130-160MT..KPbF Series Vishay High Power Products Three Phase Bridge, 130/160 A (Power Modules) FEATURES * Package fully compatible with the industry standard INT-A-PAK power modules series * High thermal conductivity package, electrically insulated case RoHS COMPLIANT * Excellent power volume ratio * 4000 VRMS isolating voltage * UL E78996 approved * Totally lead (Pb)-free MTK * Designed and qualified for industrial level DESCRIPTION A range of extremely compact, encapsulated three phase bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications. PRODUCT SUMMARY IO 130/160 A MAJOR RATINGS AND CHARACTERISTICS SYMBOL IO IFSM I2 t CHARACTERISTICS TC TStg TJ 160MT.K UNITS 160 (200) A C 85 (62) 85 (60) 50 Hz 1130 1430 60 Hz 1180 1500 50 Hz 6400 10 200 60 Hz 5800 9300 64 000 102 000 I2t VRRM 130MT.K 130 (160) A A2 s A2s Range 800 to 1600 V Range - 40 to 150 C ELECTRICAL SPECIFICATIONS VOLTAGE RATINGS TYPE NUMBER VOLTAGE CODE 130-160MT..K Document Number: 94354 Revision: 29-Apr-08 VRRM, MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V VRSM, MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V 80 800 900 100 1000 1100 120 1200 1300 140 1400 1500 160 1600 1700 For technical questions, contact: ind-modules@vishay.com IRRM MAXIMUM AT TJ = MAXIMUM mA 10 www.vishay.com 1 130-160MT..KPbF Series Vishay High Power Products Three Phase Bridge, 130/160 A (Power Modules) FORWARD CONDUCTION PARAMETER SYMBOL Maximum DC output current at case temperature IO TEST CONDITIONS 120 rect. conduction angle t = 10 ms Maximum peak, one-cycle forward, non-repetitive surge current ITSM t = 8.3 ms t = 10 ms t = 8.3 ms t = 10 ms Maximum I2t for fusing t = 8.3 ms I2 t t = 10 ms t = 8.3 ms Maximum I2t for fusing I2t No voltage reapplied 100 % VRRM reapplied No voltage reapplied Initial TJ = TJ maximum 100 % VRRM reapplied t = 0.1 to 10 ms, no voltage reapplied 130MT.K 160MT.K UNITS 130 (160) 160 (200) A 85 (62) 85 (60) C 1130 1430 1180 1500 950 1200 1000 1260 64 000 102 000 5800 9300 4500 7200 4100 6600 64 000 102 000 Low level value of threshold voltage VT(TO)1 (16.7 % x x IT(AV) < I < x IT(AV)), TJ maximum 0.78 0.81 High level value of threshold voltage VT(TO)2 (I > x IT(AV)), TJ maximum 0.99 1.04 rf1 16.7 % x x IT(AV) < I < x IT(AV)), TJ maximum 4.59 3.52 High level of forward slope resistance rf2 (I > x IT(AV)), TJ maximum 4.17 3.13 Ipk = 200 A, TJ = 25 C, tp = 400 s single junction 1.63 1.49 VFM RMS isolation voltage VISOL A2 s A2s V Low level value of forward slope resistance Maximum forward voltage drop A m V TJ = 25 C, all terminal shorted f = 50 Hz, t = 1 s 4000 THERMAL AND MECHANICAL SPECIFICATIONS PARAMETER SYMBOL Maximum junction operating and storage temperature range TEST CONDITIONS TJ, TStg Maximum thermal resistance, case to heatsink Mounting torque 10 % Approximate weight www.vishay.com 2 to heatsink to terminal RthJC RthCS 160MT.K - 40 to 150 DC operation per module Maximum thermal resistance, junction to case 130MT.K 0.16 C 0.12 DC operation per junction 0.93 0.73 