed PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:16] th(A_NWE) Address tv(BL_NE) th(BL_NWE) FSMC_NBL[1:0] NBL t v(A_NE) t v(Data_NADV) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NWE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14891B Table 73. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3) Symbol Parameter Max Unit tw(NE) FSMC_NE low time TBD TBD ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low TBD TBD ns tw(NWE) FSMC_NWE low time TBD TBD ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time TBD - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - TBD ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low TBD TBD ns tw(NADV) FSMC_NADV low time TBD TBD ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high TBD - ns th(A_NWE) Address hold time after FSMC_NWE high TBD - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - TBD ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high TBD - ns - TBD ns TBD - ns tv(Data_NADV) FSMC_NADV high to Data valid th(Data_NWE) Data hold time after FSMC_NWE high 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". 120/154 Min Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Synchronous waveforms and timings Figure 50 through Figure 53 represent synchronous waveforms and Table 75 through Table 77 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: BurstAccessMode = FSMC_BurstAccessMode_Enable; MemoryType = FSMC_MemoryType_CRAM; WriteBurst = FSMC_WriteBurst_Enable; CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual) DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM Figure 50. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATA LATENCY TD#,+, .%X, T D#,+, .%X( &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !)6 TD#,+, !6 &3-#?!;= TD#,+, ./%( TD#,+, ./%, &3-#?./% TD#,+, !$)6 TSU!$6 #,+( TD#,+, !$6 &3-#?!$;= !$;= TH#,+( !$6 TSU!$6 #,+( $ TSU.7!)46 #,+( TH#,+( !$6 $ TH#,+( .7!)46 &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 AIG Doc ID 022152 Rev 1 121/154 Electrical characteristics Table 74. STM32F405xx, STM32F407xx Synchronous multiplexed NOR/PSRAM read timings(1)(2)(3) Symbol Parameter Max Unit 16.7 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - TBD ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) TBD - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - TBD ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high TBD - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - TBD ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) TBD - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - TBD ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high TBD - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - TBD ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid TBD - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high TBD - ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high TBD - ns TBD - ns TBD - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". 122/154 Min Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 51. Synchronous multiplexed PSRAM write timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATA LATENCY TD#,+, .%X, TD#,+, .%X( &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !6 TD#,+, !)6 &3-#?!;= TD#,+, .7%, TD#,+, .7%( &3-#?.7% TD#,+, !$)6 TD#,+, $ATA TD#,+, $ATA TD#,+, !$6 &3-#?!$;= !