SST441NL/U441NL
Vishay Siliconix
New Product
Document Number: 72056
S-22526–Rev. A, 17-Feb-03 www.vishay.com
7-1
Monolithic N-Channel JFET Duals
PRODUCT SUMMARY
VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IG Typ (pA) |VGS1 - VGS2|Max (mV)
-1 to -6 -25 4.5 -1 20
FEATURES BENEFITS APPLICATIONS
DAnti Latchup Capability
DMonolithic Design
DHigh Slew Rate
DLow Offset/Drift Voltage
DLow Gate Leakage: 1 pA
DLow Noise
DHigh CMRR: 90 dB
DExternal Substrate Bias—Avoids Latchup
DTight Differential Match vs. Current
DImproved Op Amp Speed, Settling Time
Accuracy
DHigh-Speed Performance
DMinimum Input Error/Trimming Requirement
DInsignificant Signal Loss/Error Voltage
DHigh System Sensitivity
DMinimum Error with Large Input Signal
DWideband Differential Amps
DHigh-Speed,
Temp-Compensated,
Single-Ended Input Amps
DHigh Speed Comparators
DImpedance Converters
DESCRIPTION
The SST441NL is a monolithic high-speed dual JFET
mounted in a single SO-8 package. This JFET is an excellent
choice for use as wideband differential amplifiers in
demanding test and measurement applications.
Pins 4 and 8 on the SST441NL and pin 4 on the U441NL part
numbers enable the substrate to be connected to a positive,
external bias (VDD) to avoid latchup.
The U441NL in the hermetically sealed TO-78 package is
available with full military processing.
The SO-8 package provides ease of manufacturing. The
symmetrical pinout prevents improper orientation. The SO-8
package is available with tape-and-reel options for
compatibility with automatic assembly methods.
TO-78
Top View
U441NL
G1
S1
D1
G2
D2
S2
1
2
3
7
6
4
S1SUBSTRATE
D1G2
G1D2
SUBSTRATE S2
Narrow Body SOIC
5
6
7
8
2
3
4
1
Top View
Marking Codes:
SST441NL - 441NL
5
CASE, SUBSTRATE
ABSOLUTE MAXIMUM RATINGS
Gate-Drain, Gate-Source Voltage -25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Current 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead Temperature (1/16” from case for 10 sec.) 300_C. . . . . . . . . . . . . . . . . . .
Storage Temperature -55 to 15 0 _C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Junction Temperature -55 to 150_C. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Dissipation : Per Sidea300 mW. . . . . . . . . . . . . . . . . . . . . . . .
Totalb500 mW. . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes
a. Derate 2.4 mW/_C above 25_C
b. Derate 4 mW/_C above 25_C
For applications information see AN102.
SST441NL/U441NL
Vishay Siliconix New Product
www.vishay.com
7-2 Document Number: 72056
S-22526–Rev. A, 17-Feb-03
SPECIFICATIONS (TA = 25_C UNLESS OTHERWISE NOTED)
Limits
Parameter Symbol Test Conditions Min TypaMax Unit
Static
Gate-Source Breakdown Voltage V(BR)GSS IG = -1 mA, VDS = 0 V -25 -35