120 rect. condunction angle per module 0.18 0.15 120 rect. condunction angle per junction 1.08 0.88 Per module Mounting surface smooth, flat and greased A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for the spread of the compound. Lubricated threads. For technical questions, contact: ind-modules@vishay.com UNITS K/W 0.03 4 to 6 3 to 4 176 Nm g Document Number: 94354 Revision: 29-Apr-08 130-160MT..KPbF Series Three Phase Bridge, 130/160 A Vishay High Power Products (Power Modules) 130MT..K Series 140 Maximum Allowable Case Temperature (C) Instantaneous Forward Current (A) 150 130 120 110 120 (Rect) 100 90 + 80 ~ 70 - 60 50 0 20 40 60 80 100 TJ = 25 C TJ = 150 C 10 130MT..K Series Per junction 1 0 100 120 140 160 180 1.0 2.0 3.0 4.0 5.0 Instantaneous Forward Voltage (V) Instantaneous Forward Voltage (V) Fig. 1 - Current Ratings Characteristic Fig. 2 - Forward Voltage Drop Characteristics 500 100 50 0 W 300 0.3 250 K/W 150 0.5 K/W 0.7 K/W 100 1.5 K 200 R - 150 W K/ W 200 K/ K/ 250 350 05 300 12 0.2 0. 120 (Rect) 350 0. 400 = 400 450 SA 130MT..K Series TJ = 150 C 450 R th Maximum Total Power Loss (W) 500 Maximum Total Power Loss (W) 1000 /W 50 0 0 20 40 60 80 100 120 140 0 160 Total Output Current (A) 25 50 75 100 125 150 Maximum Allowable Ambient Temperature (C) Fig. 3 - Total Power Loss Characteristics 1000 800 700 600 500 400 130MT..K Series 300 Maximum non-repetitive surge current versus pulse train duration. Initial TJ = 150 C No voltage reapplied Rated VRRM reapplied 1100 Peak Half Sine Wave Forward Current (A) 900 Peak Half Sine Wave Forward Current (A) 1200 At any rated load condition and with rated VRRM applied following surge. Initial TJ = 150C at 60 Hz 0.0083 s at 50 Hz 0.0100 s 1000 900 800 700 600 500 400 130MT..K Series 300 200 200 1 10 100 0.01 Number of Equal Amplitude Half Cycle Current Pulses (N) Fig. 4 - Maximum Non-Repetitive Surge Current Document Number: 94354 Revision: 29-Apr-08 0.1 1.0 Pulse Train Duration (s) Fig. 5 - Maximum Non-Repetitive Surge Current For technical questions, contact: ind-modules@vishay.com www.vishay.com 3 130-160MT..KPbF Series Vishay High Power Products Three Phase Bridge, 130/160 A (Power Modules) Instantaneous Forward Current (A) 150 160MT..K Series Maximum Allowable Case Temperature (C) 140 130 120 120 (Rect) 110 100 90 + 80 ~ 70 - 60 50 0 40 80 120 160 200 1000 100 TJ = 25 C TJ = 150 C 10 160MT..K Series Per junction 1 240 0 1 Total Output Current (A) Fig. 6 - Current Ratings Characteristic 3 4 5 Fig. 7 - Forward Voltage Drop Characteristics 600 600 160MT..K Series TJ = 150 C 500 Maximum Total Power Loss (W) Maximum Total Power Loss (W) 2 Instantaneous Forward Voltage (V) 120 (Rect) 400 300 200 100 0 R th 0. 500 1 K/ 0.1 W 5K /W 0.2 K/W 0.3 K/W 0.5 K/W 400 300 200 SA = 0. 