$;= $ $ &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 TD#,+, .",( &3-#?.", AIF Doc ID 022152 Rev 1 123/154 Electrical characteristics Table 75. STM32F405xx, STM32F407xx Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Max Unit TBD - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) - TBD ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) TBD - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - TBD ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high TBD - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - TBD ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) TBD - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - TBD ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high TBD - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - TBD ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid TBD - ns td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low - TBD ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high TBD - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high TBD - ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high TBD - ns 1. CL = 15 pF. 2. Preliminary values. 124/154 Min Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 52. Synchronous non-multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ TD#,+, .%X, TD#,+, .%X( $ATA LATENCY &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !)6 TD#,+, !6 &3-#?!;= TD#,+, ./%, TD#,+, ./%( &3-#?./% TSU$6 #,+( TH#,+( $6 TSU$6 #,+( &3-#?$;= $ TSU.7!)46 #,+( TH#,+( $6 $ TH#,+( .7!)46 &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( T H#,+( .7!)46 &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 AIF Table 76. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)(3) Symbol Parameter Min Max Unit TBD - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - TBD ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) TBD - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - TBD ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high TBD - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - TBD ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) TBD - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - TBD ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high TBD - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high TBD - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high TBD - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high TBD - ns TBD - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". Doc ID 022152 Rev 1 125/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 53. Synchronous non-multiplexed PSRAM write timings TW#,+ "53452. TW#,+ &3-#?#,+ TD#,+, .%X, TD#,+, .%X( $ATA LATENCY &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !6 TD#,+, !)6 &3-#?!;= TD#,+, .7%, TD#,+, .7%( &3-#?.7% TD#,+, $ATA &3-#?$;= TD#,+, $ATA $ $ &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TD#,+, .",( TH#,+( .7!)46 &3-#?.", AIG Table 77. Synchronous non-multiplexed PSRAM write timings(1)(2)(3) Symbol Parameter Max Unit TBD - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - TBD ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) TBD - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - TBD ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high TBD - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - TBD ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - TBD ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high TBD - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - TBD ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high TBD - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high TBD - ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high TBD - ns 1. CL = 15 pF. 2. Preliminary values. 3. TBD stands for "to be defined". 