www.latticesemi.com
1
5kvg_09
ispMACH
5000VG Family
3.3V In-System Programmable
SuperBIG,
SuperWIDE
High Density PLDs
December 2001 Data Sheet
TM
TM
TM
Features
High Density
768 to 1,024 macrocells
196 to 384 I/Os
sysCLOCK™ PLL – Timing Control
Multiply and divide factors between 1 and 32
Clock shifting capability ± 3.5ns in 500ps steps
Multiple output frequencies
External feedback capability for board-level
clock deskew
•LVDS/LVPECL clock input capability
High Speed Logic Implementation
SuperWIDE 68-input logic block
Up to 160 product terms per output
Hierarchical routing structure provides fast inter-
connect
sysIO™ Capability
•LVCMOS 1.8, 2.5 and 3.3
•LVTTL
SSTL 2 (I & II)
SSTL 3 (I & II)
CTT 3.3, CTT 2.5
HSTL (I & III)
PCI-X, PCI 3.3
GTL+
•AGP-1X
5V tolerance
Programmable drive strength
Ease of Design
Product term sharing
Extensive clocking and OE capability
Easy System Integration
3.3V power supply
Hot socketing
Input pull-up, pull-down or bus-keeper
Open drain capability
Slew rate control
Macrocell-based power management
IEEE 1149.1 boundary scan testable
In-system programmable via IEEE 1532 ISC
compliant interface
ispMACH 5000VG Introduction
The ispMACH 5000VG represents the third generation
of Lattice’s SuperWIDE CPLD architecture. Through
their wide 68-input blocks, these devices give signi-
cantly improved speed performance for typical designs
over architectures with fewer inputs.
The ispMACH 5000VG takes the unique benets of the
SuperWIDE architecture and extends it to higher densi-
ties referred to as SuperBIG, by using the combination
of an innovative product term architecture and a two-
tiered hierarchical routing architecture. Additionally,
sysCLOCK and sysIO capabilities have been added to
maximize system-level performance and integration.
Table 1. ispMACH 5000VG Family Selection Guide
ispMACH
5768VG ispMACH
51024VG
Macrocells 768 1,024
User I/O Options 196/304 304/384
t
PD
(ns) 5.0 5.0
t
S
– Set-up with 0 Hold (ns) 3.0 3.0
t
CO
(ns) 4.4 4.4
f
MAX
(MHz) 178 178
Supply Voltage (V) 3.3V 3.3V
Package 256-ball fpBGA
484-ball fpBGA 484-ball fpBGA
676-ball fpBGA
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
2
Overview
The ispMACH 5000VG devices consist of multiple SuperWIDE 68-input, 32-macrocell Generic Logic Blocks
(GLBs) interconnected by a tiered routing system. Figure 1 shows the functional block diagram of the ispMACH
5000VG. Groups of four GLBs, referred to as segments, are interconnected via a Segment Routing Pool (SRP).
Segments are interconnected via the Global Routing Pool (GRP.) Together the GLBs and the routing pools allow
designers to create large designs in a single device without compromising performance.
Each GLB has 68 inputs coming from the SRP and contains 163 product terms. These product terms form groups
of ve product term clusters, which feed the PT sharing array or the macrocell directly. The ispMACH 5000VG
allows up to 160 product terms to be connected to a single macrocell via the product term e xpanders and PT Shar-
ing Array.
The macrocell is designed to provide exible clocking and control functionality with the capability to select between
global, product term and block-level resources. The outputs of the macrocells are fed back into the switch matr ices
and, if required, the sysIO cell.
All I/Os in the ispMACH 5000VG family are sysIOs, which are split into four banks. Each bank has a separate I/O
power supply and reference voltage. The sysIO cells allow operation with a wide range of today’s emerging inter-
face standards. Within a bank, inputs can be set to a var iety of standards, providing the reference voltage require-
ments of the chosen standards are compatible. Within a bank, the outputs can be set to differing standards,
providing the I/O po wer supply voltage and the ref erence v oltage requirements of the chosen standard are compat-
ible. Support for this wide range of standards allows designers to achieve signicantly higher board-level perfor-
mance compared to the more traditional LVCMOS standards.
Figure 1. Functional Block Diagram
PLL0 PLL1
GLB
VCCP0
VCCO0
GCLK0
VREF0
RESETB
GOE1
GOE2
TOE
TDI
TDO
TMS
TCK
VCCJ
I/O Bank 0 I/O Bank 3
I/O Bank 1 I/O Bank 2
GNDP0 VCCP1
GNDP1
GLB
GLB
GLB
Global Routing Pool
SRP SRP
SRP SRP
SRP SRP
SRP SRP
VCCO1
GCLK1
VREF1
VCCO3
GCLK3
VREF3
VCCO2
GCLK2
VREF2
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
GLB
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
3
The ispMACH5000VG devices also contain sysCLOCK Phase Locked Loops (PLLs) that provide designers with
increased clocking exibility. The PLLs can be used to synthesize new clocks for use on-chip or elsewhere within
the system. The y can also be used to desk ew clocks , again both at the chip and system levels . A variable delay line
capability further improves this and allows designers to retard or advance the clock in order to tune set-up and
clock-to-out times for optimal results. The ispMACH 5000VG Family Selection Guide (Table 1) details the key
attributes and packages for the ispMACH 5000VG devices.
ispMACH 5000VG Architecture
The ispMA CH 5000VG Family of In-System Progr ammable High Density Logic Devices is based on segments con-
taining four Gener ic Logic Blocks (GLBs) and a hierarchical routing pool (GRP) str ucture interconnecting the seg-
ments. A segment routing pool (SRP) connects each GLB in a segment allowing the maximum exibility and
speed.
Outputs from the GLBs drive the Segment Routing Pool (SRP) and the Global Routing Pool (GRP). Enhanced
switching resources are provided to allow signals in the Segment Routing Pool to drive any or all the GLBs in the
segment. Optimal switching is provided to allow all signals in the Global Routing Pool to be routed to any or all
SRPs. This mechanism allows fast, efcient connections across the entire device.
Segment
Each segment contains four GLBs and a segment routing pool (SRP). Each GLB has 32 inter nal feedback outputs
and 16 e xternal feedbac k outputs , f or a total of 48 outputs from each GLB feeding the SRP. The SRP contains up to
384 signals, 48 from each GLB and 192 from the GRP, with full routing capability. This routing scheme maximizes
the exibility and speed of the device without sacricing the routing.
Generic Logic Block
Each GLB contains 32 macrocells and a fully populated, programmable AND-array with 160 logic product terms
and three control product terms. The GLB has 68 inputs from the Segment Routing Pool, which are available in
both true and complement form for every product ter m. The three control product ter ms are used for shared reset,
clock and output enable functions. Figure 3 shows the structure of the GLB from the macrocell perspective. This is
referred to as a macrocell slice. There are 32 macrocell slices per GLB.
AND-Array
The programmable AND-Arra y consists of 68 inputs and 163 output product terms. The 68 inputs from the SRP are
used to for m 136 lines in the AND-Array (true and complement of the inputs). Each line in the array can be con-
nected to any of the 163 output product terms via a wired AND. Each of the 160 logic product terms feed the Dual-
OR Array with the remaining three control product terms feeding the Shared PT Clock, Shared PT Reset and
Shared PT OE. Every set of ve product terms from the 160 logic product terms forms a product term cluster start-
Figure 2. Segment
Clocks
4
GLB Segment
Routing
Pool
(SRP)
48
68
48
48
68
48
68
68
48
48
192
From
GRP
To
GRP To
GRP
To
GRP
Clocks
4
To
GRP
48 48
Clocks
4
Clocks
4
GLB
GLB GLB
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
4
ing with PT0. There is one product term cluster for ev ery macrocell in the GLB. In addition to the three control prod-
uct terms, the rst, third, fourth and fth product ter ms of each cluster can be used as a PTOE (output macrocells
only), PT Clock, PT Preset and PT Reset, respectively. Figure 4 is a graphical representation of the AND-Array.
Figure 3. Macrocell Slice
Figure 4. AND-Array
From
SRP
68
Speed/
Power
PTSA
From
n-7
To
n+7
PTSA Bypass
PT OE to
I/O Block
From
I/O Cell
PT Clock
PT Preset
PT Reset
Shared PT Reset
Shared PT Clock
BCLK0
BCLK1
BCLK2
BCLK3
Global Reset
Clk En
Clk
R/L
D
PR
Q
AND Array Dual-OR Array Macrocell
Output
to I/O Block
GRP and SRP
PT0
PT1 Cluster 0
PT2
PT3
PT4
In[0]
In[66]
In[67]
Note:
Indicates programmable fuse.
PT160
PT161
PT162
Shared cloc
k
Shared reset
Shared OE
PT156
PT157
PT158
PT159
PT155
Cluster 31
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
5
Enhanced Dual-OR Array
To facilitate logic functions requiring a very large number of product ter ms, the ispMACH 5000VG architecture has
been enhanced with an innovative product term expander capability. This capability is embedded in the Dual-OR
Array. The Dual-OR Array consists of 64 OR gates. There are two OR gates per macrocell in the GLB. These OR
gates are referred to as the Expandable PTSA OR gate and the PTSA-Bypass OR gate.
The PTSA-Bypass OR gate receiv es its ve inputs from the combination of product terms associated with the prod-
uct term cluster. The PTSA-Bypass OR gate feeds the macrocell directly for fast narrow logic. The Expandable
PTSA OR gate receiv es ve inputs from the combination of product terms associated with the product term cluster.
It also receiv es an additional input from the Expanded PTSA OR gate of the N-7 macrocell, where N is the number
of the macrocell associated with the current OR gate. The Expandable PTSA OR gate feeds the PTSA for sharing
with other product terms and the N+7 Expandable PTSA OR gate. This allows cascading of multiple OR gates for
wide functions. There is a small timing adder for each level of expansion. Figure 5 is a graphical representation of
the Enhanced Dual-OR Array.
Figure 5. Enhanced Dual-OR Array
From
n-7
To
n+7
From PT0
From PT1
From PT2
From PT3
From PT4
PTSA Bypass To Macrocell
To I/O Block
To Macrocell
To Macrocell
To Macrocell
To PTSA
PT OE
PT Clock
PT Preset
PT Reset
n
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
6
Product Term Sharing Array
The Product Term Sharing Arra y (PTSA) consists of 32 inputs from the Dual-OR Arr a y (Expandab le PTSA OR) and
32 outputs directly to the macrocells. Each output is the OR term of any combination of the seven Expandable
PTSA OR terms connected to that output. Every Nth macrocell is connected to N-3, N-2, N-1, N, N+1, N+2 and
N+3 PTSA OR terms via a programmable connection. This wraps around the logic, Macrocell 0 gets its logic from
29, 30, 31, 0, 1, 2, 3. The Expandable PTSA OR used in conjunction with the PTSA allows wide functions to be
implemented easily and efciently. Without using the Expandable PTSA OR capability, the greatest number of
product terms that can be included in a single function with one pass of delay is 35. Figure 6 shows the graphical
representation of the PTSA.
Macrocell
The 32 registered macrocells in the GLB are driven by the 32 outputs from the PTSA or the PTSA bypass. Each
macrocell contains a programmable XOR gate, a programmable register/latch ip-op and the necessary clocks
and control logic to allow combinatorial or registered operation.
The macrocells each have two outputs, which can be fed to the SRP, GRP and I/O cell. This dual or concurrent out-
put capability from the macrocell gives efcient use of the hardware resources. One output can be a registered
function for example, while the other output can be an unrelated combinatorial function. A direct register input from
the I/O cell facilitates efcient use of the macrocell to construct high-speed input registers.
Macrocell registers can be clocked from one of several global or product term clocks available on the device. A glo-
bal and product term clock enable is also pro vided, eliminating the need to gate the cloc k to the macrocell registers
directly. Reset and preset for the macrocell register is provided from both global and product term signals. The
macrocell register can be programmed to oper ate as a D-type register or a D-type latch. Figure 7 is a graphical rep-
resentation of the ispMACH 5000VG macrocell.
Figure 6. Product Term Sharing Array
PTSA OR 0
PTSA OR 1
PTSA OR 2
PTSA OR 3
PTSA OR 29
PTSA OR 30
PTSA OR 31
Macrocell 0
Macrocell 1
Macrocell 2
Macrocell 29
Macrocell 30
Macrocell 31
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
7
Figure 7. Macrocell
I/O Cell
The I/O cell of the ispMACH 5000VG device provides a high degree of exibility. It includes the sysIO feature and
an enhanced output enable MUX for optimal perfor mance both on- and off-chip. The sysIO feature allows I/O cells
to be congured to different I/O standards, drive strengths and slew rates. The enhanced output enable MUX pro-
vides up to 14 different output enable choices per I/O cell.
The I/O cell contains an output enable (OE) MUX, a programmable tri-state output buffer, a programmable input
buffer, a programmable pull-up resistor, a programmable pull-down resistor and a programmable bus-keeper latch.
The I/O cell receives its input from its associated macrocell. The I/O cell has a feedback line to its associated mac-
rocell and a direct path to the GRP and SRP.
The output enable (OE) MUX selects the OE signal per I/O cell. The inputs to the OE MUX are the four Shared
PTOE signals, PTOE and the two GOE signals. The OE MUX also has the ability to choose either the true or
inverse of each of these signals. The output of the OE MUX goes through a logical AND with the TOE signal to
allow easy tri-stating of the outputs for testing purposes.
The four shared PTOE signals are derived from PT163 of each GLB in the segment. The PTOE signal is derived
from the rst product term in each macrocell cluster, which is directly routed to the OE MUX. Therefore, ever y I/O
cell can have a different OE signal. Figure 8 is a graphical representation of the I/O cell.
PTSA Bypass
From
I/O Cell
Output to
I/O Block
GRP and SRP
PT Clock
From PTSA
PT Preset
PT Reset
Shared PT Reset
Shared PT Clock
BCLK0
BCLK1
BCLK2
BCLK3
Global Reset
Clk En
Clk
R/L
D
PR
Q
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
8
Figure 8. I/O Cell
sysIO Capability
The ispMA CH 5000VG devices are divided into four sysIO banks, where each bank is capable of supporting 14 dif-
ferent I/O standards. Each sysIO bank has its own I/O supply voltage (V
CCO
) and reference voltage (V
REF
)
resources allowing each bank complete independence from the others. Each I/O within a bank is individually con-
gurable based on the V
CCO
and V
REF
settings. Table 2 lists the sysIO standards with the typical values for V
CCO
,
V
REF
and V
TT
.
