T-Ma xTM
TO-264
N-Channel MOSFET
Absolute Maximum Ratings
Thermal and Mechanical Characteristics
G
D
S
Single die MOSFET
Unit
A
V
mJ
A
Unit
W
°C/W
°C
oz
g
in·lbf
N·m
Ratings
56
35
175
±30
1200
28
Min Typ Max
780
0.16
0.11
-55 150
300
0.22
6.2
10
1.1
Parameter
Continuous Drain Current @ TC = 25°C
Continuous Drain Current @ TC = 100°C
Pulsed Drain Current 1
Gate-Source Voltage
Single Pulse Avalanche Energy 2
Avalanche Current, Repetitive or Non-Repetitive
Characteristic
Total Power Dissipation @ TC = 25°C
Junction to Case Thermal Resistance
Case to Sink Thermal Resistance, Flat, Greased Surface
Operating and Storage Junction Temperature Range
Soldering Temperature for 10 Seconds (1.6mm from case)
Package Weight
Mounting Torque ( TO-264 Package), 4-40 or M3 screw
Symbol
ID
IDM
VGS
EAS
IAR
Symbol
PD
RθJC
RθCS
TJ,TSTG
TL
WT
Torque
TYPICAL APPLICATIONS
PFC and other boost converter
• Buck converter
• Two switch forward (asymmetrical bridge)
• Single switch forward
• Flyback
• Inverters
FEATURES
• Fast switching with low EMI/RFI
• Low RDS(on)
• Ultra low Crss for improved noise immunity
• Low gate charge
Avalanche energy rated
• RoHS compliant
APT56M50B2
APT56M50L
500V, 56A, 0.10Ω Max
APT56M50B2 APT56M50L
Power MOS 8 is a high speed, high voltage N-channel switch-mode power
MOSFET. A proprietary planar stripe design yields excellent reliability and manu-
facturability. Low switching loss is achieved with low input capacitance and ultra
low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of
the poly-silicon gate structure help control slew rates during switching, resulting
in low EMI and reliable paralleling, even when switching at very high frequency.
Reliability in yback, boost, forward, and other circuits is enhanced by the high
avalanche energy capability.
Microsemi Website - http://www.microsemi.com
050-8073 Rev C 8-2011
Static Characteristics TJ = 25°C unless otherwise speci ed
Source-Drain Diode Characteristics
Dynamic Characteristics TJ = 25°C unless otherwise speci ed
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 3.06mH, RG = 4.7Ω, IAS = 28A.
3 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
4 Co(cr) is de ned as a xed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is de ned as a xed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any
value of VDS less than V(BR)DSS, use this equation: Co(er) = -2.04E-7/VDS^2 + 4.76E-8/VDS + 1.36E-10.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the speci cations and information contained herein.
G
D
S
Unit
V
V/°C
Ω
V
mV/°C
μA
nA
Unit
A
V
ns
μC
V/ns
Unit
S
pF
nC
ns
Min Typ Max
500
0.60
0.085 0.10
3 4 5
-10
100
500
±100
Min Typ Max
56
175
1
660
13.2
8
Min Typ Max
43
8800
120
945
550
275
220
50
100
38
45
100
33
Test Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 250μA
VGS = 10V, ID = 28A
VGS = VDS, ID = 2.5mA
V
DS = 500V TJ = 25°C
V
GS = 0V TJ = 125°C
VGS = ±30V
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
ISD = 28A, TJ = 25°C, VGS = 0V
ISD = 28A 3
diSD/dt = 100A/μs, TJ = 25°C
ISD 28A, di/dt 1000A/μs, VDD = 333V,
TJ = 125°C
Test Conditions
VDS = 50V, ID = 28A
VGS = 0V, VDS = 25V
f = 1MHz
VGS = 0V, VDS = 0V to 333V
VGS = 0 to 10V, ID = 28A,
VDS = 250V
Resistive Switching
VDD = 333V, ID = 28A
RG = 4.7Ω 6 , VGG = 15V
Parameter
Drain-Source Breakdown Voltage
Breakdown Voltage Temperature Coef cient
Drain-Source On Resistance 3
Gate-Source Threshold Voltage
Threshold Voltage Temperature Coef cient
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Peak Recovery dv/dt
Parameter
Forward Transconductance
Input Capacitance
Reverse Transfer Capacitance
Output Capacitance
Effective Output Capacitance, Charge Related
Effective Output Capacitance, Energy Related