126/154 Min Doc ID 022152 Rev 1 TBD ns STM32F405xx, STM32F407xx Electrical characteristics PC Card/CompactFlash controller waveforms and timings Figure 54 through Figure 59 represent synchronous waveforms and Table 78 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: COM.FSMC_SetupTime = 0x04; COM.FSMC_WaitSetupTime = 0x07; COM.FSMC_HoldSetupTime = 0x04; COM.FSMC_HiZSetupTime = 0x00; ATT.FSMC_SetupTime = 0x04; ATT.FSMC_WaitSetupTime = 0x07; ATT.FSMC_HoldSetupTime = 0x04; ATT.FSMC_HiZSetupTime = 0x00; IO.FSMC_SetupTime = 0x04; IO.FSMC_WaitSetupTime = 0x07; IO.FSMC_HoldSetupTime = 0x04; IO.FSMC_HiZSetupTime = 0x00; TCLRSetupTime = 0; TARSetupTime = 0; Figure 54. PC Card/CompactFlash controller waveforms for common memory read access FSMC_NCE4_2(1) FSMC_NCE4_1 th(NCEx-AI) tv(NCEx-A) FSMC_A[10:0] th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) td(NREG-NCEx) td(NIORD-NCEx) FSMC_NREG FSMC_NIOWR FSMC_NIORD FSMC_NWE td(NCE4_1-NOE) FSMC_NOE tw(NOE) tsu(D-NOE) th(NOE-D) FSMC_D[15:0] ai14895b 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. Doc ID 022152 Rev 1 127/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 55. PC Card/CompactFlash controller waveforms for common memory write access FSMC_NCE4_1 FSMC_NCE4_2 High tv(NCE4_1-A) th(NCE4_1-AI) FSMC_A[10:0] th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) td(NREG-NCE4_1) td(NIORD-NCE4_1) FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NWE) tw(NWE) td(NWE-NCE4_1) FSMC_NWE FSMC_NOE MEMxHIZ =1 td(D-NWE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14896b 128/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 56. PC Card/CompactFlash controller waveforms for attribute memory read access FSMC_NCE4_1 tv(NCE4_1-A) FSMC_NCE4_2 th(NCE4_1-AI) High FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG FSMC_NWE td(NCE4_1-NOE) tw(NOE) td(NOE-NCE4_1) FSMC_NOE tsu(D-NOE) th(NOE-D) FSMC_D[15:0](1) ai14897b 1. Only data bits 0...7 are read (bits 8...15 are disregarded). Doc ID 022152 Rev 1 129/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 57. PC Card/CompactFlash controller waveforms for attribute memory write access FSMC_NCE4_1 FSMC_NCE4_2 High tv(NCE4_1-A) th(NCE4_1-AI) FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG td(NCE4_1-NWE) tw(NWE) FSMC_NWE td(NWE-NCE4_1) FSMC_NOE tv(NWE-D) FSMC_D[7:0](1) ai14898b 1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z). Figure 58. PC Card/CompactFlash controller waveforms for I/O space read access FSMC_NCE4_1 FSMC_NCE4_2 th(NCE4_1-AI) tv(NCEx-A) FSMC_A[10:0] FSMC_NREG FSMC_NWE FSMC_NOE FSMC_NIOWR tw(NIORD) td(NIORD-NCE4_1) FSMC_NIORD tsu(D-NIORD) td(NIORD-D) FSMC_D[15:0] ai14899B 130/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 59. PC Card/CompactFlash controller waveforms for I/O space write access &3-#?.#%? &3-#?.#%? TV.#%X ! TH.#%? !) &3-#?!;= &3-#?.2%' &3-#?.7% &3-#?./% &3-#?.)/2$ TD.#%? .)/72 TW.)/72 &3-#?.)/72 !44X(): TV.)/72 $ TH.)/72 $ &3-#?$;= AIC Table 78. Switching characteristics for PC Card/CF read and write cycles(1)(2)(3) Symbol Parameter Min Max Unit tv(NCEx-A) tv(NCE4_1-A) FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) - TBD ns th(NCEx-AI) th(NCE4_1-AI) FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) TBD td(NREG-NCEx) td(NREG-NCE4_1) FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid - TBD ns th(NCEx-NREG) th(NCE4_1-NREG) FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid TBD - ns td(NCE4_1-NOE) FSMC_NCE4_1 low to FSMC_NOE low - TBD ns tw(NOE) FSMC_NOE low width TBD TBD ns td(NOE-NCE4_1 FSMC_NOE high to FSMC_NCE4_1 high TBD - ns tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high TBD - ns th(NOE-D) FSMC_D[15:0] valid data after FSMC_NOE high TBD - ns tw(NWE) FSMC_NWE low width TBD TBD ns td(NWE-NCE4_1) FSMC_NWE high to FSMC_NCE4_1 high TBD - ns td(NCE4_1-NWE) FSMC_NCE4_1 low to FSMC_NWE low - TBD ns tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - TBD ns th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid TBD - ns td(D-NWE) FSMC_D[15:0] valid before FSMC_NWE high TBD - ns Doc ID 022152 Rev 1 ns 131/154 Electrical characteristics Table 78. STM32F405xx, STM32F407xx Switching characteristics for PC Card/CF read and write cycles(1)(2)(3) (continued) Symbol Parameter Min Max TBD - ns - TBD ns TBD - ns - TBD ns TBD - ns - TBD ns FSMC_NCEx high to FSMC_NIORD invalid th(NCEx-NIORD) th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid TBD - ns tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high TBD - ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high TBD - ns tw(NIORD) FSMC_NIORD low width TBD - ns tw(NIOWR) FSMC_NIOWR low width tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 td(NIORD-NCEx) td(NIORD-NCE4_1) low to FSMC_NIORD valid Unit 1. CL = 15 pF. 2. Based on characterization, not tested in production. 3. TBD stands for "to be defined". NAND controller waveforms and timings Figure 60 through Figure 63 represent synchronous waveforms and Table 79 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: 132/154 COM.FSMC_SetupTime = 0x01; COM.FSMC_WaitSetupTime = 0x03; COM.FSMC_HoldSetupTime = 0x02; COM.FSMC_HiZSetupTime = 0x01; ATT.FSMC_SetupTime = 0x01; ATT.FSMC_WaitSetupTime = 0x03; ATT.FSMC_HoldSetupTime = 0x02; ATT.FSMC_HiZSetupTime = 0x01; Bank = FSMC_Bank_NAND; MemoryDataWidth = FSMC_MemoryDataWidth_16b; ECC = FSMC_ECC_Enable; ECCPageSize = FSMC_ECCPageSize_512Bytes; TCLRSetupTime = 0; TARSetupTime = 0; Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Electrical characteristics Figure 60. NAND controller waveforms for read access &3-#?.#%X !,% &3-#?! #,% &3-#?! &3-#?.7% TD!,% ./% TH./% !,% &3-#?./% .2% TSU$ ./% TH./% $ &3-#?$;= AIC Figure 61. NAND controller waveforms for write access &3-#?.#%X !,% &3-#?! #,% &3-#?! TD!,% .7% TH.7% !,% &3-#?.7% &3-#?./% .2% TV.7% $ TH.7% $ &3-#?$;= AIC Doc ID 022152 Rev 1 133/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 62. NAND controller waveforms for common memory read access &3-#?.#%X !,% &3-#?! #,% &3-#?! TD!,% ./% TH./% !,% &3-#?.7% TW./% &3-#?./% TSU$ ./% TH./% $ &3-#?$;= AIC Figure 63. NAND controller waveforms for common memory write access &3-#?.#%X !,% &3-#?! #,% &3-#?! TD!,% ./% TW.7% TH./% !,% &3-#?.7% &3-#?./% TD$ .7% TV.7% $ TH.7% $ &3-#?$;= AIC Table 79. Symbol Min Max FSMC_D[15:0] valid before FSMC_NWE high TBD - ns tw(NOE)(3) FSMC_NOE low width TBD TBD ns tsu(D-NOE)(3) FSMC_D[15:0] valid data before FSMC_NOE high TBD - ns th(NOE-D)(3) FSMC_D[15:0] valid data after FSMC_NOE high TBD - ns FSMC_NWE low width TBD TBD ns - TBD ns TBD - ns td(D-NWE)(3) tw(NWE) 134/154 Switching characteristics for NAND Flash read and write cycles(1)(2) (3) Parameter tv(NWE-D)(3) FSMC_NWE low to FSMC_D[15:0] valid th(NWE-D)(3) FSMC_NWE high to FSMC_D[15:0] invalid Doc ID 022152 Rev 1 Unit STM32F405xx, STM32F407xx Electrical characteristics Switching characteristics for NAND Flash read and write cycles(1)(2) Table 79. Symbol td(ALE-NWE)(4) Parameter FSMC_ALE valid before FSMC_NWE low th(NWE-ALE)(4) FSMC_NWE high to FSMC_ALE invalid td(ALE-NOE)(4) FSMC_ALE valid before FSMC_NOE low th(NOE-ALE)(4) FSMC_NWE high to FSMC_ALE invalid Min Max Unit - TBD ns TBD - ns - TBD ns TBD - ns 1. CL = 15 pF. 2. TBD stands for "to be defined". 