Table 2. ispMACH 5000VG Supported I/O Standards
sysIO Standard V
CCO
V
REF
V
TT
LVTTL 3.3V N/A N/A
LVCMOS-3.3 3.3V N/A N/A
LVCMOS-2.5 2.5V N/A N/A
LVCMOS-1.8 1.8V N/A N/A
PCI 3.3 3.3V N/A N/A
PCI-X 3.3V N/A N/A
AGP-1X 3.3V N/A N/A
SSTL3, Class I & II 3.3V 1.5V 1.5V
SSTL2, Class I & II 2.5V 1.25V 1.25V
CTT 3.3 3.3V 1.5V 1.5V
CTT 2.5 2.5V 1.25V 1.25V
HSTL, Class I 1.5V 0.75V 0.75V
HSTL, Class III 1.5V 0.9V 1.5V
GTL+ N/A 1.0V 1.5V
LVPECL, Differential
1
N/A N/A N/A
LVDS
1
N/A N/A N/A
1. LVDS and LVPECL are only supported on the dedicated clock pins.
Shared (Segment) PTOE 0
Shared (Segment) PTOE 1
Shared (Segment) PTOE 2
Shared (Segment) PTOE 3
PTOE
GOE0
GOE1
TOE VCCO to all
other I/Os
in bank
VCCO for
this bank
VREF to all
other I/Os in bank
VREF dependent
Input Buffer
CMOS/TTL
Input Buffer
(VREF independent)
I/O
Pad
GND
Output Buffer
(VCCO independent for
open drain outputs)
Data Output
from Macrocell
Data Input to Routing
Data Input to Macrocell +
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
9
Global clock pins have additional capabilities that allow for higher perfor mance applications. Two global clock pins
can be paired together to create a single global clock pin that can interface with certain differential signals.
The TOE and JTAG pins of the ispMACH 5000VG device are the only pins that do not have sysIO capabilities.
These pins only support the LVTTL and LVCMOS standards.
There are three classes of I/O interface standards that are implemented in the ispMACH 5000VG devices. The rst
is the unterminated, single-ended interface. It includes the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V
LVCMOS interface standards. Additionally, PCI 3.3, PCI-X and AGP-1X are all subsets of this type of interface.
The second type of interface implemented is the ter minated, single-ended interface standard. This group of inter-
faces includes different v ersions of SSTL and HSTL interf aces along with CTT and GTL+. Usage of these particular
I/O interf aces requires the use of an additional VREF signal. At the system level, a termination voltage, VTT, is also
required. Typically, an output will be terminated to VTT at the receiving end of the transmission line it is driving.
The nal types of interfaces implemented are the differential standards LVDS and LVPECL. These interfaces are
implemented on clock pins only. When using one of the differential standards, a pair of global clock pins (GCLK0
and GCLK1 or GCLK3 and GCLK2) is combined to create a single clock signal.
For more information on the sysIO capability, please refer to Technical Note TN1000:
ispMACH 5000VG sysIO
Design and Usage Guidelines
.
GLB Clock Distribution
The ispMACH 5000VG family has four dedicated clock input pins: GCLK0-GCLK3. GLCK0 and GCLK3 can be
routed through a PLL circuit or routed directly to the internal clock nets. The inter nal clock nets (CLK0-CLK3) are
directly related to the dedicated clock pins (see Secondary Clock Divider exception when using the sysCLOCK cir-
cuit). These feed the GLB clock m ultiplex es which generate the GLB clock signals (BCLK0-BCLK3). The GLB clock
multiplexer allows a variety of true and complementary versions of the clocks to be used within the GLB. Each
block clock can be the true or inverse of its associated global clock or the inverse of the adjacent global clock.
Figure 9 shows the clock distribution network.
Figure 9. Clock Distribution Network
sysCLOCK PLLs Global Clock Routing GLB Clock Routing
Clock Net
PLL0
CLK_OUT0
SEC_OUT0
VREF0 CLK0
CLK1
GCLK0
GCLK1
I/O/CLK_OUT0
Clock Net
Clock Net
PLL1
CLK_OUT1
SEC_OUT1
CLK3
CLK2
GCLK3
GCLK2
I/O/CLK_OUT1
Clock Net
BCLK0
BCLK1
BCLK2
BCLK3
To Macrocells
To Macrocells
To Macrocells
To Macrocells
VREF1
VREF3
VREF2
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
10
sysCLOCK PLL
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset and feedback
signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and gener-
ate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are
deskewed either at the board level or the device level.
The ispMACH 5000VG devices provide two PLL circuits. PLL0 receives its clock inputs from GCLK 0 and provides
outputs to CLK 0 (CLK 1 when using the secondary clock). PLL1 operates with signals from GCLK 3 and CLK 3
(CLK 2 when using the secondary clock). The PLL outputs (CLK_OUT) are routed via a dedicated net to a dedi-
cated pad. Further the buffers at these dedicated pads are regular I/O buffers that can select either the I/O macro-
cell or the CLK_OUT (CLK_OUT0/CLK_OUT1) signal. The CLK_OUT nets are not routed through the GRP.
Additionally, there are two sets of signals used for external control. Each PLL has a set of PLL_RST, PLL_FBK and
PLL_LOCK signals. Figure 10 shows the ispMACH 5000VG PLL block diagram.
Figure 10. PLL Block Diagram
In order to facilitate the multiply and divide capabilities of the PLL, each PLL has dividers associated with it: M, N
and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The
K divider is only used when a secondar y clock output is needed. This divider divides the pr imar y clock output and
feeds to a separate global clock net. The V divider is used to pro vide lo w er frequency output cloc ks , while maintain-
ing a stable, high frequency output from the PLLs VCO circuit.
The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and
clock-to-out times for better perfor mance. This operates by inserting delay on the input or feedback lines in 0.5ns
increments from 0 to 3.5ns. For more information on the PLL, please refer to Technical Note TN1003:
ispMACH
5000VG PLL Usage Guidelines
.
Power Management
The ispMACH 5000VG devices provide unique power management controls. The devices have two power settings,
high power and low power, on a per node basis. Low power consumption is approximately 50% of high power con-
sumption with a timing delay adder (tLP) to the routing delay of the low power node. Each node can be congured
as either high pow er or low po w er. Howe v er, care should be taken when sharing product terms between nodes with
different power settings.
The ispMACH 5000VG devices also have a power-off feature for unused product terms. By default, any product
term that is not used is con gured as such. This allows the device to operate at minimal power consumption with-
out affecting the timing of the design. For more information on power management, please refer to Technical Note
TN1002:
Power Estimation in ispMACH 5000VG Devices
.
SEC_OUT
CLK_OUT
PLL_LOCK
CLK_IN
PLL_RST
PLL_FBK
Input Clock
(M) Divider Post-scalar
(V) Divider
VCO
and
Phase
Detector
Programable
Delay
Secondary
Clock
(K) Divider
Feedback
Loop
(N) Divider
Clock Net
Clock Net
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
11
IEEE 1149.1-Compliant Boundary Scan Testability
All ispMACH 5000VG devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This
allows functional testing of the circuit board on which the device is mounted through a serial scan path that can
access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded
directly onto test nodes, or test node data to be captured and shifted out for verication. In addition, these devices
can be linked into a board-level serial scan path for more board-level testing. The test access port has its own sup-
ply voltage and can operate with LVCMOS3.3, 2.5 and 1.8V standards.
sysIO Quick Conguration
To facilitate the most efcient board test, the physical nature of the I/O cells m ust be set bef ore running any continu-
ity tests. As these tests are fast, by nature, the overhead and time that is required for conguration of the I/Os’
physical nature should be minimal so that board test time is minimized. The ispMACH 5000VG family of devices
allows this by offering the user the ability to quickly congure the physical nature of the sysIO cells. This quick con-
guration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lat-
tice's ispVM™ System programming software can either perform the quick conguration through the PC parallel
port, or can generate the ATE or test vectors necessary for a third-party test system.
IEEE 1532-Compliant In-System Programming
In-system programming of devices provides a number of signicant benets including rapid prototyping, lower
inventor y levels, higher quality and the ability to make in-eld modications. All ispMACH 5000VG devices provide
In-System Programming (ISP
TM
) capability through their Boundary Scan Test Access Port. This capability has been
implemented in a manner that ensures that the por t remains compliant to the IEEE 1532 standard. By using IEEE
1532 as the communication interface through which ISP is achieved, customers get the benet of a standard, well-
dened interface.
The ispMACH 5000VG devices can be programmed across the commercial temperature and voltage range. The
PC-based Lattice software facilitates in-system programming of ispMACH 5000VG devices. The software takes the
JEDEC le output produced by the design implementation software, along with information about the scan chain,
and creates a set of v ectors used to driv e the scan chain. The software can use these vectors to driv e a scan chain
via the parallel port of a PC. Alternatively, the software can output les in formats understood by common auto-
mated test equipment. This equipment can then be used to program ispMACH 5000VG devices during the testing
of a circuit board.
Security Bit
A programmable security bit is provided on the ispMACH 5000VG devices as a deterrent to unauthorized copying
of the array conguration patterns. Once programmed, this bit prevents readback of the programmed pattern by a
device programmer, securing propr ietary design from competitors. The security bit also prevents programming and
verication. The entire device must be erased in order to erase the security bit.
Hot Socketing
The ispMA CH 5000VG devices are well suited f or those applications that require hot socketing capability. Hot sock-
eting a de vice requires that the de vice, when po wered do wn, can tolerate activ e signals on the I/Os and inputs with-
out being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active
signals.
Density Migration
The ispMACH 5000 family has been designed to ensure that different density devices in the same package have
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design tar-
geted for a high density device to a lower density device. However, the exact details of the nal resource utilization
will impact the likely success in each case.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
12
Absolute Maximum Ratings
1, 2, 3
Supply Voltage (V
CC
). . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V
PLL Supply Voltage (V
CCP
) . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V
Output Supply Voltage (V
CCO
). . . . . . . . . . . . . . . . . . -0.5 to 5.4V
Input Voltage Applied
4
. . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.6V
Tri-state Output Voltage Applied. . . . . . . . . . . . . . . . . -0.5 to 5.6V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150
°
C
Junction Temperature (Tj) with Power Applied. . . . . -55 to 130
°
C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specication is not implied.
2. Compliance with Lattice
Thermal Management
document is required.
3. All voltages referenced to GND.
4. Overshoot and Undershoot of -2V to (V
IH
(MAX)+2) volts is permitted for a duration of < 20ns.
Recommended Operating Conditions
Erase Reprogram Specications
Hot Socketing Characteristics
1,2,3
Symbol Parameter Min Max Units
V
CC
Supply Voltage 3.0 3.6 V
V
CCP
Supply Voltage for PLL block 3.0 3.6 V
V
CCJ
Supply Voltage for IEEE1149.1 Test Access Port 1.65 3.6 V
Tj (Commercial) Junction Commercial Operation 0 90 C
Tj (Industrial) Junction Industrial Operation -40 105 C
Note: V
CCJ
must be set in appropriate range to be compatible with desired LVCMOS standard.
Parameter Min Max Units
Erase/Reprogram Cycle 1000 Cycles
Symbol Parameter Condition Min Typ Max Units
I
DK
Input or I/O Leakage Current 0
V
IN
V
IH
(MAX) +/-100
µ
A
V
IH
(MAX)
V
IN
5.5V +/-100
µ
A
1. Insensitive to sequence of V
CC
and V
CCO
. However, assumes monotonic rise / fall rates for V
CC
and V
CCO
.
2. LVTTL, LVCMOS only
3. 0 < V
CC
V
CC
(MAX), 0 < V
CCO
V
CCO
(MAX)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
13
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol Parameter Condition Min Typ Max Units
I
IL
, I
IH
1
Input or I/O Leakage Current 0V
V
IN
V
IH
(MAX) +/-10
µ
A
I
PU
2
I/O Weak Pull-up Resistor Current 0
V
IN
0.7 V
CCO
V
CCO
= 3.3 -30 -150
µ
A
V
CCO
= 2.5 -20 -150
µ
A
V
CCO
= 1.8 -10 -150
µ
A
I
PD
2
I/O Weak Pull-down Resistor Current V
IL
(MAX)
V
IN
VIH (MAX) 30 150 µA
IBHLS2Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 µA
IBHHS2Bus Hold High Sustaining Current VIN = 0.7 VCCO
VCCO = 3.3 -30 µA
VCCO = 2.5 -20 µA
VCCO = 1.8 -10 µA
IBHLO2Bus Hold Low Overdrive Current 0V VIN VIH (MAX) 150 µA
IBHHO2Bus Hold High Overdrive Current 0V VIN VIH (MAX) -150 µA
ICC3, 4, 5 Operating Power Supply Current VCC = 3.3V 380 mA
VBHT Bus Hold Trip Points VIL
(MAX) VIH
(MIN) V
C1I/O Capacitance3VCC = 3.3V, VIO = 0 to VIH (MAX) —10 —pf
VCCO = 3.3V, 2.5, 1.8, 1.5
C2Clock Capacitance3 VCC = 3.3V, VIO = 0 to VIH (MAX) —10—pf
VCCO = 3.3V, 2.5, 1.8, 1.5
C3Global Input Capacitance3VCC = 3.3V, VIO = 0 to VIH (MAX) —10—pf
VCCO = 3.3V, 2.5, 1.8, 1.5
1. Input or I/O leakage current is measured with the pin congured as an input or as an I/O with the output driver tri-stated. It is not
measured with the output driver active. Bus maintenance circuits are disabled.
