This is information on a product in full production.
August 2017 DocID025966 Rev 6 1/103
STM32L100x6/8/B-A
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3,
128KB Flash, 16KB SRAM, 2KB EEPROM, LCD, USB, ADC, DAC
Datasheet - production data
Features
Ultra-low-power platform
1.8 V to 3.6 V power supply
-40°C to 85°C temperature range
0.28 µA Standby mode (2 wakeup pins)
1.11 µA Standby mode + RTC
0.44 µA Stop mode (16 wakeup lines)
1.38 µA Stop mode + RTC
10.9 µA Low-power Run mode
185 µA/MHz Run mode
10 nA ultra-low I/O leakage
< 8 µs wakeup time
Core: ARM® Cortex®-M3 32-bit CPU
From 32 kHz up to 32 MHz max
1.25 DMIPS/MHz (Dhrystone 2.1)
Memory protection unit
Reset and supply management
Ultra-safe, low-power BOR (brownout
reset) with 5 selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage detector (PVD)
Clock sources
1 to 24 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
High Speed Internal 16 MHz
Internal low-power 37 kHz RC
Internal multispeed low-power 65 kHz to
4.2 MHz
PLL for CPU clock and USB (48 MHz)
Pre-programmed bootloader
USART supported
Development support
Serial wire debug supported
JTAG and trace supported
Up to 51 fast I/Os (42 I/Os 5V tolerant), all
mappable on 16 external interrupt vectors
Memories
Up to 128 Kbytes of Flash memory with
ECC
Up to 16 Kbytes of RAM
Up to 2 Kbytes of true EEPROM with ECC
20-byte backup register
LCD Driver for up to 8x28 segments
Support contrast adjustment
Support blinking mode
Step-up converter on board
Rich analog peripherals (down to 1.8 V)
12-bit ADC 1 Msps up to 24 channels
12-bit DAC 2 channels with output buffers
2x ultra-low-power comparators
(window mode and wakeup capability)
DMA controller 7x channels
8x peripheral communication interfaces
1x USB 2.0 (internal 48 MHz PLL)
3x USART (ISO 7816, IrDA)
2x SPI 16 Mbit/s
2x I2C (SMBus/PMBus)
10x timers: 6x 16-bit with up to 4 IC/OC/PWM
channels, 2x 16-bit basic timers, 2x watchdog
timers (independent and window)
CRC calculation unit
Table 1. Device summary
Reference Part number
STM32L100C6-A,
STM32L100R8-A,
STM32L100RB-A
STM32L100C6xxA,
STM32L100R8xxA,
STM32L100RBxxA
LQFP64 10 × 10 mm UFQFPN48
7 × 7 mm
www.st.com
Contents STM32L100x6/8/B-A
2/103 DocID025966 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22
3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 25
3.13 Routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) . 27
3.14.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID025966 Rev 6 3/103
STM32L100x6/8/B-A Contents
4
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 28
3.15.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.4 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 29
3.17 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 46
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.5 Wakeup time from Low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Contents STM32L100x6/8/B-A
4/103 DocID025966 Rev 6
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.19 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.20 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information . . 92
7.2 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . . 95
7.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DocID025966 Rev 6 5/103
STM32L100x6/8/B-A List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Ultra-low-power STM32L100x6/8/B-A device features and peripheral counts . . . . . . . . . . 10
Table 3. Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14
Table 4. CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Working mode-dependent functionalities (from Run/active down to standby) . . . . . . . . . . 16
Table 6. VLCD rail decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. STM32L100x6/8/B-A pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 16. Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 17. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Current consumption in Run mode, code with data processing running from Flash. . . . . . 50
Table 19. Current consumption in Run mode, code with data processing running from RAM . . . . . . 51
Table 20. Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 21. Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 22. Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 56
Table 25. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 28. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 29. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 30. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 31. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 32. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 33. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 34. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 35. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 36. Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 37. Flash memory, data EEPROM endurance and data retention . . . . . . . . . . . . . . . . . . . . . . 68