3. Based on characterization, not tested in production. 4. Guaranteed by design, not tested in production. 5.3.26 Camera interface (DCMI) timing specifications Table 80. DCMI characteristics Symbol Parameter Conditions Min Max Frequency ratio DCMI_PIXCLK/fHCLK(1) Unit 0.4 1. Maximum value of DCMI_PIXCLK = 54 MHz. 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 81 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK). Figure 64. SDIO high-speed mode tf tr tC tW(CKH) tW(CKL) CK tOV tOH D, CMD (output) tISU tIH D, CMD (input) ai14887 Doc ID 022152 Rev 1 135/154 Electrical characteristics STM32F405xx, STM32F407xx Figure 65. SD default mode CK tOVD tOHD D, CMD (output) ai14888 Table 81. Symbol SD / MMC characteristics(1) Parameter Conditions Min Max Unit TBD TBD MHz - TBD - fPP Clock frequency in data transfer mode CL 30 pF - SDIO_CK/fPCLK2 frequency ratio - tW(CKL) Clock low time, fPP = 16 MHz CL 30 pF TBD - tW(CKH) Clock high time, fPP = 16 MHz CL 30 pF TBD - tr Clock rise time CL 30 pF - TBD tf Clock fall time CL 30 pF - TBD ns CMD, D inputs (referenced to CK) tISU Input setup time CL 30 pF TBD - tIH Input hold time CL 30 pF TBD - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time CL 30 pF - TBD tOH Output hold time CL 30 pF TBD - ns CMD, D outputs (referenced to CK) in SD default mode(2) tOVD Output valid default time CL 30 pF - TBD tOHD Output hold default time CL 30 pF TBD - ns 1. TBD stands for "to be defined". 2. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output. 5.3.28 RTC characteristics Table 82. Symbol - 136/154 RTC characteristics Parameter fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register Doc ID 022152 Rev 1 Min Max Unit 4 - - STM32F405xx, STM32F407xx Package characteristics 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. Doc ID 022152 Rev 1 137/154 Package characteristics STM32F405xx, STM32F407xx Figure 67. Recommended footprint(1)(2) Figure 66. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline(1) A 48 33 A2 0.3 A1 E 49 b E1 12.7 32 0.5 10.3 e 10.3 64 17 1.2 1 D1 c 7.8 L1 D 16 12.7 L ai14398b ai14909 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 83. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.170 c 0.090 Max 0.0630 0.150 0.0020 0.0059 1.400 1.450 0.0531 0.0551 0.0571 0.220 0.270 0.0067 0.0087 0.0106 0.200 0.0035 0.0079 D 12.000 0.4724 D1 10.000 0.3937 E 12.000 0.4724 E1 10.000 0.3937 e 0.500 0.0197 0 3.5 7 0 3.5 7 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. 138/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Package characteristics Figure 68. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline(1) Figure 69. Recommended footprint(1)(2) 0.25 mm 0.10 inch GAGE PLANE k D L D1 75 51 L1 D3 51 75 76 C 76 50 0.5 50 0.3 16.7 b 14.3 E3 E1 E 100 100 26 1.2 26 Pin 1 1 identification 25 1 C ccc 25 12.3 e A1 16.7 A2 ai14906 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 84. LQPF100 - 14 x 14 mm 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 Max 0.0630 A1 0.050 0.150 0.0020 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 12.000 0.0059 0.0079 0.4724 E 15.80v 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 12.000 0.4724 e 0.500 0.0197 L 0.450 L1 k ccc 0.600 0.750 0.0177 1.000 0 3.5 0.0236 0.0295 0.0394 7 0.080 0 3.5 7 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 022152 Rev 1 139/154 Package characteristics STM32F405xx, STM32F407xx Figure 70. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline(1) Figure 71. Recommended footprint(1)(2) Seating plane C A A2 A1 c b ccc 0.25 mm gage plane C D k 108 109 73 1.35 72 0.35 D1 A1 D3 108 L 73 0.5 L1 72 109 17.85 19.9 E1 E 144 22.6 37 E3 1 36 19.9 22.6 a 144 Pin 1 identification 37 36 1 e ME_1A 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 85. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.170 c 0.090 D 21.800 D1 Max 0.0630 0.150 0.0020 1.400 1.450 0.0531 0.0551 0.0571 0.220 0.270 0.0067 0.0087 0.0106 0.200 0.0035 22.000 22.200 0.8583 0.8661 0.874 19.800 20.000 20.200 0.7795 0.7874 0.7953 E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 17.500 0.0059 0.0079 0.689 E3 17.500 0.6890 e 0.500 0.0197 L 0.450 L1 k ccc 0.600 0.750 1.000 0 3.5 0.0236 0.0295 0.0394 7 0.080 0 3.5 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 140/154 0.0177 Doc ID 022152 Rev 1 7 STM32F405xx, STM32F407xx Package characteristics Figure 72. UFBGA176+25 - ultra thin fine pitch ball grid array 10 x 10 x 0.6 mm, package outline C Seating plane A2 ddd A4 C A A3 A1 A D B Ball A1 e F A F E e R 15 Ob 1 (176 balls) O eee M C A O fff M B A0E7_ME C 1. Drawing is not to scale. Table 86. UFBGA176+25 - ultra thin fine pitch ball grid array 10 x 10 x 0.6 mm mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.002 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 0.130 0.0051 A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 9.950 10.000 10.050 0.3740 0.3937 0.3957 E 9.950 10.000 10.050 0.3740 0.3937 0.3957 e 0.600 0.650 0.700 0.0236 0.0256 0.0276 F 0.400 0.450 0.500 0.0157 0.0177 0.0197 ddd 0.080 0.0031 eee 0.150 0.0059 fff 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 022152 Rev 1 141/154 Package characteristics STM32F405xx, STM32F407xx Figure 73. LQFP176 24 x 24 mm, 144-pin low-profile quad flat package outline C Seating plane 0.25 mm gauge plane A A2 k c A1 ccc C A1 HD L D L1 ZD ZE 89 132 88 133 b E 176 Pin 1 identification HE 45 44 1 e 1T_ME 1. Drawing is not to scale. Table 87. LQFP176, 24 x 24 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 Max 0.0630 A1 0.050 0.150 0.0020 A2 1.350 1.450 0.0531 0.0060 b 0.170 0.270 0.0067 0.0106 C 0.090 0.200 0.0035 0.0079 D 23.900 24.100 0.9409 0.9488 E 23.900 24.100 0.9409 0.9488 e 0.500 0.0197 HD 25.900 26.100 1.0200 1.0276 HE 25.900 26.100 1.0200 1.0276 L 0.450 0.750 0.0177 0.0295 L1 1.000 0.0394 ZD 1.250 0.0492 ZE 1.250 0.0492 ccc k 0.080 0 7 1. Values in inches are converted from mm and rounded to 4 decimal digits. 142/154 Doc ID 022152 Rev 1 0.0031 0 7 STM32F405xx, STM32F407xx 6.2 Package characteristics Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: TA max is the maximum ambient temperature in C, JA is the package junction-to-ambient thermal resistance, in C/W, PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL x IOL) + ((VDD - VOH) x IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 88. Package thermal characteristics Symbol JA Parameter Value Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP 144 - 20 x 20 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient UFBGA176 - 10x 10 mm / 0.5 mm pitch 39 Unit C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Doc ID 022152 Rev 1 143/154 Part numbering STM32F405xx, STM32F407xx 7 Part numbering Table 89. Ordering information scheme Example: STM32 F 405 R E T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 405 = STM32F40x, connectivity, USB OTG FS/HS, 407= STM32F40x, connectivity, USB OTG FS/HS, camera interface, Ethernet Pin count R = 64 pins or 66 pins V = 100 pins Z = 144 pins I = 176 pins Flash memory size C = 256 Kbytes of Flash memory E = 512 Kbytes of Flash memory F = 768 Kbytes of Flash memory G = 1024 Kbytes of Flash memory Package T = LQFP H = UFBGA Temperature range 6 = Industrial temperature range, -40 to 85 C. 7 = Industrial temperature range, -40 to 105 C. Options xxx = programmed parts TR = tape and reel For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. 