2. Only available for LVCMOS and LVTTL standards.
3. TA = 25°C, f = 1.0MHz.
4. Device congured with 16-bit counters.
5. ICC varies with specic device conguration and operating frequency.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
14
sysIO Recommended Operating Conditions2
Standard VCCO (V) VREF (V)
Min Max Min Max
LVCMOS 3.313.0 3.6
LVCMOS 2.5 2.3 2.7
LVCMOS 1.8 1.65 1.95
LVTTL 3.0 3.6
PCI 3.3 3.0 3.6
PCI-X 3.0 3.6
AGP-1X 3.15 3.45
SSTL 2 2.3 2.7 1.15 1.35
SSTL 3 3.0 3.6 1.3 1.7
CTT 3.3 3.0 3.6 1.35 1.65
CTT 2.5 2.3 2.7 1.35 1.65
HSTL 1.4 1.6 0.68 0.9
GTL+ 1.4 3.6 0.882 1.122
1. Software default setting.
2. Typical values for VCCO and VREF are the average of the Min and Max values.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
15
sysIO DC Electrical Characteristics
Over Recommended Operating Conditions
sysIO Differential Input DC Electrical Characteristics and Operating
Conditions
Standard VIL VIH VOL
Max (V) VOH
Min (V) IOL2
(mA) IOH2
(mA)Min (V) Max (V) Min (V) Max (V)
LVCMOS 3.31-0.3 0.8 2.0 5.5 0.4 2.4 20 -20
LVCMOS 3.3 -0.3 0.8 2.0 5.5 0.4 2.4 16, 12
8, 5.33, 4 -16, -12,
-8, -5.33, -4
0.2 VCCO - 0.2 0.1 -0.1
LVTTL -0.3 0.8 2.0 5.5 0.4 2.4 20 -20
0.2 VCCO - 0.2 0.1 -0.1
LVCMOS 2.5 -0.3 0.7 1.7 3.6 0.4 VCCO - 0.4 16, 12, 8,
5.33, 4 -16, -12, -8,
-5.33, -4
0.2 VCCO - 0.2 0.1 -0.1
LVCMOS 1.8 -0.3 0.35VCCO 0.65VCCO 3.6 0.4 VCCO-0.4 12, 8,
5.33, 4 -12, -8,
-5.33, -4
0.2 VCCO - 0.2 0.1 -0.1
PCI 3.3 -0.3 0.3VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5
PCI-X -0.3 0.35VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5
AGP-1X -0.3 0.3VCCO 0.5VCCO 3.6 0.1VCCO 0.9VCCO 1.5 -0.5
SSTL3 class I -0.3 VREF-0.2 VREF+0.2 3.6 0.7 VCCO-1.1 8 -8
SSTL3 class II -0.3 VREF-0.2 VREF+0.2 3.6 0.5 VCCO-0.9 16 -16
SSTL2 class I -0.3 VREF-0.18 VREF+0.18 3.6 0.54 VCCO-0.62 7.6 -7.6
SSTL2 class II -0.3 VREF-0.18 VREF+0.18 3.6 0.35 VCCO-0.43 15.2 -15.2
CTT 3.3 -0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.4 VREF+0.4 8 -8
CTT 2.5 -0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.4 VREF+0.4 8 -8
HSTL class I -0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCCO-0.4 8 -8
HSTL class III -0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCCO-0.4 24 -8
GTL+ -0.3 VREF-0.2 VREF+0.2 3.6 0.6 n/a 36 n/a
1. Software default setting
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of
the I/O bank, as shown in the logic signals connection table, shall not exceed 96mA.
Symbol Parameter Test Conditions Min Max
VINP . VINM LVDS Input voltage 0 2.4
VTHD LVDS Differential input
threshold ±100mV —
VIL LVPECL Input Voltage
Low VCC = 3.0 to 3.6V VCC-1.81 VCC-1.48
VCC = 3.3V 1.49V 1.83V
VIH LVPECL Input Voltage
High VCC = 3.0 to 3.6V VCC-1.17 VCC-0.88
VCC = 3.3V 2.14V 2.42V
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
16
ispMACH 5768VG External Switching Characteristics
Over Recommended Operating Conditions
Parameter Description1,2,3
-5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
tPD Data propagation delay, 5-PT bypass 5.0 7.5 10.0 12.0 ns
tPD_PTSA Data propagation delay, intrasegment path 6.0 9.0 11.5 13.5 ns
tPD_GLOBAL Data propagation delay, intersegment path 6.5 9.75 13.0 16.0 ns
tSGLB register setup time before clock,
5-PT bypass 3.0 5.0 7.5 9.3 ns
tS_PTSA GLB register setup time before clock 3.0 6.0 8.5 10.0 ns
tSIR GLB register setup time bef ore clock, input
register path 2.8 3.0 4.0 5.0 ns
tHGLB register hold time before clock, 5-PT
bypass 0.0 0.0 0.0 0.0 ns
tH_PTSA GLB register hold time before clock 0.0 0.0 0.0 0.0 ns
tHIR GLB register hold time before clock, input
reg. path 0.0 0.0 0.0 0.0 ns
tCO GLB register clock-to-output delay 4.4 5.0 6.0 7.0 ns
tRExternal reset pin to output delay 6.5 9.0 10.0 10.9 ns
tRW External reset pulse duration 4.0 6.0 8.0 9.5 ns
tLPTOE/DIS Input to output local product term output
enable/disable 7.0 9.75 11.5 13.4 ns
tSPTOE/DIS Input to output segment product term
output enable/disable 8.0 11.25 17.5 20.4 ns
tGOE/DIS Global OE input to output enable/disable 6.2 7.5 8.85 10.0 ns
tCW Global clock width, high or low 1.6 2.75 3.6 4.3 ns
tGW Global gate width low (for low transparent)
or high (for high transparent) 1.8 2.75 3.6 4.3 ns
tWIR Input register clock width, high or low 1.8 2.75 3.6 4.3 ns
tSKEW Clock-to-out skew, block level 0.25 0.35 0.45 0.55 ns
Clock-to-out skew, segment level 0.4 0.5 0.6 0.7 ns
fMAX4Clock frequency with internal feedback 178.6 117.0 87.0 73.0 MHz
fMAX (Ext.) Clock frequency with external feedback,
1/ (tS_PTSA + tCO)135.1 90.9 69.0 58.8 MHz
fMAX (Tog.) Clock frequency max Toggle 312.5 181.0 138.0 116.0 MHz
Timing v.1.20
1. Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards.
2. Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output
switching.
3. Pulse widths and clock widths less than minimum will cause unknown behavior.
4. Standard 16-bit counter using SRP feedback.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
17
ispMACH 51024VG External Switching Characteristics
Over Recommended Operating Conditions
Parameter Description1,2,3
-5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
tPD Data propagation delay, 5-PT bypass 5.0 7.5 10.0 12.0 ns
tPD_PTSA Data propagation delay, intrasegment path 6.0 9.0 11.5 13.5 ns
tPD_GLOBAL Data propagation delay, intersegment path 6.5 9.75 13.0 16.0 ns
tSGLB register setup time before clock,
5-PT bypass 3.0 5.0 7.5 9.3 ns
tS_PTSA GLB register setup time before clock 3.0 6.0 8.5 10.0 ns
tSIR GLB register setup time bef ore clock, input
register path 2.8 3.0 4.0 5.0 ns
tHGLB register hold time before clock, 5-PT
bypass 0.0 0.0 0.0 0.0 ns
tH_PTSA GLB register hold time before clock 0.0 0.0 0.0 0.0 ns
tHIR GLB register hold time before clock, input
reg. path 0.0 0.0 0.0 0.0 ns
tCO GLB register clock-to-output delay 4.4 5.0 6.0 7.0 ns
tRExternal reset pin to output delay 6.5 9.0 10.0 10.9 ns
tRW External reset pulse duration 4.0 6.0 8.0 9.5 ns
tLPTOE/DIS Input to output local product term output
enable/disable 7.0 9.75 11.5 13.4 ns
tSPTOE/DIS Input to output segment product term
output enable/disable 8.0 11.25 17.5 20.4 ns
tGOE/DIS Global OE input to output enable/disable 6.2 7.5 8.85 10.0 ns
tCW Global clock width, high or low 1.6 2.75 3.6 4.3 ns
tGW Global gate width low (for low transparent)
or high (for high transparent) 1.8 2.75 3.6 4.3 ns
tWIR Input register clock width, high or low 1.8 2.75 3.6 4.3 ns
tSKEW Clock-to-out skew, block level 0.25 0.35 0.45 0.55 ns
Clock-to-out skew, segment level 0.4 0.5 0.6 0.7 ns
fMAX4Clock frequency with internal feedback 178.6 117.0 87.0 73.0 MHz
fMAX (Ext.) Clock frequency with external feedback,
1/ (tS_PTSA + tCO)135.1 90.9 69.0 58.8 MHz
fMAX (Tog.) Clock frequency max Toggle 312.5 181.0 138.0 116.0 MHz
Timing v.1.10
1. Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards.
2. Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output
switching.
3. Pulse widths and clock widths less than minimum will cause unknown behavior.
4. Standard 16-bit counter using SRP feedback.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
18
Timing Model
The task of determining the timing through the ispMACH 5000VG family, like any CPLD, is relatively simple. The
timing model provided in Figure 11 shows the specic delay paths. Once the implementation of a given function is
determined either conceptually or from the software repor t le, the delay path of the function can easily be deter-
mined from the timing model. The Lattice design tools report the timing delays based on the same timing model f or
a par ticular design. Note that the inter nal timing parameters are given for reference only, and are not tested. The
exter nal timing parameters are tested and guaranteed for ever y device. For more infor mation on the timing model
and usage, please ref er to Technical Note TN1001: ispMA CH 5000VG Timing Model Design and Usage Guidelines .
Figure 11. ispMACH 5000VG Timing Model
IN tIN
t
IOI
OUT
SCLK
From Feedback
RST
OE
Feedbac
k
Italicized items are o
p
tional dela
y
adders
tINREG
tROUTE
tPDb
tPDi tFBK
tBUF
tEN
tDIS
t
IOO
Data
MC Reg
C.E.
S/R
Q
tPTSA
tPTCLK
tBCLK
tPTSR
tBSR
tSPTOE
tPTOE
t
GRP
t
BLK
t
EXP
t
LP
tPLL_DELAY
t
PLL_SEC_DELAY
tGCLK
tRST
tGOE
t
IOI
t
IOI
t
IOI
t
GCLK_IN
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
19
ispMACH 5768VG Internal Timing Parameters
Over Recommended Operating Conditions
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
In/Out Delays
tIN Input Buffer Delay 0.65 0.95 1.25 1.40 ns
tGCLK_IN Global Clock Input Buffer Delay 0.65 0.95 1.25 1.40 ns
tGOE Global OE Pin Delay 4.05 5.00 6.00 7.00 ns
tBUF Delay through Output Buffer 1.15 1.50 1.75 1.90 ns
tEN Output Enable Time 2.15 2.50 2.85 3.00 ns
tDIS Output Disable Time 2.15 2.50 2.85 3.00 ns
tRSTb Global RESETbar Pin Delay 4.60 6.50 7.00 7.50 ns
Routing Delays
tROUTE Delay through SRP 2.80 4.20 5.65 6.90 ns
tPTSA Product Term Sharing Array Delay 0.40 1.85 2.35 2.50 ns
tPDB 5-PT Bypass Propagation Delay 0.40 0.85 1.35 1.80 ns
tPDi Macrocell Propagation Delay 1.00 0.50 0.50 0.80 ns
tINREG Input Buffer to Macrocell Register Delay 3.00 3.05 3.50 4.40 ns
tFBK Internal Feedback Delay 0.00 0.00 0.00 0.00 ns
tGCLK Global Clock Tree Delay 0.85 0.70 0.55 0.65 ns
tPLL_DELAY Programmable PLL Delay Increment 0.50 0.50 0.50 0.50 ns
tPLL_SEC_DELAY Additional Delay When Using Secondary PLL
Output 0.60 0.60 0.60 0.60 ns
tGRP Global Routing Pool Delay 1.50 2.25 3.00 4.00 ns
Register/Latch Delays
tSD-Register Setup Time 0.65 0.65 1.05 1.25 ns
tS_PT D-Register Setup Time with PT Clock 0.65 0.65 1.05 1.25 ns
tHD-Register Hold Time 0.00 0.00 0.00 0.00 ns
tST T-Register Setup Time 1.15 1.15 1.55 1.75 ns
tST_PT T-Register Setup Time with PT Clock 1.15 1.15 1.55 1.75 ns
tHT T-Register Hold Time 0.00 0.00 0.00 0.00 ns
tCOi Register Clock to Output/Feedback MUX Time 1.75 1.85 2.45 3.05 ns
tCES Clock Enable Setup Time 2.60 3.90 5.05 5.95 ns
tCEH Clock Enable Hold Time 0.60 0.90 1.20 1.45 ns
tSL Latch Setup Time 2.80 4.20 5.50 6.60 ns
tSL_PT Latch Setup Time with PT Clock 2.80 4.20 5.50 6.60 ns
tHL Latch Hold Time 0.00 0.00 0.00 0.00 ns
tGOi Latch Gate to Output/Feedback MUX Time 1.75 2.50 3.50 4.50 ns
tPDLi Propagation Delay through Transparent Latch to
Output/Feedback MUX 2.40 3.50 4.00 4.50 ns
tSRi Asynchronous Reset or Set to Output/Feedback
MUX Delay 0.75 1.00 1.25 1.50 ns
tSRR Asynchronous Reset or Set Recovery Delay 1.00 1.50 2.00 2.50 ns
Control Delays
tBCLK GLB PT Clock Delay 3.10 4.65 6.00 7.00 ns
tPTCLK Macrocell PT Clock Delay 3.00 4.50 6.00 7.00 ns
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
20
tBSR Block PT Set/Reset Delay 2.00 3.00 4.00 4.80 ns
tPTSR Macrocell PT Set/Reset Delay 2.00 3.00 4.00 4.80 ns
tSPTOE Segment PT OE Delay 2.40 3.60 7.75 9.10 ns
tPTOE Macrocell PT OE Delay 1.40 2.10 1.75 2.10 ns
Notes: Timing v.1.20
1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to 3.5ns in either
direction in units of 0.5ns for each step.