Table 38. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 39. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 40. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 41. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 42. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 43. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 44. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 45. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 46. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 47. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 48. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of tables STM32L100x6/8/B-A
6/103 DocID025966 Rev 6
Table 49. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 78
Table 50. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 51. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 52. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 53. USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 54. ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 55. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 56. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 57. Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 58. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 59. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 60. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 61. LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 62. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. . . . . . . . . . . 92
Table 63. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 96
Table 64. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 65. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 66. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DocID025966 Rev 6 7/103
STM32L100x6/8/B-A List of figures
7
List of figures
Figure 1. Ultra-low-power STM32L100x6/8/B-A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. STM32L100RxxxA LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4. STM32L100C6xxA UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 6. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 8. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 9. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 11. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 12. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 13. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 14. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 15. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 18. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 19. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 20. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 21. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 22. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 24. Maximum dynamic current consumption on VDDA supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 25. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 26. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 92
Figure 27. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint . . . . . 93
Figure 28. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . . 94
Figure 29. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 30. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . . 96
Figure 31. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . . 97
Figure 32. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Introduction STM32L100x6/8/B-A
8/103 DocID025966 Rev 6
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L100x6/8/B-A ultra-low-power ARM® Cortex®-M3 based microcontrollers
product line.
The ultra-low-power STM32L100x6/8/B-A microcontroller family includes devices in 2
different package types: 48 or 64 pins. Depending on the device chosen, different sets of
peripherals are included, the description below gives an overview of the complete range of
peripherals proposed in this family.
These features make the ultra-low-power STM32L100x6/8/B-A microcontroller family
suitable for a wide range of applications:
Medical and handheld equipment
Application control and user interface
PC peripherals, gaming, GPS and sport equipment
Alarm systems, Wired and wireless sensors, Video intercom
Utility metering
This STM32L100x6/8/B-A datasheet should be read in conjunction with the STM32L1xxxx
reference manual (RM0038). The document "Getting started with STM32L1xxxx hardware
development” AN3216 gives a hardware implementation overview.
Both documents are available from the STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M3 core please refer to the Cortex®-M3 Technical