144/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Appendix A A.1 Application block diagrams Application block diagrams Main applications versus package Table 90 gives examples of configurations for each package. Table 90. Main applications versus package for STM32F407xx microcontrollers(1) 64 pins 100 pins 144 pins 176 pins Config Config Config Config Config Config Config Config Config Config Config Config Config 1 2 3 1 2 3 4 1 2 3 4 1 2 USB 1 USB 2 OTG FS X X X X X X - X FS X X X X X X X X X HS ULPI - - - X - - - X X X X OTGFS - - - X X X X X FS - - - X X X X X X MII - - - - - X X RMII - - - - X X X X - X - - X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Ethernet SPI/I2S2 SPI/I2S3 SDIO SDIO 8bits Data 10bits Data - SDIO or DCMI SDIO or DCMI - X SDIO or DCMI SDIO or DCMI SDIO or DCMI X X X SDIO or DCMI X X SDIO or DCMI DCMI 12bits Data FSMC CAN - X X X X X X X X X 14bits Data - - - - - - - NOR/ RAM Muxed - - - X X X X NOR/ RAM - - - NAND - - - X X X*22 CF - - - - - - X X - X X X X X X X X X X X X X X*19 X X*19 X*22 X*19 X*22 X*22 - - X X X X X X X X - - X X - X 1. X*y: FSMC address limited to "y". Doc ID 022152 Rev 1 145/154 Application block diagrams A.2 STM32F405xx, STM32F407xx Application example with regulator OFF Figure 74. Regulator OFF/internal reset ON 0OWER DOWN RESET RISEN AFTER 6#!0?6#!0? STABILIZATION 0OWER DOWN RESET RISEN BEFORE 6#!0?6#!0? STABILIZATION 6#!0? MONITORING %XT RESET CONTROLLER ACTIVE WHEN 6 #!0? 6 !PPLICATION RESET SIGNAL OPTIONAL 6$$ 0! 6$$ 6$$ .234 !PPLICATION RESET SIGNAL OPTIONAL 0! 6$$ .234 0$2?/. 0$2?/. "90!33?2%' "90!33?2%' 6 6 6#!0? 6#!0? 6#!0? 6#!0? AI 1. This mode is available only on UFBGA176 package. Figure 75. Regulator OFF/internal reset OFF 6 -- OR 6CAP V 6$$ 6$$ MONITORING %XT RESET CONTROLLER ACTIVE WHEN 6 $$ 6 OR 6 #!0?6#!0? 6 6$$ 6$$ .234 0! "90!33?2%' 0$2?/. 6$$ 6 6#!0? 6#!0? AI 1. This mode is available only on UFBGA176 package. 146/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx USB OTG full speed (FS) interface solutions Figure 76. USB OTG FS peripheral-only connection 6$$ 6 TO 6$$ 6OLATGE REGULATOR 6"53 0! $- 0! /3#?). $0 0! 633 /3#?/54 53" 3TD " CONNECTOR 34-&XXXX -36 1. External voltage regulator only needed when building a VBUS powered device. Figure 77. USB OTG FS host-only connection 6$$ %. '0)/ '0)/ )21 /VERCURRENT 34-03342 345,0)" 6 0WR CURRENT LIMITED POWER DISTRIBUTION SWITCH 34-&XXXX 6"53 0! /3#?). 0! 0! $$0 633 /3#?/54 53" 3TD ! CONNECTOR A.3 Application block diagrams -36 1. STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. Doc ID 022152 Rev 1 147/154 Application block diagrams STM32F405xx, STM32F407xx Figure 78. OTG FS connection dual-role with internal PHY 6$$ 6 TO 6$$ VOLTAGE REGULATOR 6$$ '0)/ )21 /VERCURRENT 34-03342 345,0)" 6 0WR CURRENT LIMITED POWER DISTRIBUTION SWITCH 34-&XXXX 6"53 0! $- 0! /3#?). /3#?/54 $0 0! )$ 0! 633 53"MICRO !" CONNECTOR '0)/ %. -36 1. External voltage regulator only needed when building a VBUS powered device. 2. STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 3. The same application can be developped using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. A.4 USB OTG high speed (HS) interface solutions Figure 79. USB OTG HS peripheral-only connection in FS mode 6$$ 6 TO 6$$ 6OLATGE REGULATOR 6"53 0" /3#?). 