ispMACH 51024VG Internal Timing Parameters
Over Recommended Operating Conditions
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
In/Out Delays
tIN Input Buffer Delay 0.65 0.95 1.25 1.40 ns
tGCLK_IN Global Clock Input Buffer Delay 0.65 0.95 1.25 1.40 ns
tGOE Global OE Pin Delay 4.05 5.00 6.00 7.00 ns
tBUF Delay through Output Buffer 1.15 1.50 1.75 1.90 ns
tEN Output Enable Time 2.15 2.50 2.85 3.00 ns
tDIS Output Disable Time 2.15 2.50 2.85 3.00 ns
tRSTb Global RESETbar Pin Delay 4.60 6.50 7.00 7.50 ns
Routing Delays
tROUTE Delay through SRP 2.80 4.20 5.65 6.90 ns
tPTSA Product Term Sharing Array Delay 0.40 1.85 2.35 2.50 ns
tPDB 5-PT Bypass Propagation Delay 0.40 0.85 1.35 1.80 ns
tPDi Macrocell Propagation Delay 1.00 0.50 0.50 0.80 ns
tINREG Input Buffer to Macrocell Register Delay 3.00 3.05 3.50 4.40 ns
tFBK Internal Feedback Delay 0.00 0.00 0.00 0.00 ns
tGCLK Global Clock Tree Delay 0.85 0.70 0.55 0.65 ns
tPLL_DELAY Programmable PLL Delay Increment 0.50 0.50 0.50 0.50 ns
tPLL_SEC_DELAY Additional Delay When Using Secondary PLL
Output 0.60 0.60 0.60 0.60 ns
tGRP Global Routing Pool Delay 1.50 2.25 3.00 4.00 ns
Register/Latch Delays
tSD-Register Setup Time 0.65 0.65 1.05 1.25 ns
tS_PT D-Register Setup Time with PT Clock 0.65 0.65 1.05 1.25 ns
tHD-Register Hold Time 0.00 0.00 0.00 0.00 ns
tST T-Register Setup Time 1.15 1.15 1.55 1.75 ns
tST_PT T-Register Setup Time with PT Clock 1.15 1.15 1.55 1.75 ns
tHT T-Register Hold Time 0.00 0.00 0.00 0.00 ns
tCOi Register Clock to Output/Feedback MUX Time 1.75 1.85 2.45 3.05 ns
ispMACH 5768VG Internal Timing Parameters (Continued)
Over Recommended Operating Conditions
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
21
tCES Clock Enable Setup Time 2.60 3.90 5.05 5.95 ns
tCEH Clock Enable Hold Time 0.60 0.90 1.20 1.45 ns
tSL Latch Setup Time 2.80 4.20 5.50 6.60 ns
tSL_PT Latch Setup Time with PT Clock 2.80 4.20 5.50 6.60 ns
tHL Latch Hold Time 0.00 0.00 0.00 0.00 ns
tGOi Latch Gate to Output/Feedback MUX Time 1.75 2.50 3.50 4.50 ns
tPDLi Propagation Delay through Transparent Latch to
Output/Feedback MUX 2.40 3.50 4.00 4.50 ns
tSRi Asynchronous Reset or Set to Output/Feedback
MUX Delay 0.75 1.00 1.25 1.50 ns
tSRR Asynchronous Reset or Set Recovery Delay 1.00 1.50 2.00 2.50 ns
Control Delays
tBCLK GLB PT Clock Delay 3.10 4.65 6.00 7.00 ns
tPTCLK Macrocell PT Clock Delay 3.00 4.50 6.00 7.00 ns
tBSR Block PT Set/Reset Delay 2.00 3.00 4.00 4.80 ns
tPTSR Macrocell PT Set/Reset Delay 2.00 3.00 4.00 4.80 ns
tSPTOE Segment PT OE Delay 2.40 3.60 7.75 9.10 ns
tPTOE Macrocell PT OE Delay 1.40 2.10 1.75 2.10 ns
Notes: Timing v.1.10
1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal b y up to 3.5ns in either
direction in units of 0.5ns for each step.
ispMACH 51024VG Internal Timing Parameters (Continued)
Over Recommended Operating Conditions
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
22
ispMACH 5768VG Timing Adders
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
tBLA tROUTE GLB Loading Adder 0.0 0.0 0.0 0.0 ns
tEXP tPTSA PT Expander Adder 1.5 2.0 2.5 2.5 ns
tLP tROUTE Low Power Adder 1.5 1.5 1.5 1.5 ns
tIOI Input Adders
LVCMOS18_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS1.8
standard 0.90 0.90 0.90 0.90 ns
LVCMOS25_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS2.5
standard 0.15 0.15 0.15 0.15 ns
LVCMOS33_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS3.3
standard —0.0—0.0—0.0 0.0 ns
LVTTL tIN, tGCLK_IN,
tRSTb, tGOE Using LVTTL standard 0.0 0.0 0.0 0.0 ns
PCI_in tIN, tGCLK_IN,
tRSTb, tGOE Using PCI standard 0.0 0.0 0.0 0.0 ns
PCI_X_in tIN, tGCLK_IN,
tRSTb, tGOE Using PCI_X
standard —0.0—0.0—0.0 0.0 ns
AGP_1X_in tIN, tGCLK_IN,
tRSTb, tGOE Using AGP-1X
standard —0.0—0.0—0.0 0.0 ns
SSTL3_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL3_I
standard 1.00 1.00 1.00 1.00 ns
SSTL3_II_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL3_II
standard 1.00 1.00 1.00 1.00 ns
SSTL2_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL2_I
standard 1.00 1.00 1.00 1.00 ns
SSTL2_II_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL2_II
standard 1.00 1.00 1.00 1.00 ns
CTT33_in tIN, tGCLK_IN,
tRSTb, tGOE Using CTT3.3
standard —0.0—0.0—0.0 0.0 ns
CTT25_in tIN, tGCLK_IN,
tRSTb, tGOE Using CTT2.5
standard 0.15 0.15 0.15 0.15 ns
HSTL_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using HSTL_I
standard 1.25 1.25 1.25 1.25 ns
HSTL_III_in tIN, tGCLK_IN,
tRSTb, tGOE Using HSTL_III
standard 1.25 1.25 1.25 1.25 ns
GTL+_in tIN, tGCLK_IN,
tRSTb, tGOE Using GTL+
standard 1.50 1.50 1.50 1.50 ns
LVDS_in tGCLK_IN Using LVDS
standard 1.70 1.70 1.70 1.70 ns
LVPECL_in tGCLK_IN Using LVPECL
standard 2.10 2.10 2.10 2.10 ns
tIOO Output Adders
LVCMOS18_4mA_out tBUF, tEN, tDIS Output congured as
1.8V & 4mA Buffer 3.00 3.00 3.00 3.00 ns
LVCMOS18_5mA_out tBUF, tEN, tDIS Output congured as
1.8V & 5.33mA Buffer 2.50 2.50 2.50 2.50 ns
LVCMOS18_8mA_out tBUF, tEN, tDIS Output congured as
1.8V & 8mA Buffer 1.85 1.85 1.85 1.85 ns
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.20
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
23
LVCMOS18_12mA_out tBUF, tEN, tDIS Output congured as
1.8V & 12mA Buffer 1.35 1.35 1.35 1.35 ns
LVCMOS25_4mA_out tBUF, tEN, tDIS Output congured as
2.5V & 4mA Buffer 1.50 1.50 1.50 1.50 ns
LVCMOS25_5mA_out tBUF, tEN, tDIS Output congured as
2.5V & 5.33mA Buffer 1.25 1.25 1.25 1.25 ns
LVCMOS25_8mA_out tBUF, tEN, tDIS Output congured as
2.5V & 8mA Buffer 0.70 0.70 0.70 0.70 ns
LVCMOS25_12mA_out tBUF, tEN, tDIS Output congured as
2.5V & 12mA Buffer 0.50 0.50 0.50 0.50 ns
LVCMOS25_16mA_out tBUF, tEN, tDIS Output congured as
2.5V & 16mA Buffer 0.25 0.25 0.25 0.25 ns
LVCMOS33_4mA_out tBUF, tEN, tDIS Output congured as
3.3V & 4mA Buffer 1.50 1.50 1.50 1.50 ns
LVCMOS33_5mA_out tBUF, tEN, tDIS Output congured as
3.3V & 5.33mA Buffer 1.25 1.25 1.25 1.25 ns
LVCMOS33_8mA_out tBUF, tEN, tDIS Output congured as
3.3V & 8mA Buffer 0.40 0.40 0.40 0.40 ns
LVCMOS33_12mA_out tBUF, tEN, tDIS Output congured as
3.3V & 12mA Buffer 0.10 0.10 0.10 0.10 ns
LVCMOS33_16mA_out tBUF, tEN, tDIS Output congured as
3.3V & 16mA Buffer —0.0—0.0—0.0 0.0 ns
LVCMOS33_20mA_out tBUF, tEN, tDIS Output congured as
3.3V & 20mA Buffer —0.0—0.0—0.0 0.0 ns
LVTTL tBUF, tEN, tDIS Output congured as
LVTTL Buffer —0.0—0.0—0.0 0.0 ns
Slow Slew tBUF, tEN Output congured for
slow slew rate 1.50 1.50 1.50 1.50 ns
PCI_out tBUF, tEN, tDIS Using PCI standard 0.0 0.0 0.0 0.0 ns
PCI_X_out tBUF, tEN, tDIS Using PCI-X
standard —0.0—0.0—0.0 0.0 ns
AGP_1X_out tBUF, tEN, tDIS Using AGP-1X
standard —0.0—0.0—0.0 0.0 ns
SSTL3_I_out tBUF, tEN, tDIS Using SSTL3_I
standard -0.25 -0.25 -0.25 -0.25 ns
SSTL3_II_out tBUF, tEN, tDIS Using SSTL3_II
standard -0.35 -0.35 -0.35 -0.35 ns
SSTL2_I_out tBUF, tEN, tDIS Using SSTL2_I
standard —0.0—0.0—0.0 0.0 ns
SSTL2_II_out tBUF, tEN, tDIS Using SSTL2_II
standard -0.25 -0.25 -0.25 -0.25 ns
CTT33_out tBUF, tEN, tDIS Using CCT3.3
standard —0.0—0.0—0.0 0.0 ns
CTT25_out tBUF, tEN, tDIS Using CCT2.5
standard 0.25 0.25 0.25 0.25 ns
HSTL_I_out tBUF, tEN, tDIS Using HSTL_I
standard -0.30 -0.30 -0.30 -0.30 ns
ispMACH 5768VG Timing Adders (Continued)
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.20
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
24
HSTL_III_out tBUF, tEN, tDIS Using HSTL_III
standard 0.00 0.00 0.00 0.00 ns
GTL+_out tBUF, tEN, tDIS Using GTL+
standard 0.30 0.30 0.30 0.30 ns
ispMACH 51024VG Timing Adders
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
tBLA tROUTE GLB Loading Adder 0.0 0.0 0.0 0.0 ns
tEXP tPTSA PT Expander Adder 1.5 2.0 2.5 2.5 ns
tLP tROUTE Low Power Adder 1.5 1.5 1.5 1.5 ns
tIOI Input Adders
LVCMOS18_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS1.8
standard 0.90 0.90 0.90 0.90 ns
LVCMOS25_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS2.5
standard 0.15 0.15 0.15 0.15 ns
LVCMOS33_in tIN, tGCLK_IN,
tRSTb, tGOE Using LVCMOS3.3
standard —0.0—0.0—0.0 0.0 ns
LVTTL tIN, tGCLK_IN,
tRSTb, tGOE Using LVTTL standard 0.0 0.0 0.0 0.0 ns
PCI_in tIN, tGCLK_IN,
tRSTb, tGOE Using PCI standard 0.0 0.0 0.0 0.0 ns
PCI_X_in tIN, tGCLK_IN,
tRSTb, tGOE Using PCI_X
standard —0.0—0.0—0.0 0.0 ns
AGP_1X_in tIN, tGCLK_IN,
tRSTb, tGOE Using AGP-1X
standard —0.0—0.0—0.0 0.0 ns
SSTL3_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL3_I
standard 1.00 1.00 1.00 1.00 ns
SSTL3_II_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL3_II
standard 1.00 1.00 1.00 1.00 ns
SSTL2_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL2_I
standard 1.00 1.00 1.00 1.00 ns
SSTL2_II_in tIN, tGCLK_IN,
tRSTb, tGOE Using SSTL2_II
standard 1.00 1.00 1.00 1.00 ns
CTT33_in tIN, tGCLK_IN,
tRSTb, tGOE Using CTT3.3
standard —0.0—0.0—0.0 0.0 ns
CTT25_in tIN, tGCLK_IN,
tRSTb, tGOE Using CTT2.5
standard 0.15 0.15 0.15 0.15 ns
HSTL_I_in tIN, tGCLK_IN,
tRSTb, tGOE Using HSTL_I
standard 1.25 1.25 1.25 1.25 ns
HSTL_III_in tIN, tGCLK_IN,
tRSTb, tGOE Using HSTL_III
standard 1.25 1.25 1.25 1.25 ns
GTL+_in tIN, tGCLK_IN,
tRSTb, tGOE Using GTL+
standard 1.50 1.50 1.50 1.50 ns
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.10
ispMACH 5768VG Timing Adders (Continued)
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.20
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
25
LVDS_in tGCLK_IN Using LVDS
standard 1.70 1.70 1.70 1.70 ns
LVPECL_in tGCLK_IN Using LVPECL
standard 2.10 2.10 2.10 2.10 ns
tIOO Output Adders
LVCMOS18_4mA_out tBUF, tEN, tDIS Output congured as
1.8V & 4mA Buffer 3.00 3.00 3.00 3.00 ns
LVCMOS18_5mA_out tBUF, tEN, tDIS Output congured as
1.8V & 5.33mA Buffer 2.50 2.50 2.50 2.50 ns
LVCMOS18_8mA_out tBUF, tEN, tDIS Output congured as
1.8V & 8mA Buffer 1.85 1.85 1.85 1.85 ns
LVCMOS18_12mA_out tBUF, tEN, tDIS Output congured as
1.8V & 12mA Buffer 1.35 1.35 1.35 1.35 ns
LVCMOS25_4mA_out tBUF, tEN, tDIS Output congured as
2.5V & 4mA Buffer 1.50 1.50 1.50 1.50 ns
LVCMOS25_5mA_out tBUF, tEN, tDIS Output congured as
2.5V & 5.33mA Buffer 1.25 1.25 1.25 1.25 ns
LVCMOS25_8mA_out tBUF, tEN, tDIS Output congured as
2.5V & 8mA Buffer 0.70 0.70 0.70 0.70 ns
LVCMOS25_12mA_out tBUF, tEN, tDIS Output congured as
2.5V & 12mA Buffer 0.50 0.50 0.50 0.50 ns
LVCMOS25_16mA_out tBUF, tEN, tDIS Output congured as