Reference Manual, available from the ARM website.
Figure 1 shows the general block diagram of the device family.
Caution: This datasheet does not apply to:
STM32L100x6/8/B
covered by a separate datasheet.
DocID025966 Rev 6 9/103
STM32L100x6/8/B-A Description
40
2 Description
The ultra-low-power STM32L100x6/8/B-A devices incorporate the connectivity power of the
universal serial bus (USB) with the high-performance ARM® Cortex®-M3 32-bit RISC core
operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-
speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 16 Kbytes)
and an extensive range of enhanced I/Os and peripherals connected to two APB buses.
All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six general-
purpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the STM32L100x6/8/B-A devices contain standard and advanced communication
interfaces: up to two I2Cs and SPIs, three USARTs and a USB.
They also include a real-time clock with sub-second counting and a set of backup registers
that remain powered in Standby mode.
Finally, the integrated LCD controller has a built-in LCD voltage generator that allows to
drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.
The ultra-low-power STM32L100x6/8/B-A devices operate from a 1.8 to 3.6 V power supply.
They are available in the -40 to +85 °C temperature range. A comprehensive set of power-
saving modes allows the design of low-power applications.
Description STM32L100x6/8/B-A
10/103 DocID025966 Rev 6
2.1 Device overview
--
Table 2. Ultra-low-power STM32L100x6/8/B-A device features and peripheral counts
Peripheral STM32L100C6xxA STM32L100R8/BxxA
Flash (Kbytes) 32 64 128
Data EEPROM (Kbytes) 2
RAM (Kbytes) 4816
Timers
General-
purpose 6
Basic 2
Communication
interfaces
SPI 2
I2C2
USART 3
USB 1
GPIOs 37 51
12-bit synchronized ADC
Number of channels
1
14 channels
1
20 channels
12-bit DAC
Number of channels
2
2
LCD
COM x SEG 4x16 4x32
8x28
Comparator 2
Max. CPU frequency 32 MHz
Operating voltage 1.8 V to 3.6 V
Operating temperatures Ambient temperatures: –40 to +85 °C
Junction temperature: -40 to +105°C
Packages UFQFPN48 LQFP64
DocID025966 Rev 6 11/103
STM32L100x6/8/B-A Description
40
2.2 Ultra-low-power device continuum
The ultra-low-power family offers a large choice of cores and features. From a proprietary 8-
bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series
offer the best range of choices to meet your requirements in terms of ultra-low-power
features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water
meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in
features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit,
DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by
reducing the BOM.
Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible
the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of
the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing
applications can be upgraded to respond to the latest market features and efficiency
demand.
2.2.1 Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for
STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs.
2.2.2 Shared peripherals
STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy
migration from one family to another:
Analog peripherals: ADC, DAC and comparators
Digital peripherals: RTC and some communication interfaces
2.2.3 Common system strategy
To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families
use a common architecture:
Common power supply range from 1.8 V to 3.6 V
Architecture optimized to reach ultra-low consumption both in low-power modes and
Run mode
Fast startup strategy from low-power modes
Flexible system clock
Ultra-safe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector.
2.2.4 Features
ST ultra-low-power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 512 Kbytes
Functional overview STM32L100x6/8/B-A
12/103 DocID025966 Rev 6
3 Functional overview
Figure 1 shows the block diagram.
Figure 1. Ultra-low-power STM32L100x6/8/B-A block diagram
1. AF = alternate function on I/O port pin.
06Y9
,&
,&
%84)4
77$'
BIT!$#
*4!'37
!&
.234
!&
"
7+50
&
MAX
-(Z
633
'0$-!
4)-
4)-
84!,/3#
-(Z
8 4! ,  K(Z
/3#?).
/3#?/54
0,,
CLOCK
MANAGEMENT
!("0#,+
(#,+
!0"0#,+
6/,42%'
6
#/2%
0/7%2
4)-
%XV0DWUL[
,QWHUIDFH
24#
2#(3
PBUS
REO
)ODVK
86%5$0%
53!24
53!24
30)
CHANNELS
&#,+
)7$'
6 $$
3UPPLY
MONITORING
6$$!
6
$$!
6
33!
6$$!
$3%)
PD[
 0+]
.6)#
30)
)&
6$$!
06$
0OWERRESET
)N T
!("
!75
6$$!
24#?/5424#?43
24#?4!-0
0$;=
)&)&)&
6$$!
$!#?/54AS
!&
-05
#OMP
#/-0?).).
#OMP
4)-
4)-
4)-
4)-
4)-
#HANNEL
#HANNEL
'ENERALPURPOSE
TIMERS
+"&LASH
+"DATA%%02/-
/&'VWHSXS
CONVERTER
9
/&'
"!3)#4)-%23
24#?!&).
62%&/54054
&RUWH[0&38
5$0
.%
BIT $!#
BIT $!#
'0)/!
'0)/"
'0)/#
'0)/$
2#-3
2#,3
3TANDBYINTERFACE
"ACKUPINTERFACE
86%)6GHYLFH
%259
5(),17
3RZHUXS
3RZHUGRZQ "ACKUP
REGISTER
$!#?/54AS
!&
$+%
$3%
$+%