V
Gate-Source Cutoff Voltage VGS(off) VDS = 10 V, ID = 1 nA -1 -3.5 -6 V
Saturation Drain CurrentbIDSS VDS = 10 V, VGS = 0 V 6 15 30 mA
Gate Reverse Current
IGSS
VGS = -15 V, VDS = 0 V -1 -500 pA
Gate Reverse Current IGSS TA = 125_C-0.2 nA
Gate Operating Current
IG
VDG = 10 V, ID = 5 mA -1 -500 pA
Gate Operating Current IGTA = 125_C-0.2 nA
Gate-Source Forward Voltage VGS(F) IG = 1 mA , VDS = 0 V 0.7 V
Dynamic
Common-Source
Forward Transconductance gfs VD
S
= 10 V, ID = 5 mA 4.5 6 9 mS
Common-Source
Output Conductance gos
VDS = 10 V
,
ID = 5 mA
f = 1 kHz 20 200 mS
Common-Source
Forward Transconductance gfs VD
S
= 10 V, ID = 5 mA 5.5 mS
Common-Source
Output Conductance gos
VDS = 10 V
,
ID = 5 mA
f = 100 MHz 30 mS
Common-Source
Input Capacitance Ciss VD
S
= 10 V, ID = 5 mA 3.5
pF
Common-Source
Reverse Transfer Capacitance Crss
VDS = 10 V
,
ID = 5 mA
f = 1 MHz 1pF
Equivalent Input Noise Voltage enVDS = 10 V, ID = 5 mA
f = 10 kHz 4nV
Hz
Matching
Differential Gate-Source Voltage |VGS1 –V
GS2|VDG = 10 V, ID = 5 mA 7 20 mV
Gate-Source Voltage Differential
Change with Temperature D|VGS1 –V
GS2|
DTVDG = 10 V, ID = 5 mA
TA = -55 to 125_C10 mV/_C
Saturation Drain Current RatiocIDSS1
IDSS2 VDS = 10 V, VGS = 0 V 0.98
T ransconductance Ratiocgfs1
gfs2 VDS = 10 V, ID = 5 mA
f = 1 kHz 0.98
Common Mode Rejection Ratio CMRR VDG = 10 to 15 V, ID = 5 mA 90 dB
Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. NNZ
b. Pulse test: PW v300 ms duty cycle v3%.
c. Assumes smaller value in the numerator.
SST441NL/U441NL
Vishay Siliconix
New Product
Document Number: 72056
S-22526–Rev. A, 17-Feb-03 www.vishay.com
7-3
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
-0.1 pA
-1 pA
-10 pA
-100 pA
-1 nA
-10 nA
-100 nA
0151052025
0-5-4-2-1
15
13
11
7
5
25
20
15
10
5
0
Drain Current and Transconductance
vs. Gate-Source Cutoff Voltage Gate Leakage Current
VGS(off) - Gate-Source Cutoff Voltage (V) VDG - Drain-Gate Voltage (V)
IDSS @ VDS = 10 V, VGS = 0 V
gfs @ VDG = 10 V, VGS = 0 V
f = 1 kHz
gfs
IDSS
9
-3
Output Characteristics
VDS - Drain-Source Voltage (V)
VGS = 0 V
-0.4 V
-0.8 V
-1.2 V
-1.6 V
-2.0 V
-2.4 V
-2.8 V
20
012168420
15
10
5
0
VGS(off) = -4 V
Output Characteristics
VDS - Drain-Source Voltage (V)
5
010.80.60.40.2
4
3
2
0
1
VGS(off) = -3 V
VGS = 0 V
Output Characteristics
VDS - Drain-Source Voltage (V)
10
010.80.60.40.2
8
6
4
0
2
VGS(off) = -4 V VGS = 0 V -0.4 V
-0.8 V
-1.2 V
-1.6 V
-2.0 V
-2.4 V
-2.8 V
Output Characteristics
VDS - Drain-Source Voltage (V)
20
020161284
16
12
8
0
4
VGS(off) = -3 V
VGS = 0 V
-0.4 V
-0.8 V
-1.2 V
-1.6 V
-2.0 V
25
-1.4 V
-1.6 V
-0.2 V
-0.4 V
-0.6 V
-0.8 V
-1.0 V
-1.2 V
IGSS @
125_C
IGSS @ 25_C
TA = 125_C
TA = 25_C
5 mA
1 mA
100 mA
IG @ ID = 5 mA