2.5V & 16mA Buffer 0.25 0.25 0.25 0.25 ns
LVCMOS33_4mA_out tBUF, tEN, tDIS Output congured as
3.3V & 4mA Buffer 1.50 1.50 1.50 1.50 ns
LVCMOS33_5mA_out tBUF, tEN, tDIS Output congured as
3.3V & 5.33mA Buffer 1.25 1.25 1.25 1.25 ns
LVCMOS33_8mA_out tBUF, tEN, tDIS Output congured as
3.3V & 8mA Buffer 0.40 0.40 0.40 0.40 ns
LVCMOS33_12mA_out tBUF, tEN, tDIS Output congured as
3.3V & 12mA Buffer 0.10 0.10 0.10 0.10 ns
LVCMOS33_16mA_out tBUF, tEN, tDIS Output congured as
3.3V & 16mA Buffer —0.0—0.0—0.0 0.0 ns
LVCMOS33_20mA_out tBUF, tEN, tDIS Output congured as
3.3V & 20mA Buffer —0.0—0.0—0.0 0.0 ns
LVTTL tBUF, tEN, tDIS Output congured as
LVTTL Buffer —0.0—0.0—0.0 0.0 ns
Slow Slew tBUF, tEN Output congured for
slow slew rate 1.50 1.50 1.50 1.50 ns
PCI_out tBUF, tEN, tDIS Using PCI standard 0.0 0.0 0.0 0.0 ns
PCI_X_out tBUF, tEN, tDIS Using PCI-X
standard —0.0—0.0—0.0 0.0 ns
AGP_1X_out tBUF, tEN, tDIS Using AGP-1X
standard —0.0—0.0—0.0 0.0 ns
SSTL3_I_out tBUF, tEN, tDIS Using SSTL3_I
standard -0.25 -0.25 -0.25 -0.25 ns
SSTL3_II_out tBUF, tEN, tDIS Using SSTL3_II
standard -0.35 -0.35 -0.35 -0.35 ns
ispMACH 51024VG Timing Adders (Continued)
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.10
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
26
SSTL2_I_out tBUF, tEN, tDIS Using SSTL2_I
standard —0.0—0.0—0.0 0.0 ns
SSTL2_II_out tBUF, tEN, tDIS Using SSTL2_II
standard -0.25 -0.25 -0.25 -0.25 ns
CTT33_out tBUF, tEN, tDIS Using CCT3.3
standard —0.0—0.0—0.0 0.0 ns
CTT25_out tBUF, tEN, tDIS Using CCT2.5
standard 0.25 0.25 0.25 0.25 ns
HSTL_I_out tBUF, tEN, tDIS Using HSTL_I
standard -0.30 -0.30 -0.30 -0.30 ns
HSTL_III_out tBUF, tEN, tDIS Using HSTL_III
standard 0.00 0.00 0.00 0.00 ns
GTL+_out tBUF, tEN, tDIS Using GTL+
standard 0.30 0.30 0.30 0.30 ns
ispMACH 51024VG Timing Adders (Continued)
Adder
Type Base
Parameter Description -5 -75 -10 -12 UnitsMin Max Min Max Min Max Min Max
Note: Open drain timing is the same as corresponding LVCMOS timing. Timing v.1.10
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
27
sysCLOCK PLL Timing
Over Recommended Operating Conditions1
Boundary Scan Timing Specications
Symbol Parameter Conditions Min Max Units
tR,tFInput clock, rise and fall time 20% to 80% 3.0 ns
tINSTB Input clock stability, period jitter (peak)1——+/- 200 ps
tPWH Input clock, high time 1.6 ns
tPWL Input clock, low time 1.6 ns
fMDIVIN M Divider input, frequency range 5 180 MHz
fMDIVOUT M Divider output, frequency range 5 180 MHz
fVDIVIN V Divider input, frequency range 60 200 MHz
fVDIVOUT V Divider output, frequency range 5 180 MHz
tOUTDUTY Output clock, duty cycle 40 60 %
tJIT(CC) Output clock, cycle to cycle jitter (peak)
Clean Reference,
5MHz fMDIVOUT < 80MHz +/- 200 ps
Clean Reference,
80MHz fMDIVOUT 180MHz +/- 100 ps
tJIT(φ)Output clock, accumulated phase jitter (peak)
2
Clean Reference,
5MHz fMDIVOUT < 80MHz +/- 200 ps
Clean Reference,
80MHz fMDIVOUT 180MHz +/- 100 ps
tCLK_OUT_DLY Input clock to CLK_OUT delay Internal feedback 1 ns
tφInput clock to external feedback delta External feedback 500 ps
tLOCK Time to acquire phase lock after input stable 30 µs
tPLL_DELAY Delay increment +/- 0.35 +/- 0.65 ns
tRANGE Total output delay range +/- 2.45 +/- 4.55 ns
tPLL_RSTR Reset recovery time of the M-divider 11.0 ns
tPLL_RSTW Minimum reset pulse width 6.0 ns
1. This condition assures that the output phase jitter (tJIT(φ)) will remain within specication.
2. Accumulated jitter measured over 10,000 waveform samples.
Symbol Parameter Min. Max. Units
tBTCP TCK [BSCAN test] clock cycle 40 ns
tBTCH TCK [BSCAN test] pulse width high 20 ns
tBTCL TCK [BSCAN test] pulse width low 20 ns
tBTSU TCK [BSCAN test] setup time 8 ns
tBTH TCK [BSCAN test] hold time 10 ns
tBRF TCK [BSCAN test] rise and fall time 50 mV/ns
tBTCO TAP controller falling edge of clock to valid output 10 ns
tBTOZ TAP controller falling edge of clock to data output disable 10 ns
tBTVO TAP controller falling edge of clock to data output enable 10 ns
tBVTCPSU BSCAN test Capture register setup time 8 ns
tBTCPH BSCAN test Capture register hold time 10 ns
tBTUCO BSCAN test Update reg, falling edge of clock to valid output 25 ns
tBTUOZ BSCAN test Update reg, falling edge of clock to output disable 25 ns
tBTUOV BSCAN test Update reg, falling edge of clock to output enable 25 ns
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
28
ispMACH 5000VG Typical Power vs. Frequency
Power Estimation Coefcients
Device K0 K1 K2 K3 K4 K5 K6 IDC (mA) IDCO (mA)
ispMACH 5768VG 0.0014 0.0014 0.054 1.5 0.152 0.105 5.0 65 20
ispMACH 51024VG 0.0014 0.0014 0.054 1.5 0.152 0.105 5.0 80 20
Note: For further information about the use of these coefcients, refer to Technical Note TN1002, Power Estimation in ispMACH 5000VG
Devices.
K0 = average current per product term in high power/MHz
K1 = average current per product term in low power/MHz
K2 = average current per GRP line/MHz
K3 = average current per PLL/MHz
K4 = DC current per product terms in high power
K5 = DC current per product terms in low power
K6 = Static DC current per PLL
IDC = Static device current with all product terms powered off
IDCO = Static I/O bank current
Icc estimates are based on typical conditions (Vcc = 3.3V, room temperature) and an assumption of one GLB load on average exists. These
values are f or estimates only. Since the v alue of Icc is sensitiv e to operating conditions and the prog ram in the de vice, the actual Icc should be
veried.
100
060120 150 180
fMAX (MHz)
ICC (mA)
Note: The devices are configured with maximum number of 16-bit counters, no PLL, typical current at 3.3V, 25° C.
300
600
700
500
400
200
0
51024VG High Power Mode
5768VG High Power Mode
100
060120 150 180
fMAX (MHz)
ICC (mA)
300
600
700
500
400
200
0
5768VG Low Power Mode
51024VG Low Power Mode
ispMACH 5000VG ICC Curves
at High Power Mode ispMACH 5000VG ICC Curves
at Low Power Mode
Power Consumption
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
29
Switching Test Conditions
Figure 12 shows the output test load that is used for AC testing. The specic values for resistance, capacitance,
voltage, and other test conditions are shown in Table 3.
Figure 12. Output Test Load, LVTTL and LVCMOS Standards
Output test conditions for all other interfaces are determined by the respective standards. For further details,
please refer to the following technical note:
ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000)
Table 3. Test Fixture Required Components
Test Condition R1R2CLTiming Ref. VCCO
Default LVCMOS 3.3 I/O (L -> H, H -> L) 110 110 35pF 1.5 3.0V
Other LVCMOS Settings, (L -> H, H -> L) ∞∞ 35pF LVCMOS 3.3 = 1.5V LVCMOS 3.3 = 3.0V
LVCMOS 2.5 = VCCO/2 LVCMOS 2.5 = 2.3V
LVCMOS 1.8 = VCCO/2 LVCMOS 1.8 = 1.65V
Default LVCMOS 3.3 I/O (Z -> H) 110 35pF 1.5V 3.0V
Default LVCMOS 3.3 I/O (Z -> L) 110 35pF 1.5V 3.0V
Default LVCMOS 3.3 I/O (H -> Z) 110 5pF VOH - 0.3 3.0V
Default LVCMOS 3.3 I/O (L -> Z) 110 5pF VOL + 0.3 3.0V
VCCO
R1
R2CL*
DUT Test
Point
*CL includes Test Fixture and Probe Capacitance.
0213A/ispm5kvg
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
30
Signal Descriptions
Signal Names Description
TMS Input - This pin is the Test Mode Select input, which is used to control the 1149.1 state machine.
TCK Input - This pin is the Test Clock input pin, used to clock the 1149.1 state machine.
TDI Input - This pin is the 1149.1 Test Data In pin, used to load data.
TDO Output - This pin is the 1149.1 Test Data Out pin used to shift data out.
TOE Input - Test Output Enable pin. TOE tristates all I/O pins when a logic low is driven.
GOE0, GOE1 Input - These two pins are the Global Output Enable input pins.
RESETB Dedicated Reset Input - This pin resets all registers in the devices. The global polarity (active high or
low input) for this pin is selectable.
xyzz (e.g. 0A16)
Input/Output - These are the general purpose I/O used by the logic array. x is segment reference
(numeric), y is GLB reference (alpha) and z is macrocell reference (numeric).
x: 0-7 (1024)
x: 0-5 (768)
y: A-D
z: 0-31
GND Ground
NC No connect
VCC Vcc - These are the power supply pins for the logic core.
GCLK0, GCLK3 Input - These pins are congured to be either dedicated CLK input or PLL input.
GCLK1, GCLK2 Input - These pins are dedicated CLK input.
CLK_OUT0,
CLK_OUT1 Output - These pins are the PLL output pins.
PLL_RST0,
PLL_RST1 Input - These pins are for resetting the PLL, input clock (M) divider.
VREF0, VREF1,
VREF2, VREF3 Input - These are the reference supplies for the I/O banks.
PLL_FBK0,
PLL_FBK1 Input - These PLL feedback inputs allow optional external PLL feedback.
VCCP0, VCCP1 VCC - These are the VCC supplies for the PLLs.
VCCO0, VCCO1, VCCO2,
VCCO3 VCC - These are the VCC supplies for each I/O bank.
GNDP0, GNDP1 GND - These are the separate ground connections for the PLLs.
VCCJ VCC - This pin is for the 1149.1 test access port.
Note: For above, signal CLK_OUT0 connects to PLL0, and signal CLK_OUT1 connects to PLL1.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
31
ispMACH 5768VG Power Supply and NC Connections1
Signal 256-Ball fpBGA2484-Ball fpBGA2
VCC F8, F9, H6, H11, J6, J11, L8, L9 B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20,
J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21,
AA6
VCCO0 C3, C7, G3 B5, D7, E2, E6, E9, F5, G4, J5
VCCO1 K3, P3, P7 P5, U5, V6, V9, Y3
VCCO2 K14, P10, P14 P18, U18, V14, V17, Y20
VCCO3 C10, C14, G14 B18, D16, E14, E17, E21, F18, G19, J18
VCCP0 H1 L7
VCCP1 H16 N18
VCCJ J1 P4
VREF0 E7 A9
VREF1 M7 AA10
VREF2 R13 AA13
VREF3 A8 A15
GND PLL 0 H7 L6
GND PLL 1 J10 L16
GND
A1, C5, C12, E3, E14, G7, G8, G9, G10, H8, H9,
H10, J7, J8, J9, K7, K8, K9, K10, M3, M14, P5, P12 A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8,
G9, G10, G11, G12, G13, G14, G15, G16, G18, H7,
H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8,
J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9,
K10, K11, K12, K13, K14, K15, K16, L8, L9, L10,
L11, L12, L13, L14, L15, M7, M8, M9, M10, M11,
M12, M13, M14, M15, M16, N7, N8, N9, N10, N11,
N12, N13, N14, N15, N16, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, R7, R8, R9, R10, R11,