$3%
.*4234
*4$)
*4#+37#,+
*4-337$!4
*4$/
AS!&
)BUS
$BUS
3YSTEM
6$$6TO6
/3#?).
/3#?/54
6,#$6TO6
#HANNELS
#HANNELS
#HANNELS
2848#43243
3MART#ARDAS!&
2848#43243
3MART#ARDAS!&
-/3)-)3/3#+.33
!S!&
3#,3$!
AS!&
3#,3$!3-"US0-"US
AS!&
53"?$0
53"?$-
3%'X
#/-X
53!24
,#$XX
4EMPSENSOR
#HANNELS
$3%)
PD[
 0+]
2848#43243
3MART#ARDAS!&
-/3)-)3/
3#+.33AS!&
0#;=
0";=
0!;=
$+%)
PD[
 0+]
0(;= '0)/(
DocID025966 Rev 6 13/103
STM32L100x6/8/B-A Functional overview
40
3.1 Low-power modes
The ultra-low-power STM32L100x6/8/B-A devices support dynamic voltage scaling to
optimize its power consumption in run mode. The voltage from the internal low-drop
regulator that supplies the logic can be adjusted according to the system’s maximum
operating frequency and the external voltage supply:
In Range 1 (VDD range limited to 2.0-3.6 V), the CPU runs at up to 32 MHz (refer to
Table 18 for consumption).
In Range 2 (full VDD range), the CPU runs at up to 16 MHz (refer to Table 18 for
consumption)
In Range 3 (full VDD range), the CPU runs at up to 4 MHz (generated only with the
multispeed internal RC oscillator clock source). Refer to Table 18 for consumption.
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Sleep mode power consumption: refer to Table 20.
Low-power Run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI
range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or
Flash memory, and internal regulator in low-power mode to minimize the regulator's
operating current. In the low-power Run mode, the clock frequency and the number of
enabled peripherals are both limited.
Low-power Run mode consumption: refer to Table 21.
Low-power Sleep mode
This mode is achieved by entering the Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In the low-power Sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the run
mode with the regulator on.
Low-power Sleep mode consumption: refer to Table 22.
Stop mode with RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can
be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp
event or the RTC wakeup.
Stop mode without RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and
HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
Functional overview STM32L100x6/8/B-A
14/103 DocID025966 Rev 6
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USB wakeup.
Stop mode consumption: refer to Table 23.
Standby mode with RTC
Standby mode is used to achieve the lowest power consumption and real time clock.
The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the two WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
Standby mode without RTC
Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI,
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After
entering Standby mode, the RAM and register contents are lost except for registers in
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,
RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the two WKUP pin occurs.
Standby mode consumption: refer to Table 24.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the
Stop or Standby mode.
Table 3. Functionalities depending on the operating power supply range
Operating power
supply range
Functionalities depending on the operating power supply range(1)
1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 45: I/O AC
characteristics for more information about I/O speed.
DAC and ADC
operation USB Dynamic voltage scaling range
VDD = 1.8 to 2.0 V(2)
2. The CPU frequency changes from initial to final must respect "FCPU initial < 4*FCPU final" to limit VCORE
drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between
two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz,
wait 5 µs, then switch from 16 MHz to 32 MHz.
Conversion time
up to 500 Ksps Not functional Range 2 or
Range 3
VDD = 2.0 to 2.4 V Conversion time
up to 500 Ksps Functional(3)
3. Should be USB-compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.
Range 1, Range 2 or Range 3
VDD = 2.4 to 3.6 V Conversion time
up to 1 Msps Functional(3) Range 1, Range 2 or Range 3
DocID025966 Rev 6 15/103
STM32L100x6/8/B-A Functional overview
40
Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws) Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws) Range 2
2.1 MHz to 4.2 MHz (1ws)
32 kHz to 2.1 MHz (0ws) Range 3
Functional overview STM32L100x6/8/B-A
16/103 DocID025966 Rev 6
Table 5. Working mode-dependent functionalities (from Run/active down to standby)
Ips Run/Active Sleep
Low-
power
Run
Low-
power
Sleep
Stop Standby
Wakeup
capability
Wakeup
capability
CPU Y - Y - - - - -
Flash Y Y Y - - - - -
RAM Y Y Y Y Y - - -
Backup Registers Y Y Y Y Y - Y -
EEPROM Y Y Y Y Y - - -
Brown-out reset
(BOR) YYYYYYY-
DMA Y Y Y Y - - - -
Programmable
Voltage Detector
(PVD)
YYYYYYY-
Power On Reset
(POR) YYYYYYY-
Power Down Rest
(PDR) YYYYY-Y-
High Speed