0" 0" $$0 633 /3#?/54 53" 3TD " CONNECTOR 34-&XXXX -36 1. External voltage regulator only needed when building a VBUS powered device. 148/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Application block diagrams Figure 80. USB OTG HS host-only connection in FS mode 6$$ %. '0)/ '0)/ )21 /VERCURRENT 34-03342 345,0)" CURRENT LIMITED POWER DISTRIBUTION SWITCH 60WR 6"53 0" $- 0" /3#?). $0 0" 633 /3#?/54 53" 3TD ! CONNECTOR 34-&XXXX -36 1. STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. Figure 81. OTG HS connection dual-role with external PHY 34-&XXXX &3 0(9 53" (3 /4' #TRL $0 $- NOT CONNECTED $0 5,0)?#,+ (3 /4' 0(9 5,0)?$;= 5,0) )$ 5,0)?$)2 6"53 5,0)?340 84 OR -(Z 53" CONNECTOR 633 5,0)?.84 0,, $- 84 -#/ OR -#/ #ASE OF AN 3-3# WHICH REQUIRED -(Z 8) -36 1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection. Doc ID 022152 Rev 1 149/154 Application block diagrams A.5 STM32F405xx, STM32F407xx Complete audio player solutions Two solutions are offered, illustrated in Figure 82 and Figure 83. Figure 82 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I2S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details). Figure 82. Complete audio player solution 1 34-&XXXX 84!, -(Z OR -(Z #ORTEX -& CORE UP TO -(Z 0ROGRAM MEMORY /4' HOST MODE 0(9 53" -ASS STORAGE DEVICE &ILE 3YSTEM 30) ,#$ TOUCH SCREEN '0)/ #ONTROL BUTTONS $!# !UDIO AMPLI )3 !UDIO #/$%# 5SER APPLICATION --# 3$#ARD 30) -36 Figure 83 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec. Figure 83. Complete audio player solution 2 34-&XXXX 84!, -(Z OR -(Z #ORTEX -& CORE UP TO -(Z 0ROGRAM MEMORY 53" -ASS STORAGE DEVICE /4' 3/& --# 3$#ARD &ILE 3YSTEM 30) ,#$ TOUCH SCREEN '0)/ #ONTROL BUTTONS )3 0(9 5SER APPLICATION 30) !UDIO #/$%# !UDIO AMPLI 3/& SYNCHRONIZATION OF INPUTOUTPUT AUDIO STREAMING -36 150/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Application block diagrams Figure 84. Audio player solution using PLL, PLLI2S, USB and 1 crystal 34-&XXXX $IV BY - /3# 84!, -(Z OR -(Z 0,, X . $IV BY 0 #ORTEX -& CORE UP TO -(Z $IV BY 1 /4' -(Z 0,,)3 X . $IV BY 2 0(9 -#/02% -#/02% -#/ -#/ )3 ACCURACY -#,+ IN -#,+ OUT 3#,+ $!# !UDIO AMPLI -36 Figure 85. Audio PLL (PLLI2S) providing accurate I2S clock PLLI2S Phase lock detector CLKIN /M M=1,2,3,..,64 1 MHz PhaseC VCO 192 to 432 MHz I2S_MCK = 256 x FSAUDIO 11.2896 MHz for 44.1 kHz 12.2880 MHz for 48.0 kHz /N N=192,194,..,432 /R I2SCOM_CK I2S CTL I2S_MCK R=2,3,4,5,6,7 I2SD=2,3,4.. 129 ai16041b Doc ID 022152 Rev 1 151/154 Application block diagrams STM32F405xx, STM32F407xx Figure 86. Master clock (MCK) used to drive the external audio DAC I2S controller I2S_CK I2S_MCK = 256 x FSAUDIO = 11.2896 MHz for FSAUDIO = 44.1 kHz = 12.2880 MHz for FSAUDIO = 48.0 kHz /I2SD 2,3,4,..,129 I2S_SCK(1) = I2S_MCK/8 for 16-bit stereo = I2S_MCK/4 for 32-bit stereo /8 /(2 x 16) FSAUDIO for 16-bit stereo /4 /(2 x 32) FSAUDIO for 32-bit stereo ai16042 1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK). Figure 87. Master clock (MCK) not used to drive the external audio DAC I2S controller I2S_SCK(1) I2SCOM_CK /I2SD /(2 x 16) FSAUDIO for 16-bit stereo /(2 x 32) FSAUDIO for 32-bit stereo ai16042 1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK). 152/154 Doc ID 022152 Rev 1 STM32F405xx, STM32F407xx Revision history Revision history Table 91. Document revision history Date Revision 15-Sep-2011 1 Changes Initial release. Doc ID 022152 Rev 1 153/154 STM32F405xx, STM32F407xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 154/154 Doc ID 022152 Rev 1