R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22
NC3 AA1
1. All grounds must be electrically connected at the board level.
2. Not all grounds internally connected within the device.
3. NC pins are not to be connected to any active signals, VCC or GND.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
32
ispMACH 51024 Power Supply and NC Connections1
Signal 484-Ball fpBGA2676-Ball fpBGA2
VCC B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20,
J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21,
AA6
B29, D6, D10, D12, D19, D21, D25, F4, F27, K4, K27,
M4, M27, W4, W27, AA4, AA27, AE4, AE27, A G6, A G10,
AG12, AG19, AG21,AG25, AJ2
VCCO0 B5, D7, E2, E6, E9, F5, G4, J5 E5, E7, E9, E11, F10, G5, J5, K6, L5
VCCO1 P5, U5, V6, V9, Y3 Y5, AA6, AB5, AD5, AE10, AF5, AF7, AF9, AF11
VCCO2 P18, U18, V14, V17, Y20 Y26, AA25, AB26, AD26, AE21, AF20, AF22, AF24,
AF26
VCCO3 B18, D16, E14, E17, E21, F18, G19, J18 E20, E22, E24, E26, F21, G26, J26, K25, L26
VCCP0 L7 P5
VCCP1 N18 N26
VCCJ P4 U6
VREF0 A9 C11
VREF1 AA10 AK10
VREF2 AA13 AJ21
VREF3 A15 E19
GND PLL 0 L6 R6
GND PLL 1 L16 P25
GND
A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8,
G9, G10, G11, G12, G13, G14, G15, G16, G18, H7,
H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8,
J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9,
K10, K11, K12, K13, K14, K15, K16, L8, L9, L10,
L11, L12, L13, L14, L15, M7, M8, M9, M10, M11,
M12, M13, M14, M15, M16, N7, N8, N9, N10, N11,
N12, N13, N14, N15, N16, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, R7, R8, R9, R10, R11,
R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22
A1, A30, B2,C3, C28, D8, D23, F7, F9, F11, F12, F19,
F20, F22, F24, G6, G25, H4, H27, J6, J25, L6, L11, L12,
L13, L14, L15, L16, L17, L18, L19, L20, L25, M6, M11,
M12, M13, M14, M15, M16, M17, M18, M19, M20, M25,
N11, N12, N13, N14, N15, N16, N17, N18, N19, N20,
P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, R11,
R12, R13, R14, R15, R16, R17, R18, R19, R20, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20, U11, U12,
U13, U14,U15, U16, U17, U18, U19, U20, V11, V12, V13,
V14, V15, V16, V17, V18, V19, V20, W6, W11, W12, W13,
W14, W15, W16, W17, W18, W19, W20, W25, Y6, Y11,
Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y25, AB6,
AB25, AC4, AC27, AD6, AD25, AE7, AE9, AE11, AE12,
AE19, AE20, AE22, AE24, A G8, AG23, AH3, AH28, AK1,
AK30
NC3
AA1 A14, A15, A16, A17, B14, B15, B16, B17, C13, C14,
C15, C16, C17, C18, D13, D14, D15, D16, D17, D18,
E13, E14, E15, E16, E17, E18, F13, F14, F15, F16, F17,
F18, AE13, AE14, AE15, AE16, AE17, AE18, AF13,
AF14, AF15, AF16, AF17, AF18, AG13, AG14, AG15,
AG16, AG17, AG18, AH14, AH15, AH16, AH17, AH18,
AJ14, AJ15, AJ16, AJ17, AJ18, AK14, AK15, AK16,
AK17
1. All grounds must be electrically connected at the board level.
2. Not all grounds internally connected within the device.
3. NC pins are not to be connected to any active signals, VCC or GND.
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
33
Bank
No. Signal 256
fpBGA 484
fpBGA
0 0C-30 C8 D11
0 0C-28 B6 B11
0 0C-26 A5 E12
0 0C-24 D8 C11
0 0C-22 E8 F12
0 0C-20 B5 B10
0 GNDIO0 GND GND
0 0C-18 A4 A10
0 0C-16 D7 D10
0 0C-14/VREF0 E7 A9
0 0C-12 C6 E11
0 0C-10 B4 B9
0 0C-8 A3 F11
0 0C-6 NC A8
0 0C-4 NC C10
0 0C-2 NC A7
0 0C-0 NC E10
0 0D-30 NC B8
0 0D-28 NC C8
0 GNDIO0 GND GND
0 0D-26 NC F10
0 0D-24 NC A6
0 0D-22 NC F9
0 0D-20 NC C7
0 0D-18 NC D9
0 0D-16 NC B7
0 0D-14 D6 E8
0 0D-12 E6 A5
0 0D-10 A2 F8
0 0D-8 B3 C6
0 0D-6 C4 D8
0 0D-4 D5 A3
0 GNDIO0 GND GND
0 0D-2 NC A2
0 0D-0 NC A4
0 0A-0 NC F7
0 0A-2 NC C5
0 0A-4 NC F6
0 0A-6 NC B3
0 0A-8 NC NC
0 0A-10 NC NC
0 GNDIO0 GND GND
0 0A-12 NC NC
0 0A-14 NC NC
0 0A-16 NC B4
0 0A-18 NC D5
0 0A-20 NC B1
0 0A-22 NC D6
0 0A-24 NC C4
0 0A-26 NC E4
0 GNDIO0 GND GND
0 0A-28 B2 C2
0 0A-30 B1 C1
0 0B-30 C2 D1
0 0B-28 C1 D2
0 0B-26 NC D3
0 0B-24 NC E1
0 0B-22 NC E3
0 0B-20 NC F4
0 0B-18 NC F1
0 0B-16 NC F3
0 0B-14 NC G6
0 0B-12 NC G1
0 GNDIO0 GND GND
0 0B-10 NC G2
0 0B-8 NC H1
0 0B-6 NC G3
0 0B-4 NC H2
0 0B-2 NC H5
0 0B-0 NC H6
0 1A-0 F7 J1
0 1A-2 F6 K1
0 1A-4 E5 H3
0 1A-6 D4 J2
0 1A-8 D3 H4
0 1A-10 D2 K2
0 GNDIO0 GND GND
0 1A-12 D1 J6
0 1A-14 E4 L1
0 1A-16 NC K3
0 1A-18 NC J4
0 1A-20 NC L2
0 1A-22 NC M1
0 1A-24 NC K6
0 1A-26 NC K4
0 1A-28 NC L3
Bank
No. Signal 256
fpBGA 484
fpBGA
ispMACH 5768VG Logic Signal Connections
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
34
0 1A-30 NC K5
0 GNDIO0 GND GND
0 1B-30/CLK_OUT0 G6 N1
0 1B-28 NC M2
0 1B-26 NC P1
0 1B-24 NC L4
0 1B-22 F5 N2
0 1B-20 E2 M3
0 1B-18 E1 L5
0 1B-16 F4 R1
0 1B-14 F3 P2
0 1B-12 F2 N3
0 GNDIO0 GND GND
0 1B-10 G5 M6
0 1B-8 G4 M5
0 1B-6/PLL_RST0 F1 M4
0 1B-4/PLL_FBK0 G2 N4
0 1B-2 G1 N6
0 1B-0 H5 N5
1 2B-0 K1 R5
1 2B-2 K2 T2
1 2B-4 L1 T5
1 2B-6 J5 T3
1 2B-8 L2 U1
1 2B-10 K4 U4
1 GNDIO1 GND GND
1 2B-12 M1 V1
1 2B-14 L3 U3
1 2B-16 L4 V5
1 2B-18 K5 V2
1 2B-20 M2 W1
1 2B-22 N1 V3
1 2B-24 NC W2
1 2B-26 K6 Y1
1 2B-28 L5 Y2
1 2B-30 N2 W3
1 2A-30 L6 AA3
1 2A-28 L7 W4
1 GNDIO1 GND GND
1 2A-26 P1 W5
1 2A-24 P2 Y4
1 2A-22 N3 T6
1 2A-20 R4 Y5
Bank
No. Signal 256
fpBGA 484
fpBGA 1 2A-18 NC U6
1 2A-16 R1 AA4
1 2A-14 NC NC
1 2A-12 NC NC
1 GNDIO1 GND GND
1 2A-10 NC NC
1 2A-8 NC NC
1 2A-6 T1 W6
1 2A-4 T2 V4
1 2A-2 R2 U7
1 2A-0 T3 AB2
1 2D-0 R3 V7
1 2D-2 P4 AA5
1 GNDIO1 GND GND
1 2D-4 T4 AB3
1 2D-6 N4 Y6
1 2D-8 M4 AB4
1 2D-10 N5 Y7
1 2D-12 R5 AB5
1 2D-14 T5 V8
1 2D-16 NC AA7
1 2D-18 NC Y8
1 2D-20 NC AB6
1 2D-22 T6 W8
1 2D-24 R6 AA8
1 2D-26 P6 Y10
1 GNDIO1 GND GND
1 2D-28 M5 U8
1 2D-30 T7 AB7
1 2C-0 T8 U9
1 2C-2 R8 AA9
1 2C-4 M6 W9
1 2C-6 N6 AB8
1 2C-8 R7 U10
1 2C-10 T9 AB9
1 2C-12 T10 V11
1 2C-14/VREF1 M7 AA10
1 2C-16 N7 V10
1 2C-18 P8 AB10
1 GNDIO1 GND GND
1 2C-20 R9 W10
1 2C-22 N8 W11
1 2C-24 M8 U11
Bank
No. Signal 256
fpBGA 484
fpBGA
ispMACH 5768VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
35
1 2C-26 T11 AA11
1 2C-28 T12 V12
1 2C-30 R10 AB11
2 3C-30 P9 W12
2 3C-28 R11 Y11
2 3C-26 T13 Y12
2 3C-24 N9 AB12
2 3C-22 M9 U12
2 3C-20 R12 AA12
2 GNDIO2 GND GND
2 3C-18 P11 Y13
2 3C-16 N10 AB13
2 3C-14 M10 W13
2 3C-12/VREF2 R13 AA13
2 3C-10 T14 U13
2 3C-8 R14 AB14
2 3C-6 M11 V13
2 3C-4 N11 AA14
2 3C-2 P13 U14
2 3C-0 T15 AB15
2 3D-30 T16 Y15
2 3D-28 N12 AB16
2 GNDIO2 GND GND
2 3D-26 NC AA15
2 3D-24 NC W14
2 3D-22 NC AB17
2 3D-20 NC Y16
2 3D-18 NC AA16
2 3D-16 NC Y17
2 3D-14 NC AB18
2 3D-12 NC V15
2 3D-10 NC AB19
2 3D-8 NC W15
2 3D-6 NC AB20
2 3D-4 NC AA18
2 GNDIO2 GND GND
2 3D-2 L10 U15
2 3D-0 L11 W17
2 3A-0 K11 U16
2 3A-2 R15 AA19
2 3A-4 NC V16
2 3A-6 NC AB21
2 3A-8 NC NC
Bank
No. Signal 256
fpBGA 484
fpBGA 2 3A-10 NC NC
2 GNDIO2 GND GND
2 3A-12 NC NC
2 3A-14 NC NC
2 3A-16 NC Y18
2 3A-18 P15 W18
2 3A-20 R16 AA20
2 3A-22 P16 W19
2 3A-24 N14 Y19
2 3A-26 N13 V19
2 GNDIO2 GND GND
2 3A-28 N15 Y21
2 3A-30 N16 W20
2 3B-30 M16 AA22
2 3B-28 M12 W21
2 3B-26 NC Y22
2 3B-24 NC V20
2 3B-22 M13 V21
2 3B-20 M15 W22
2 3B-18 L16 V18
2 3B-16 L15 U20
2 3B-14 L13 V22
2 3B-12 L14 U19
2 GNDIO2 GND GND
2 3B-10 L12 U17
2 3B-8 K13 U22
2 3B-6 K15 T20
2 3B-4 K16 T21
2 3B-2 J16 T17
2 3B-0 K12 R20
3 4B-0 J12 R21
3 4B-2 G16 T22
3 4B-4/PLL_FBK1 G15 P21
3 4B-6/PLL_RST1 H12 N20
3 4B-8 G12 R22
3 4B-10 G13 N21
3 GNDIO3 GND GND
3 4B-12 F16 M18
3 4B-14 F15 N19
3 4B-16 F13 P22
3 4B-18 F14 M20
3 4B-20 F12 N22
3 4B-22 E16 N17
Bank
No. Signal 256
fpBGA 484
fpBGA
ispMACH 5768VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
36
3 4B-24 G11 M19
3 4B-26 F11 M21
3 4B-28 F10 L19
3 4B-30/CLK_OUT1 B11 L20
3 GNDIO3 GND GND
3 4A-30 NC M17
3 4A-28 NC M22
3 4A-26 NC K20
3 4A-24 NC L18
3 4A-22 NC L21
3 4A-20 NC K19
3 4A-18 NC L22
3 4A-16 NC K17
3 4A-14 E13 K22
3 4A-12 B12 L17
3 GNDIO3 GND GND
3 4A-10 E15 K21
3 4A-8 D15 K18
3 4A-6 NC J17
3 4A-4 NC J19
3 4A-2 D16 J22
3 4A-0 E12 J21
3 5B-0 NC H19
3 5B-2 NC H20
3 5B-4 NC H17
3 5B-6 NC H18
3 5B-8 NC H22
3 5B-10 NC H21
3 GNDIO3 GND GND
3 5B-12 NC G20
3 5B-14 NC G22
3 5B-16 NC G17
3 5B-18 NC G21
3 5B-20 NC F19
3 5B-22 NC F20
3 5B-24 A16 F22
3 5B-26 B15 E22
3 5B-28 A15 E19
3 5B-30 D13 E20
3 5A-30 B14 D22
3 5A-28 B16 D21
3 GNDIO3 GND GND
3 5A-26 C16 D20
Bank
No. Signal 256
fpBGA 484
fpBGA 3 5A-24 C15 C22
3 5A-22 D14 C18
3 5A-20 A14 C19
3 5A-18 C13 D17
3 5A-16 B13 C21
3 5A-14 NC NC
3 5A-12 NC NC
3 GNDIO3 GND GND
3 5A-10 NC NC
3 5A-8 NC NC
3 5A-6 NC B22
3 5A-4 NC D18
3 5A-2 NC B20
3 5A-0 NC F17
3 5D-0 NC B19
3 5D-2 NC C17
3 GNDIO3 GND GND
3 5D-4 NC A21
3 5D-6 NC D15
3 5D-8 NC A20
3 5D-10 NC C16
3 5D-12 NC A19
3 5D-14 NC F16
3 5D-16 NC B16
3 5D-18 NC D14
3 5D-20 NC A18
3 5D-22 A13 F15
3 5D-24 A12 A17
3 5D-26 A11 B15
3 GNDIO3 GND GND
3 5D-28 A10 A16
3 5D-30 C11 F14
3 5C-0 A9 C15
3 5C-2 D12 D13
3 5C-4 D11 E15
3 5C-6 B10 F13
3 5C-8 B9 B14
3 5C-10 E11 E13
3 5C-12/VREF3 A8 A15
3 5C-14 D10 D12
3 5C-16 E10 A14
3 5C-18 A7 B13
3 GNDIO3 GND GND
Bank
No. Signal 256
fpBGA 484
fpBGA
ispMACH 5768VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
37
3 5C-20 C9 A13
3 5C-22 E9 B12
3 5C-24 D9 C13
3 5C-26 B8 A12
3 5C-28 A6 C12
3 5C-30 B7 A11