Internal (HSI) YY------
High Speed
External (HSE) YY------
Low Speed Internal
(LSI) YYYYY-Y-
Low Speed
External (LSE) YYYYY-Y-
Multi-Speed
Internal (MSI) YYYY----
Inter-Connect
Controller YYYY----
RTC Y Y Y Y Y Y Y -
RTC Tamper Y Y Y Y Y Y Y Y
Auto Wakeup
(AWU) YYYYYYYY
LCD Y Y Y Y Y - - -
USB Y Y - - - Y - -
USART Y Y Y Y Y (1) --
SPI Y Y Y Y - - - -
I2C Y Y - - - (1) --
ADC Y Y - - - - - -
DocID025966 Rev 6 17/103
STM32L100x6/8/B-A Functional overview
40
3.2 ARM® Cortex®-M3 core with MPU
The ARM® Cortex®-M3 processor is the industry leading processor for embedded systems.
It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The memory protection unit (MPU) improves system reliability by defining the memory
attributes (such as read/write access permissions) for different memory regions. It provides
up to eight different regions and an optional predefined background region.
Owing to its embedded ARM core, the STM32L100x6/8/B-A devices are compatible with all
ARM tools and software.
DAC Y Y Y Y Y - - -
Comparators Y Y Y Y Y Y - -
16-bit Timers Y Y Y Y - - - -
IWDG Y Y Y Y Y Y Y Y
WWDG Y Y Y Y - - - -
Systick Timer Y Y Y Y - - - -
GPIOs Y Y Y Y Y Y - 2 pins
Wakeup time to
Run mode 0 µs 0.4 µs 3 µs 46 µs < 8 µs 58 µs
Consumption
VDD=1.8V to 3.6V
(Typ)
Down to
185 µA/MHz
(from Flash)
Down to
36.9 µA/MHz
(from Flash)
Down to
10.9 µA
Down to
5.5 µA
0.43 µA (No
RTC) VDD=1.8 V
0.27 µA (No
RTC) VDD=1.8 V
1.13 µA (with
RTC) VDD=1.8 V
0.87 µA (with
RTC) VDD=1.8 V
0.44 µA (No
RTC) VDD=3.0 V
0.28 µA (No
RTC) VDD=3.0 V
1.38 µA (with
RTC) VDD=3.0 V
1.11 µA (with
RTC) VDD=3.0 V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before
entering run mode.
Table 5. Working mode-dependent functionalities (from Run/active down to standby) (continued)
Ips Run/Active Sleep
Low-
power
Run
Low-
power
Sleep
Stop Standby
Wakeup
capability
Wakeup
capability
Functional overview STM32L100x6/8/B-A
18/103 DocID025966 Rev 6
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L100x6/8/B-A devices embed a nested vectored interrupt
controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt
lines of Cortex-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support for tail-chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.3 Reset and supply management
3.3.1 Power supply schemes
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL.
VDDA and VSSA must be connected to VDD and VSS, respectively.
3.3.2 Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
After the VDD threshold is reached, the option byte loading process starts, either to confirm
or modify default thresholds, or to disable the BOR permanently.
BOR ensures proper operation starting from 1.8 V whatever the power ramp-up phase
before it reaches 1.8 V.
DocID025966 Rev 6 19/103
STM32L100x6/8/B-A Functional overview
40
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3 Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR) and power down.
MR is used in Run mode (nominal regulation)
LPR is used in the Low-power run, Low-power sleep and Stop modes
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost are lost except for the standby circuitry (wakeup logic,
IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).
3.3.4 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from Flash memory
Boot from System Memory
Boot from embedded RAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1 or USART2. See the application note “STM32 microcontroller system
memory boot mode” (AN2606) for details.
Functional overview STM32L100x6/8/B-A
20/103 DocID025966 Rev 6
3.4 Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption, the
clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock source: three different clock sources can be used to drive the master
clock:
1-24 MHz high-speed external crystal (HSE), that can supply a PLL
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz)
with a consumption proportional to speed, down to 750 nA typical. When a
32.768 kHz clock source is available in the system (LSE), the MSI frequency can
be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive
the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE)
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock
the RTC and the LCD, whatever the system clock.
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply
the USB interface.
Startup clock: after reset, the microcontroller restarts by default with an internal
2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI and a software
interrupt is generated if enabled.
Clock-out capability (MCO: microcontroller clock output): it outputs one of the
internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 32 MHz. See Figure 2 for details on the clock tree.
DocID025966 Rev 6 21/103
STM32L100x6/8/B-A Functional overview
40
Figure 2. Clock tree
!("
0RESCALER