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Turn-On Delay Time
Current Rise Time
Turn-Off Delay Time
Current Fall Time
Symbol
VBR(DSS)
VBR(DSS)/TJ
RDS(on)
VGS(th)
VGS(th)/TJ
IDSS
IGSS
Symbol
IS
ISM
VSD
trr
Qrr
dv/dt
Symbol
gfs
Ciss
Crss
Coss
Co(cr)
4
Co(er)
5
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
050-8073 Rev C 8-2011
APT56M50B2_L
VGS= 7,8 & 10V
4.5V
TJ = 125°C
TJ = 25°C
TJ = -55°C
VGS = 10V
6V
5V
VDS> ID(ON) x RDS(ON) MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
NORMALIZED TO
VGS = 10V @ 28A
TJ = 125°C
TJ = 25°C
TJ = -55°C
Coss
Ciss
ID = 28A
VDS = 400V
VDS = 100V
VDS = 250V
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 150°C
TJ = 25°C
TJ = 125°C
TJ = 150°C
Crss
V
GS, GATE-TO-SOURCE VOLTAGE (V) gfs, TRANSCONDUCTANCE RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE ID, DRAIN CURRENT (A)
I
SD, REVERSE DRAIN CURRENT (A) C, CAPACITANCE (pF) ID, DRAIN CURRENT (A) ID, DRIAN CURRENT (A)
V
DS(ON), DRAIN-TO-SOURCE VOLTAGE (V) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 1, Output Characteristics Figure 2, Output Characteristics
T
J, JUNCTION TEMPERATURE (°C) VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 3, RDS(ON) vs Junction Temperature Figure 4, Transfer Characteristics
I
D, DRAIN CURRENT (A) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 5, Gain vs Drain Current Figure 6, Capacitance vs Drain-to-Source Voltage
Q
g, TOTAL GATE CHARGE (nC) VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 7, Gate Charge vs Gate-to-Source Voltage Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
0 5 10 15 20 25 0 5 10 15 20 25 30
-55 -25 0 25 50 75 100 125 150 0 2 4 6 8 10
0 10 20 30 40 50 0 100 200 300 400 500
0 50 100 150 200 250 300 350 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
200
160
120
80
40
0
2.5
2.0
1.5
1.0
0.5
0
70
60
50
40
30
20
10
0
16
14
12
10
8
6
4
2
0
100
90
80
70
60
50
40
30
20
10
0
175
150
125
100
75
50
25
0
20,000
10,000
1000
100
10
175
150
125
100
75
50
25
0
APT56M50B2_L
050-8073 Rev C 8-2011
TO-264 (L) Package Outline
T-MAX™ (B2) Package Outline
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
4.50 (.177) Max.
19.81 (.780)
20.32 (.800)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2.87 (.113)
3.12 (.123)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
2.21 (.087)
2.59 (.102)
0.40 (.016)
Drai
n
Source
Gate
These dimensions are equal to the TO-247 without the mounting hole.
Drai n
2-Plcs.
19.51 (.768)
20.50 (.807)
19.81 (.780)
21.39 (.842)
25.48 (1.003)
26.49 (1.043)
2.29 (.090)
2.69 (.106)
0.76 (.030)
1.30 (.051)
3.10 (.122)
3.48 (.137)
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
2.59 (.102)
3.00 (.118)
0.48 (.019)
0.84 (.033)
Drain
Source
Gate
Drai n
2.29 (.090)
2.69 (.106)
5.79 (.228)
6.20 (.244)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters (Inches)
1.016(.040)
Dimensions in Millimeters (Inches)
e3 100% Sn Plated
1ms
100ms
Rds(on)
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
D = 0.9
Scaling for Different Case & Junc-
tion Temperatures:
ID = ID(TC = 25°C)*(TJ - TC)/125
Peak T
J
= P
DM
x Z
θJC + TC
Duty Factor D = t1/t2
t2
t1
P
DM
Note:
t1 = Pulse Duration
DC line
100μs
IDM
10ms
13μs100μs
IDM
100ms
10ms
13μs
Rds(on)
DC line
TJ = 150°C
TC = 25°C
1ms
ID, DRAIN CURRENT (A)
V
DS, DRAIN-TO-SOURCE VOLTAGE (V) VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area Figure 10, Maximum Forward Safe Operating Area
ZθJC, THERMAL IMPEDANCE (°C/W)
10-5 10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
ID, DRAIN CURRENT (A)
1 10 100 600 1 10 100 600
250
100
10
1
0.1
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
250
100
10
1
0.1
APT56M50B2_L
TJ = 125°C
TC = 75°C
050-8073 Rev C 8-2011