GCLK0 H4 P6
GCLK1 J4 R6
GCLK2 H14 P17
GCLK3 H13 P19
GOE0 J15 R18
GOE1 H15 R17
RESETB J14 R19
TCK J3 R3
TDI H3 R2
TDO J2 R4
TMS H2 T1
—TOEJ13 T18
Bank
No. Signal 256
fpBGA 484
fpBGA
ispMACH 5768VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
38
Bank
No. Signal 484
fpBGA 676
fpBGA
0 0C-30 D11 A13
0 0C-28 B11 B13
0 0C-26 E12 A12
0 0C-24 C11 B12
0 0C-22 F12 C12
0 0C-20 B10 A11
0 GNDIO0 GND GND
0 0C-18 A10 B11
0 0C-16 D10 A10
0 0C-14/VREF0 A9 C11
0 0C-12 E11 E12
0 0C-10 B9 B10
0 0C-8 F11 D11
0 0C-6 A8 A9
0 0C-4 C10 C10
0 0C-2 A7 B9
0 0C-0 E10 A8
0 0D-30 B8 C9
0 0D-28 C8 B8
0 GNDIO0 GND GND
0 0D-26 F10 E10
0 0D-24 A6 A7
0 0D-22 F9 D9
0 0D-20 C7 C8
0 0D-18 D9 B7
0 0D-16 B7 A6
0 0D-14 E8 C7
0 0D-12 A5 B6
0 0D-10 F8 A5
0 0D-8 C6 C6
0 0D-6 D8 D7
0 0D-4 A3 E8
0 GNDIO0 GND GND
0 0D-2 A2 B5
0 0D-0 A4 A4
0 0A-0 F7 A3
0 0A-2 C5 B4
0 0A-4 F6 C5
0 0A-6 B3 F8
0 0A-8 NC A2
0 0A-10 NC B3
0 GNDIO0 GND GND
0 0A-12 NC C4
0 0A-14 NC D5
0 0A-16 B4 E6
0 0A-18 D5 D4
0 0A-20 B1 B1
0 0A-22 D6 C2
0 0A-24 C4 F6
0 0A-26 E4 D3
0 GNDIO0 GND GND
0 0A-28 C2 E4
0 0A-30 C1 F5
0 0B-30 D1 C1
0 0B-28 D2 D2
0 0B-26 D3 E3
0 0B-24 E1 D1
0 0B-22 E3 E2
0 0B-20 F4 H6
0 0B-18 F1 F3
0 0B-16 F3 E1
0 0B-14 G6 G4
0 0B-12 G1 F2
0 GNDIO0 GND GND
0 0B-10 G2 H5
0 0B-8 H1 G3
0 0B-6 G3 F1
0 0B-4 H2 G2
0 0B-2 H5 H3
0 0B-0 H6 G1
0 1A-0 J1 H2
0 1A-2 K1 J4
0 1A-4 H3 H1
0 1A-6 J2 J3
0 1A-8 H4 K5
0 1A-10 K2 J2
0 GNDIO0 GND GND
0 1A-12 J6 J1
0 1A-14 L1 K3
0 1A-16 K3 K2
0 1A-18 J4 K1
0 1A-20 L2 L4
0 1A-22 M1 L3
0 1A-24 K6 L2
0 1A-26 K4 M5
0 1A-28 L3 L1
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
39
0 1A-30 K5 M3
0 GNDIO0 GND GND
0 1B-30/CLK_OUT0 N1 M2
0 1B-28 M2 M1
0 1B-26 P1 N6
0 1B-24 L4 N5
0 1B-22 N2 N4
0 1B-20 M3 N3
0 1B-18 L5 N2
0 1B-16 R1 N1
0 1B-14 P2 P6
0 1B-12 N3 P4
0 GNDIO0 GND GND
0 1B-10 M6 P3
0 1B-8 M5 P2
0 1B-6/PLL_RST0 M4 P1
0 1B-4/PLL_FBK0 N4 R4
0 1B-2 N6 R3
0 1B-0 N5 R2
1 2B-0 NC R1
1 2B-2 NC T1
1 2B-4 NC T3
1 2B-6 NC T2
1 2B-8 NC U1
1 2B-10 NC U2
1 GNDIO1 GND GND
1 2B-12 NC U3
1 2B-14 NC U4
1 2B-16 NC V1
1 2B-18 NC V2
1 2B-20 NC V3
1 2B-22 NC V4
1 2B-24 NC W1
1 2B-26 NC V6
1 2B-28 NC W2
1 2B-30 NC W3
1 GNDIO1 GND GND
1 2A-30 NC Y1
1 2A-28 NC W5
1 2A-26 NC Y2
1 2A-24 NC Y3
1 2A-22 NC AA1
1 2A-20 NC Y4
Bank
No. Signal 484
fpBGA 676
fpBGA 1 2A-18 NC AA2
1 2A-16 NC AA3
1 2A-14 NC AB1
1 2A-12 NC AB2
1 GNDIO1 GND GND
1 2A-10 NC AA5
1 2A-8 NC AB3
1 2A-6 NC AC1
1 2A-4 NC AB4
1 2A-2 NC AC2
1 2A-0 NC AD1
1 3B-0 R5 AC3
1 3B-2 T2 AD2
1 3B-4 T5 AE1
1 3B-6 T3 AD3
1 3B-8 U1 AE2
1 3B-10 U4 AC5
1 GNDIO1 GND GND
1 3B-12 V1 AF1
1 3B-14 U3 AD4
1 3B-16 V5 AE3
1 3B-18 V2 AC6
1 3B-20 W1 AF2
1 3B-22 V3 AG1
1 3B-24 W2 AF3
1 3B-26 Y1 AG2
1 3B-28 Y2 AH1
1 3B-30 W3 AE5
1 3A-30 AA3 AF4
1 3A-28 W4 AG3
1 GNDIO1 GND GND
1 3A-26 W5 AE6
1 3A-24 Y4 AH2
1 3A-22 T6 AJ1
1 3A-20 Y5 AG4
1 3A-18 U6 AF6
1 3A-16 AA4 AG5
1 3A-14 NC AH4
1 3A-12 NC AJ3
1 GNDIO1 GND GND
1 3A-10 NC AK2
1 3A-8 NC AE8
1 3A-6 W6 AH5
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
40
1 3A-4 V4 AJ4
1 3A-2 U7 AK3
1 3A-0 AB2 AK4
1 3D-0 V7 AJ5
1 3D-2 AA5 AH6
1 GNDIO1 GND GND
1 3D-4 AB3 AF8
1 3D-6 Y6 AG7
1 3D-8 AB4 AK5
1 3D-10 Y7 AJ6
1 3D-12 AB5 AH7
1 3D-14 V8 AK6
1 3D-16 AA7 AJ7
1 3D-18 Y8 AH8
1 3D-20 AB6 AG9
1 3D-22 W8 AK7
1 3D-24 AA8 AF10
1 3D-26 Y10 AJ8
1 GNDIO1 GND GND
1 3D-28 U8 AH9
1 3D-30 AB7 AK8
1 3C-0 U9 AJ9
1 3C-2 AA9 AH10
1 3C-4 W9 AK9
1 3C-6 AB8 AG11
1 3C-8 U10 AJ10
1 3C-10 AB9 AF12
1 3C-12 V11 AH11
1 3C-14/VREF1 AA10 AK10
1 3C-16 V10 AJ11
1 3C-18 AB10 AK11
1 GNDIO1 GND GND
1 3C-20 W10 AH12
1 3C-22 W11 AJ12
1 3C-24 U11 AK12
1 3C-26 AA11 AH13
1 3C-28 V12 AJ13
1 3C-30 AB11 AK13
2 4C-30 W12 AK18
2 4C-28 Y11 AK19
2 4C-26 Y12 AJ19
2 4C-24 AB12 AH19
2 4C-22 U12 AK20
Bank
No. Signal 484
fpBGA 676
fpBGA 2 4C-20 AA12 AJ20
2 GNDIO2 GND GND
2 4C-18 Y13 AK21
2 4C-16 AB13 AH20
2 4C-14 W13 AF19
2 4C-12/VREF2 AA13 AJ21
2 4C-10 U13 AG20
2 4C-8 AB14 AK22
2 4C-6 V13 AH21
2 4C-4 AA14 AJ22
2 4C-2 U14 AK23
2 4C-0 AB15 AH22
2 4D-30 Y15 AJ23
2 4D-28 AB16 AK24
2 GNDIO2 GND GND
2 4D-26 AA15 AF21
2 4D-24 W14 AG22
2 4D-22 AB17 AH23
2 4D-20 Y16 AJ24
2 4D-18 AA16 AK25
2 4D-16 Y17 AH24
2 4D-14 AB18 AJ25
2 4D-12 V15 AK26
2 4D-10 AB19 AJ26
2 4D-8 W15 AH25
2 4D-6 AB20 AG24
2 4D-4 AA18 AF23
2 GNDIO2 GND GND
2 4D-2 U15 AK27
2 4D-0 W17 AK28
2 4A-0 U16 AJ27
2 4A-2 AA19 AH26
2 4A-4 V16 AE23
2 4A-6 AB21 AK29
2 4A-8 NC AJ28
2 4A-10 NC AH27
2 GNDIO2 GND GND
2 4A-12 NC AG26
2 4A-14 NC AF25
2 4A-16 Y18 AJ29
2 4A-18 W18 AG27
2 4A-20 AA20 AJ30
2 4A-22 W19 AH29
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
41
2 4A-24 Y19 AE25
2 4A-26 V19 AG28
2 GNDIO2 GND GND
2 4A-28 Y21 AF27
2 4A-30 W20 AE26
2 4B-30 AA22 AH30
2 4B-28 W21 AG29
2 4B-26 Y22 AF28
2 4B-24 V20 AG30
2 4B-22 V21 AF29
2 4B-20 W22 AC25
2 4B-18 V18 AE28
2 4B-16 U20 AF30
2 4B-14 V22 AD27
2 4B-12 U19 AE29
2 GNDIO2 GND GND
2 4B-10 U17 AC26
2 4B-8 U22 AD28
2 4B-6 T20 AE30
2 4B-4 T21 AD29
2 4B-2 T17 AC28
2 4B-0 R20 AD30
2 5A-0 NC AC29
2 5A-2 NC AB27
2 5A-4 NC AC30
2 5A-6 NC AB28
2 5A-8 NC AA26
2 5A-10 NC AB29
2 GNDIO2 GND GND
2 5A-12 NC AB30
2 5A-14 NC AA28
2 5A-16 NC AA29
2 5A-18 NC AA30
2 5A-20 NC Y27
2 5A-22 NC Y28
2 5A-24 NC Y29
2 5A-26 NC W26
2 5A-28 NC Y30
2 5A-30 NC W28
2 GNDIO2 GND GND
2 5B-30 NC W29
2 5B-28 NC W30
2 5B-26 NC V25
Bank
No. Signal 484
fpBGA 676
fpBGA 2 5B-24 NC V26
2 5B-22 NC V27
2 5B-20 NC V28
2 5B-18 NC V29
2 5B-16 NC V30
2 5B-14 NC U25
2 5B-12 NC U27
2 GNDIO2 GND GND
2 5B-10 NC U28
2 5B-8 NC U29
2 5B-6 NC U30
2 5B-4 NC T27
2 5B-2 NC T28
2 5B-0 NC T29
3 6B-0 R21 T30
3 6B-2 T22 R29
3 6B4/PLL_FBK1 P21 R27
3 6B6/PLL_RST1 N20 R28
3 6B-8 R22 R30
3 6B-10 N21 P30
3 GNDIO3 GND GND
3 6B-12 M18 P29
3 6B-14 N19 P28
3 6B-16 P22 P27
3 6B-18 M20 N30
3 6B-20 N22 N29
3 6B-22 N17 N28
3 6B-24 M19 N27
3 6B-26 M21 N25
3 6B-28 L19 M30
3 6B-30/CLK_OUT1 L20 M29
3 GNDIO3 GND GND
3 6A-30 M17 M28
3 6A-28 M22 L30
3 6A-26 K20 M26
3 6A-24 L18 L29
3 6A-22 L21 L28
3 6A-20 K19 L27
3 6A-18 L22 K30
3 6A-16 K17 K29
3 6A-14 K22 K28
3 6A-12 L17 J30
3 GNDIO3 GND GND
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
42
3 6A-10 K21 J29
3 6A-8 K18 K26
3 6A-6 J17 J28
3 6A-4 J19 H30
3 6A-2 J22 J27
3 6A-0 J21 H29
3 7B-0 H19 G30
3 7B-2 H20 H28
3 7B-4 H17 G29
3 7B-6 H18 F30
3 7B-8 H22 G28
3 7B-10 H21 H26
3 GNDIO3 GND GND
3 7B-12 G20 F29
3 7B-14 G22 G27
3 7B-16 G17 E30
3 7B-18 G21 F28
3 7B-20 F19 H25
3 7B-22 F20 E29
3 7B-24 F22 D30
3 7B-26 E22 E28
3 7B-28 E19 D29
3 7B-30 E20 C30
3 7A-30 D22 F26
3 7A-28 D21 E27
3 GNDIO3 GND GND
3 7A-26 D20 D28
3 7A-24 C22 F25
3 7A-22 C18 C29
3 7A-20 C19 B30
3 7A-18 D17 D27
3 7A-16 C21 E25
3 7A-14 NC D26
3 7A-12 NC C27
3 GNDIO3 GND GND
3 7A-10 NC B28
3 7A-8 NC A29
3 7A-6 B22 F23
3 7A-4 D18 C26
3 7A-2 B20 B27
3 7A-0 F17 A28
3 7D-0 B19 A27
3 7D-2 C17 B26
Bank
No. Signal 484
fpBGA 676
fpBGA 3 GNDIO3 GND GND
3 7D-4 A21 E23
3 7D-6 D15 D24
3 7D-8 A20 C25
3 7D-10 C16 A26
3 7D-12 A19 B25
3 7D-14 F16 C24
3 7D-16 B16 A25
3 7D-18 D14 B24
3 7D-20 A18 C23
3 7D-22 F15 D22
3 7D-24 A17 A24
3 7D-26 B15 E21
3 GNDIO3 GND GND
3 7D-28 A16 B23
3 7D-30 F14 C22
3 7C-0 C15 A23
3 7C-2 D13 B22
3 7C-4 E15 C21
3 7C-6 F13 A22
3 7C-8 B14 D20
3 7C-10 E13 B21
3 7C-12/VREF3 A15 E19
3 7C-14 D12 C20
3 7C-16 A14 A21
3 7C-18 B13 B20
3 GNDIO3 GND GND
3 7C-20 A13 A20
3 7C-22 B12 C19
3 7C-24 C13 B19
3 7C-26 A12 A19
3 7C-28 C12 B18
3 7C-30 A11 A18
GCLK0 P6 R5
GCLK1 R6 T6
GCLK2 P17 R25
GCLK3 P19 P26
GOE0 R18 T26
GOE1 R17 R26
RESETB R19 T25
TCK R3 U5
TDI R2 T5
TDO R4 V5
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
43
TMS T1 T4
—TOET18 U26
Bank
No. Signal 484
fpBGA 676
fpBGA
ispMACH 51024VG Logic Signal Connections (Continued)
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
44
Signal Conguration
ispMACH 5768VG 256-ball fpBGA
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/O I/O I/O I/OI/O I/OI/O I/O
I/O I/O I/O I/O I/O I/OI/O I/O I/OI/OGND GND
VCCO3
VCCO3 VCCO0
VCCO1
VCCO3 VCCO0 VCCO0
I/O I/O I/O I/O I/O I/OI/O I/O I/OI/OGND GNDVCCO2 VCCO2 VCCO1 VCCO1
I/O I/O I/O I/O I/O I/O I/O
I/O I/O I/OI/O I/O I/OI/O I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O
I/OI/OI/OI/OI/OI/OI/OI/OI/O I/O
VCCP0
GND
I/O I/OI/O I/O I/O I/O I/O I/O
I/O I/O I/OI/O I/O I/OI/O I/O I/O
I/O I/O I/O
I/OI/O I/O I/O I/O I/O I/O
I/O I/O I/OI/O I/O I/OI/O I/O I/O I/OI/O I/O I/O I/O I/O I/O
I/O I/O I/OI/O I/O I/OI/O I/O I/O I/O I/O I/O
I/OVCCVCC I/O I/O I/O I/O I/O
TDIVCC
VCC
VCC
VCC
VCCP1
RESETB
GCLK2GOE1
GOE0 GCLK1 TCK TDO VCCJ
VCCO2
TOE
GNDP0
GNDP1
TMS
I/OI/O
I/O I/OI/O
I/O I/O
I/O I/OI/O I/O I/O
I/O
I/O I/OGND GND GND
GND GND GND
GND
GND GND GND
VCC VCC
GND
GND GND GND
I/O I/O I/O
I/O I/O I/O I/O I/O I/O I/OI/OI/O
I/O GND GNDI/O I/OI/O I/OI/O I/OI/O I/O I/OI/O I/OI/O
I/O I/O I/O I/O I/O
GND
I/O/
VREF3
I/O/
CLK_OUT1
I/O/
PLL_FBK1 I/O/
PLL_FBK0
I/O/
PLL_RST1
I/O/
VREF1
I/O/
VREF2
I/O/
CLK_OUT0
GCLK0
GCLK3
I/O/
VREF0
I/O/
PLL_RST0
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
2345678910111213141516
12345678910111213141516
256fpBGA/5768VG
Note: Ball A1 indicator dot on top side of package.