!0"
0RESCALER

0#,+
(#,+
TO!("BUSCORE
MEMORYAND$-!
PERIPHERALS
TO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
!0"
0RESCALER

0#,+
TO4)-AND
PERIPHERALSTO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
-(ZMAX
-(ZMAX
TO#ORTEX3YSTEMTIMER

#LOCK
%NABLE
393#,+
4)-X#,+
4)-X#,+
&#,+#ORTEX
FREERUNNINGCLOCK
TO4)-AND
)F!0"PRESCALERX
ELSEX
)F!0"PRESCALERX
ELSEX
-(ZMAX
(3%/3#
-(Z
/3#?).
/3#?/54
(3)2#
-(Z
XXXX
XXX
0,,-5,
0,,#,+
(3)
(3)
(3%
0,,32# 37
#33
XX

-(Z
53"#,+
TO53"INTERFACE
0,,$)6
TO!$#
0ERIPHERALCLOCK
ENABLE
!$##,+
-(Z MAX

/3#?).
/3#?/54
,3%/3#
K(Z
,3)2#
K(Z
TO)NDEPENDENT7ATCHDOG)7$'
-#/
0,,#,+
(3)
(3%
,3%
,3)


TO24#
-#/3%,
24##,+
24#3%,;=
)7$'#,+
393#,+


-3)
,3%
,3)
TO,#$
TO
4IMER%42
(3%(IGHSPEEDEXTERNALCLOCKSIGNAL
,3%,OWSPEEDEXTERNALCLOCKSIGNAL
,3),OWSPEEDINTERNALCLOCKSIGNAL
(3) (IGHSPEEDINTERNALCLOCKSIGNAL
,EGEND
AIC
-3)-ULTISPEEDINTERNALCLOCKSIGNAL
0,,6#/
-3)2#
-3)
Functional overview STM32L100x6/8/B-A
22/103 DocID025966 Rev 6
3.5 Low-power real-time clock and backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD
(binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the
month are made automatically. The RTC provides two programmable alarms and
programmable periodic interrupts with wakeup from Stop and Standby modes.
The programmable wakeup time ranges from 120 µs to 36 hours.
The RTC can be calibrated with an external 512 Hz output, and a digital compensation
circuit helps reduce drift due to crystal deviation. The RTC can also be automatically
corrected with a 50/60Hz stable power line.
The RTC calendar can be updated on the fly down to sub second precision, which enables
network system synchronization. A time stamp can record an external event occurrence,
and generates an interrupt.
There are five 32-bit backup registers provided to store 20 bytes of user application data.
They are cleared in case of tamper detection. Three pins can be used to detect tamper
events. A change on one of these pins can reset backup register and generate an interrupt.
To prevent false tamper event, like ESD event, these three tamper inputs can be digitally
filtered.
3.6 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated AFIO registers. All GPIOs are high current capable. The
alternate function configuration of I/Os can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is
connected to the AHB with a toggling speed of up to 16 MHz.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected
to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or
Comparator events.
DocID025966 Rev 6 23/103
STM32L100x6/8/B-A Functional overview
40
3.7 Memories
The STM32L100x6/8/B-A devices have the following features:
Up to 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0
wait states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
The non-volatile memory is divided into three arrays:
32, 64 or 128 Kbytes of embedded Flash program memory
2 Kbytes of data EEPROM
Options bytes
The options bytes are used to write-protect the memory (with 4 Kbytes granularity)
and/or readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex-M3 JTAG and serial wire)
and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
3.8 DMA (direct memory access)
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers
and ADC.
Functional overview STM32L100x6/8/B-A
24/103 DocID025966 Rev 6
3.9 LCD (liquid crystal display)
The LCD drives up to 8 common terminals and 32 segment terminals to drive up to 224
pixels.
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
Supports static, 1/2, 1/3 and 1/4 bias
Phase inversion to reduce power consumption and EMI
Up to 8 pixels can be programmed to blink
Unneeded segments and common pins can be used as general I/O pins
LCD RAM can be updated at any time owing to a double-buffer
The LCD controller can operate in Stop mode
VLCD rail decoupling capability
3.10 ADC (analog-to-digital converter)
A 12-bit analog-to-digital converters is embedded into STM32L100x6/8/B-A devices with up
to 20 external channels, performing conversions in single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start trigger and injection trigger, to allow the application to synchronize A/D
conversions and timers. An injection mode allows high priority conversions to be done by
interrupting a scan mode which runs in as a background task.
The ADC includes a specific low-power mode. The converter is able to operate at maximum
speed even if the CPU is operating at a very low frequency and has an auto-shutdown
function. The ADC’s runtime and analog front-end current consumption are thus minimized
whatever the MCU operating mode.
3.10.1 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
Table 6. VLCD rail decoupling
Bias
Pin
1/2 1/3 1/4
VLCDrail1 1/2 VLCD 2/3 VLCD 1/2 VLCD PB2
VLCDrail2 NA 1/3 VLCD 1/4 VLCD PB12
VLCDrail3 NA NA 3/4 VLCD PB0
DocID025966 Rev 6 25/103
STM32L100x6/8/B-A Functional overview
40
enables accurate monitoring of the VDD value. The precise voltage of VREFINT is individually