05 K/ W - R 0.7 K/W 1.5 K/W 100 0 0 40 80 120 160 0 200 Total Output Current (A) 25 50 75 100 125 150 Maximum Allowable Ambient Temperature (C) Fig. 8 - Total Power Loss Characteristics At any rated load condition and with rated VRRM applied following surge. Initial TJ = 150 C at 60 Hz 0.0083 s at 50 Hz 0.0100 s Peak Half Sine Wave Forward Current (A) 1200 1100 1000 900 800 700 600 500 1 1300 1200 1100 1000 900 800 700 600 400 300 10 100 Maximum non-repetitive surge current versus pulse train duration. Initial TJ = 150 C No voltage reapplied Rated VRRM reapplied 1400 500 160MT..K Series 400 1500 Peak Half Sine Wave Forward Current (A) 1300 160MT..K Series 300 0.01 www.vishay.com 4 1.0 Pulse Train Duration (s) Number of Equal Amplitude Half Cycle Current Pulses (N) Fig. 9 - Maximum Non-Repetitive Surge Current 0.1 Fig. 10 - Maximum Non-Repetitive Surge Current For technical questions, contact: ind-modules@vishay.com Document Number: 94354 Revision: 29-Apr-08 130-160MT..KPbF Series ZthJC - Transient Thermal Impedance (K/W) Three Phase Bridge, 130/160 A Vishay High Power Products (Power Modules) 10 Steady state value RthJC = 0.93 K/W RthJC = 0.73 K/W 130MT..K Series (DC operation) 1 160MT..K Series 0.1 Per junction 0.01 0.001 0.01 0.1 1 10 Square Wave Pulse Duration (s) Fig. 11 - Thermal Impedance ZthJC Characteristics ORDERING INFORMATION TABLE Device code 16 0 MT 160 1 2 3 4 PbF 5 2 - Current rating code: 13 = 130 A (average) 16 = 160 A (average) Three phase diodes bridge 3 - Essential part number 4 - Voltage code x 10 = VRRM (see Voltage Ratings table) 5 - PbF = Lead (Pb)-free 1 - K Note * To order the optional hardware go to www.vishay.com/doc?95172 CIRCUIT CONFIGURATION + D A B ~ C - E F LINKS TO RELATED DOCUMENTS Dimensions Document Number: 94354 Revision: 29-Apr-08 http://www.vishay.com/doc?95004 For technical questions, contact: ind-modules@vishay.com www.vishay.com 5 Outline Dimensions Vishay Semiconductors MTK (with and without optional barrier) DIMENSIONS WITH OPTIONAL BARRIERS in millimeters (inches) Fast-on tab 2.8 x 0.8 (type 110) 8.5 0.5 (0.34 0.02) 30 0.5 (1.17 0.02) 24 0.5 (0.94 0.02) 38 0.5 (1.5 0.02) 25.5 0.5 (1.004 0.02) 28 1 (1.11 0.04) Screws M5 x 0.8 length 10 35 0.3 (1.38 0.01) 75 0.5 (2.95 0.02) A 2 3 4 B C 5 6 7 8 O 6.5 0.2 (O 0.26 0.01) 14 0.3 (0.55 0.01) 1 D 18 0.3 (0.71 0.01) 5 0.3 (0.2 0.01) F E 46 0.3 (1.81 0.01) 80 0.3 (3.15 0.01) 94 0.3 (3.7 0.01) Document Number: 95004 Revision: 27-Aug-07 For technical questions, contact: indmodules@vishay.com www.vishay.com 1 Outline Dimensions MTK (with and without optional barrier) Vishay Semiconductors DIMENSIONS WITHOUT OPTIONAL BARRIERS in millimeters (inches) Fast-on tab 2.8 x 0.8 (type 110) 24 0.5 (0.94 0.02) 8.5 0.5 (0.34 0.02) 30 0.5 (1.17 0.02) 25.5 0.5 (1.004 0.02) 28 1 (1.11 0.04) Screws M5 x 0.8 length 10 35 0.3 (1.38 0.01) 75 0.5 (2.95 0.02) A 2 3 4 B C 5 6 7 8 O 6.5 0.2 (O 0.26 0.01) 14 0.3 (0.55 0.01) 1 D 18 0.3 (0.71 0.01) 5 0.3 (0.2 0.01) F E 46 0.3 (1.81 0.01) 80 0.3 (3.15 0.01) 94 0.3 (3.7 0.01) www.vishay.com 2 For technical questions, contact: indmodules@vishay.com Document Number: 95004 Revision: 27-Aug-07 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Revision: 12-Mar-12 1 Document Number: 91000