1 mA
100 mA
gfs - Forward Transconductance (mS)
IDSS - Saturation Drain Current (mA)
IG - Gate Leakage
ID - Drain Current (mA)
ID - Drain Current (mA)ID - Drain Current (mA)
ID - Drain Current (mA)
SST441NL/U441NL
Vishay Siliconix New Product
www.vishay.com
7-4 Document Number: 72056
S-22526–Rev. A, 17-Feb-03
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
Transfer Characteristics Gate-Source Differential Voltage
vs. Drain Current
Voltage Differential with Temperature
vs. Drain Current Common Mode Rejection Ratio
vs. Drain Current
(mV)
VGS1 VGS2
-
CMRR (dB)
VGS - Gate-Source Voltage (V) ID - Drain Current (mA)
ID - Drain Current (mA) ID - Drain Current (mA)
ID - Drain Current (mA)
TA = -55_C
125_C
VGS(off) = -3 V
VDG = 10 V
DTA = 25 to 125_C
DTA = -55 to 25_C
VDG = 10 V
TA = 25_C
DVDG = 10 - 20 V
5 - 10 V
DVGS1 VGS2
DVDG
CMRR = 20 log
VGS(off) = -3 V
-4 V
Circuit Voltage Gain vs. Drain Current
20
0 -1.5-1.0-0.5 -2.0 -2.5
16
12
8
4
00.1 1 10
100
10
1
0.1 1 10
100
10
10.1 1 10
150
130
110
90
70
50
1100.1
100
80
60
40
20
0
On-Resistance vs. Drain Current
ID - Drain Current (mA)
0.1 1.0 10
200
160
120
80
40
0
VGS(off) = -3 V
-4 V
AV+
gfs RL
1)RLgos
Assume VDD = 15 V, VDS = 5 V
RL+10 V
ID
VDS = 10 V
25_C
V/ _C
()
t
D
Dm
VGS1 VGS2
-
rDS(on) - Drain-Source On-Resistance ( Ω )
ID - Drain Current (mA)
AV - Voltage Gain
SST441NL/U441NL
Vishay Siliconix
New Product
Document Number: 72056
S-22526–Rev. A, 17-Feb-03 www.vishay.com
7-5
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
10 100 1 k 100 k10 k
VGS - Gate-Source Voltage (V)
Common-Source Input Capacitance
vs. Gate-Source Voltage
- Input Capacitance (pF)Ciss
VDS = 0 V
15 V
f = 1 MHz
10
0 -16 -20-8-4
8
6
4
2
0
5 V
-12
Common-Source Reverse Feedback
Capacitance vs. Gate-Source Voltage
- Reverse Feedback Capacitance (pF)Crss
VGS - Gate-Source Voltage (V)
VDS = 0 V
15 V
f = 1 MHz
5
0-20-16-8-4
4
3
1
0
2
-12
Output Conductance vs. Drain Current
ID - Drain Current (mA)
TA = -55_C
125_C
50
40
30
20
10
00.1 1 10
25_C
Equivalent Input Noise Voltage vs. Frequency
f - Frequency (Hz)
VDS = 10 V
ID @ 10 mA
20
16
12
8
4
0
VGS = 0 V
Common-Source Forward Transconductance
vs. Drain Current
ID - Drain Current (mA)
TA = -55_C
125_C
0.1 1 10
10
8
2
0
6
4
On-Resistance and Output Conductance
vs. Gate-Source Cutoff Voltage
VGS(off) - Gate-Source Cutoff Voltage (V)
rDS @ ID = 1 mA, VGS = 0 V
gos @ VDG = 10 V, VGS = 0 V, f = kHz
rDS gos
250
0-3-5-4-2-1
200
150
100
50
0
100
0
50
25_C
VGS(off) = -3 V VDS = 10 V
f = 1 kHz
VGS(off) = -3 V VDS = 10 V
f = 1 kHz
5 V
S)gos- Output Conductance ( m
rDS(on) - Drain-Source On-Resistance ( Ω )
gos - Output Conductance (µS)
gfs - Forward Transconductance (mS)
en - Noise Voltage nV / Hz