measured for each part by ST during production test and stored in the system memory area.
It is accessible in read-only mode see Table 17: Embedded internal reference voltage.
3.11 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in non-inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channels’ independent or simultaneous conversions
DMA capability for each channel (including the underrun interrupt)
external triggers for conversion
Eight DAC trigger inputs are used in the STM32L100x6/8/B-A devices. The DAC channels
are triggered through the timer update outputs that are also connected to different DMA
channels.
3.12 Ultra-low-power comparators and reference voltage
The STM32L100x6/8/B-A devices embed two comparators sharing the same current bias
and reference voltage. The reference voltage can be internal or external (coming from an
I/O).
one comparator with fixed threshold
one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of
the following:
DAC output
External I/O
Internal reference voltage (VREFINT) or VREFINT submultiple (1/4, 1/2, 3/4)
Both comparators can wake up from Stop mode, and be combined into a window
comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
3.13 Routing interface
The highly flexible routing interface allows the application firmware to control the routing of
different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of
internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage
VREFINT
Functional overview STM32L100x6/8/B-A
26/103 DocID025966 Rev 6
3.14 Timers and watchdogs
The ultra-low-power STM32L100x6/8/B-A devices include six general-purpose timers, two
basic timers and two watchdog timers.
Table 7 compares the features of the general-purpose and basic timers.
Table 7. Timer feature comparison
Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
TIM2,
TIM3,
TIM4
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 No
TIM9 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
No 2 No
TIM10,
TIM11 16-bit Up
Any integer
between 1
and 65536
No 1 No
TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
DocID025966 Rev 6 27/103
STM32L100x6/8/B-A Functional overview
40
3.14.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)
There are six synchronizable general-purpose timers embedded in the STM32L100x6/8/B-A
devices (see Table 7 for differences).
TIM2, TIM3, TIM4
These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler.
They feature 4 independent channels each for input capture/output compare, PWM or one-
pulse mode output. This gives up to 12 input captures/output compares/PWMs on the
largest packages.
The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11
and TIM9 general-purpose timers via the Timer Link feature for synchronization or event
chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers
can be used to generate PWM outputs.
TIM2, TIM3, TIM4 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit
auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one
independent channel, whereas TIM9 has two independent channels for input capture/output
compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3,
TIM4 full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
3.14.2 Basic timers (TIM6 and TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit time bases.
3.14.3 SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit down-counter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches 0.
3.14.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
Functional overview STM32L100x6/8/B-A
28/103 DocID025966 Rev 6
3.14.5 Window watchdog (WWDG)
The window watchdog is based on a 7-bit down-counter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.15 Communication interfaces
3.15.1 I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
3.15.2 Universal synchronous/asynchronous receiver transmitter (USART)
All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide
hardware management of the CTS and RTS signals and are ISO 7816 compliant. They
support IrDA SIR ENDEC and have LIN Master/Slave capability.
All USART interfaces can be served by the DMA controller.
3.15.3 Serial peripheral interface (SPI)
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
Both SPIs can be served by the DMA controller.
3.15.4 Universal serial bus (USB)
The STM32L100x6/8/B-A devices embed a USB device peripheral compatible with the USB
full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function
interface. It has software-configurable endpoint setting and supports suspend/resume. The
dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use
a HSE crystal oscillator).
DocID025966 Rev 6 29/103
STM32L100x6/8/B-A Functional overview
40
3.16 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.17 Development support
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.
The JTAG port can be permanently disabled with a JTAG fuse.
Pin descriptions STM32L100x6/8/B-A
30/103 DocID025966 Rev 6
4 Pin descriptions
Figure 3. STM32L100RxxxA LQFP64 pinout
1. This figure shows the package top view.
       
