ispMACH 5768VG
Bottom View
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
45
Signal Conguration
ispMACH 5768VG and 51024VG 484-ball fpBGA
I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/OI/O
I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O I/O/
VREF0
I/O /
VREF3
I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O I/O
I/O I/O GND
GND
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/O I/O I/O VCC
VCCVCC
VCC
GND
VCC
VCCVCC
I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/O
I/O I/O I/O
I/O I/O
I/O
I/O I/O I/O
I/O I/O VCC
VCC
I/O I/O
I/O I/O I/O I/O I/O I/O
I/O I/O I/O/
CLK_OUT1
I/O/
PLL_RST1
I/O/
PLL_FBK1
I/O I/O I/O GNDP1
I/O I/O I/O I/O I/O I/O
I/O I/O I/O I/O
I/O VCC VCC
VCC
VCC
I/O
I/O
I/O I/O I/O TDO TCK TDI I/O
I/O GND
GOE0 GOE1
TOE I/O GND GND GND GND GND GND GND GND TMS
GND GND
GND GND GND GND GND GND GND GND GND GND
GND GND GND GND GND GND GND GND GND GND
GND GND GND GND GND GND GND GND GND GND
GND GND GND GND GND GND GND GND GND
GND GND GND GND GND GND GND GND
GND
GND GND GND GND GND GND GND GND GND GND
GND
GND GND
GND GND GND GND GND GND GND GND GND
GND GND GND GND GND GND GND GND GND GND
GND
GND
GND GND GND GND GND GND GND GND GND
GND
GND
GND
GND
VCC
I/O I/O GND
I/O
I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
I/O I/O I/O I/O I/O VCCO2
VCCP1
VCCO2
GCLK3 GCLK2 GCLK0
GCLK1
VCCO3
VCCO3
VCCO3
VCCO3VCCO3
VCCO3
VCCO3
VCCO3
VCCO2
RESETB
VCCO2 VCCO1VCCO1
I/O I/O I/O I/O I/O I/O I/O
I/O
I/OI/O
I/O/
CLK_OUT0
I/O/
PLL_FBK0
I/O I/O
I/O/
PLL_RST0
I/O I/O
I/O
I/O
I/O
I/O
I/OI/OI/O
I/O
I/OI/OI/OI/OI/O
I/OI/O
I/O
I/OI/OI/OI/OI/O
I/OI/OI/OI/O
I/OI/OI/O
I/OI/O
I/OI/O
I/OI/O
I/OI/OI/OI/OI/OI/O
I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O
I/O I/O VCCO2 I/O I/O I/O I/O I/O VCC I/O I/O I/O I/O VCC I/O I/O I/O I/O I/O VCCO1
VCCJ
VCCO1
VCCO1
VCCO0
VCCO0
VCCO0
VCCO0 VCCO0
VCCO0
VCCO0
VCCO0
GNDP0VCCP0
I/O I/O
I/O VCC
VCC
I/O I/O I/O VCC I/O I/O I/O
I/O/
VREF2 I/O/
VREF1
I/O I/O I/O I/O I/O VCC I/O I/O I/O VCC
VCC
NC1
GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
2345678910111213141516171819202122
12345678910111213141516171819202122
484BGA/51024VG
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
ispMACH 5768VG and 51024VG
Bottom View
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
46
Signal Conguration
ispMACH 51024VG 676-ball fpBGA
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 987654321
AGND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O NC1NC1NC1NC1
NC1NC1NC1NC1
NC1
NC1NC1NC1NC1
NC1
NC1NC1NC1NC1
NC1
NC1NC1NC1NC1
NC1
NC1
NC1
NC1
NC1
NC1
NC1NC1NC1
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND A
BI/O VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O B
CI/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O/
VREF0 I/O I/O I/O I/O I/O I/O I/O GND I/O I/O C
DI/O I/O I/O I/O I/O VCC I/O GND I/O VCC I/O VCC VCC I/O VCC I/O GND I/O VCC I/O I/O I/O I/O I/O D
EI/O I/O I/O I/O VCCO3 I/O VCCO3 I/O VCCO3 I/O VCCO3 I/O/
VREF3 I/O VCCO0 I/O VCCO0 I/O VCCO0 I/O VCCO0 I/O I/O I/O I/O E
FI/O I/O I/O VCC I/O I/O I/O VCCO3 GNDGND GND GND GND GND GNDGND VCCO0 I/O I/O I/O VCC I/O I/O I/O F
GI/O I/O I/O I/O VCCO3 VCCO0 I/O I/O I/O I/O G
HI/O I/O I/O GND
GND
GND
GND
GND
GND
GND
I/O I/O I/O I/O GND I/O I/O I/O H
JI/O I/O I/O I/O VCCO3 VCCO0 I/O I/O I/O I/O J
KI/O I/O I/O VCC I/O VCCO3 VCCO0 I/O VCC I/O I/O I/O K
LI/O I/O I/O I/O VCCO3 GNDGND GND GND GND GND GND GND GND GND VCCO0 I/O I/O I/O I/O L
MI/O I/O/
C
LK_OUT1 I/O VCC I/O GND GNDGND GND GND GND GND GND GND GND GND GND I/O VCC I/O I/O/
C
LK_OUT
0
I/O M
NI/O I/O I/O I/O VCCP1 I/O GND GND GND GND GND GND GND GND GND GND I/O I/O I/O I/O I/O I/O N
PI/O I/O I/O I/O GCLK3 GNDP1 GND GND GND GND GND GND GND GND GND GND I/O
V
CCP0 I/O I/O I/O/
PLL_RST0 P
RI/O I/O I/O/
PLL_RST1 I/O/
P
LL_FBK1 GOE1 GCLK2 GND GND GND GND GND GND GND GND GND GND GNDP0 GCLK0 I/O/
PLL_FBK0 I/O I/O R
TI/O I/O I/O I/O GOE0
R
ESET
B
GND GND GND GND GND GND GND GND GND GND TDIGCLK1 TMS T
UI/O I/O I/O I/O TOE I/O GND GND GND GND GND GND GND GND GND GND VCCJ TCK I/O
I/O
I/O
I/OI/O
I/OI/OI/O U
VI/O I/O I/O I/O I/O I/O GND GND GND GND GND GND GND GND GND GND I/O TDO I/O I/O I/O I/O V
WI/O I/O I/O VCC I/O GND GNDGND GND GND GND GND GND GND GND GND GND I/O VCC I/O I/O I/O W
YI/O I/O I/O I/O VCCO2 GND GNDGND GND GND GNDGND GND GND GND VCCO1 I/O I/O I/O I/O Y
AA I/O I/O I/O VCC I/O VCCO2 VCCO1 I/O VCC I/O I/O I/O AA
AB I/O I/O I/O I/O VCCO2 VCCO1 I/O I/O I/O I/O AB
AC I/O I/O I/O GND I/O I/O I/O I/O GND
GND
GND
GND
GND
GND
GND
I/O I/O I/O AC
AD I/O I/O I/O I/O VCCO2 VCCO1 I/O I/O I/O I/O AD
AE I/O I/O I/O VCC I/O I/O I/O VCCO2 GNDGNDGNDGND GND GND GNDNC1
NC1NC1NC1NC1NC1NC1
NC1NC1NC1NC1NC1
NC1NC1NC1NC1NC1
NC1NC1NC1NC1NC1
NC1NC1NC1NC1
NC1
NC1NC1NC1NC1NC1GND VCCO1 I/O I/O I/O VCC I/O I/O I/O AE
AF I/O I/O I/O I/O VCCO2 I/O VCCO2 I/O VCCO2 I/O VCCO2 I/O I/O VCCO1 I/O VCCO1 I/O VCCO1 I/O VCCO1 I/O I/O I/O I/O AF
AG I/O I/O I/O I/O I/O VCC I/O GND I/O VCC I/O VCC VCC I/O VCC I/O GND I/O VCC I/O I/O I/O I/O I/O AG
AH I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O AH
AJ I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O/
VREF2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC I/O AJ
AK GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O/
VREF1 I/O I/O I/O I/O I/O I/O I/O I/O GND
676BGA/51024VG
AK
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 987654321
I/O
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
ispMACH 51024VG
Bottom View
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
47
Part Number Description
Ordering Information Commercial
Part Number Package Pin Count Macrocells Tpd Voltage
LC51024VG-5F484C fpBGA 484 1024 5 3.3
LC51024VG-75F484C fpBGA 484 1024 7.5 3.3
LC51024VG-10F484C fpBGA 484 1024 10 3.3
LC51024VG-5F676C fpBGA 676 1024 5 3.3
LC51024VG-75F676C fpBGA 676 1024 7.5 3.3
LC51024VG-10F676C fpBGA 676 1024 10 3.3
LC5768VG-5F256C fpBGA 256 768 5 3.3
LC5768VG-75F256C fpBGA 256 768 7.5 3.3
LC5768VG-10F256C fpBGA 256 768 10 3.3
LC5768VG-5F484C fpBGA 484 768 5 3.3
LC5768VG-75F484C fpBGA 484 768 7.5 3.3
LC5768VG-10F484C fpBGA 484 768 10 3.3
Note: the ispMA CH 5000V G f amily is dual-marked with both Commercial and Industrial gr ades. The Commercial speed grade
is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I).
Device Number
5768 = 768 Macrocells
51024 = 1,024 Macrocells
LC XXXXXVG – XX FXXX X XX
Device Status
Blank = Final production
ES = Engineering Samples
Speed
5 = 5.0ns
75 = 7.5ns
10 = 10ns
12 = 12ns*
*Industrial grade only.
Package
F256 = 256-Ball fpBGA
F484 = 484-Ball fpBGA
F676 = 676-Ball fpBGA
Grade
C = Commercial
I = Industrial
Device Family
0212/ispm5vg
Lattice Semiconductor ispMACH 5000VG Family Data Sheet
48
Industrial
For Further Information
In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH
5000VG family:
ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000)
ispMACH 5000VG Timing Model Design and Usage Guidelines (TN1001)
Power Estimation in ispMACH 5000VG Devices (TN1002)
ispMACH 5000VG PLL Usage Guidelines (TN1003)
Part Number Package Pin Count Macrocells Tpd Voltage
LC51024VG-75F484I fpBGA 484 1024 7.5 3.3
LC51024VG-10F484I fpBGA 484 1024 10 3.3
LC51024VG-12F484I fpBGA 484 1024 12 3.3
LC51024VG-75F676I fpBGA 676 1024 7.5 3.3
LC51024VG-10F676I fpBGA 676 1024 10 3.3
LC51024VG-12F676I fpBGA 676 1024 12 3.3
LC5768VG-75F256I fpBGA 256 768 7.5 3.3
LC5768VG-10F256I fpBGA 256 768 10 3.3
LC5768VG-12F256I fpBGA 256 768 12 3.3
LC5768VG-75F484I fpBGA 484 768 7.5 3.3
LC5768VG-10F484I fpBGA 484 768 10 3.3
LC5768VG-12F484I fpBGA 484 768 12 3.3
Note: the ispMA CH 5000V G f amily is dual-marked with both Commercial and Industrial gr ades. The Commercial speed grade
is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I).