       











9/&'
3&:.83
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
966$
9''$
3$:.83
3$
3$
9''B
966B
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9''B
966B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966B
9''B
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
966B
9''B
/4)3
DLG
DocID025966 Rev 6 31/103
STM32L100x6/8/B-A Pin descriptions
40
Figure 4. STM32L100C6xxA UFQFPN48 pinout
1. This figure shows the package top view.
633?
"//4
0"
0"
0"
0"
0"
0!
0!
        
 6$$?
 633?
 0!
5&1&0.
 0!
633!
 0!
6$$!
 0!
0!7+50
 0!
0!
 0!
0!

6$$?
        
0!
0!
0!
0!
0!
0"
0"
0"
633?
AID






  
  
0"
0"
0"
0"
0"
0"
6,#$
0#7+50
0#/3#?).
0#/3#?/54
0(/3#?).
0(/3#?/54
.234
0"
0"
6$$?
Pin descriptions STM32L100x6/8/B-A
32/103 DocID025966 Rev 6
Table 8. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DocID025966 Rev 6 33/103
STM32L100x6/8/B-A Pin descriptions
40
Table 9. STM32L100x6/8/B-A pin definitions
Pins
Pin name
Pin type(1)
I/O structure
Main
function(2)
(after reset)
Pin functions
LQFP64
UFQFPN48
Alternate functions Additional
functions
11 V
LCD S- V
LCD --
2 2 PC13-WKUP2 I/O FT PC13 -
RTC_TAMP1/
RTC_TS/
RTC_OUT/WKUP2
33 PC14-
OSC32_IN(3) I/O TC PC14 - OSC32_IN
44
PC15-
OSC32_OUT
(4)
I/O TC PC15 - OSC32_OUT
5 5 PH0-OSC_IN(4) I/O TC PH0 - OSC_IN
6 6 PH1-OSC_OUT I/O TC PH1 - OSC_OUT
7 7 NRST I/O RST NRST - -
8 - PC0 I/O FT PC0 LCD_SEG18 ADC_IN10/
COMP1_INP
9 - PC1 I/O FT PC1 LCD_SEG19 ADC_IN11/
COMP1_INP
10 - PC2 I/O FT PC2 LCD_SEG20 ADC_IN12/
COMP1_INP
11 - PC3 I/O TC PC3 LCD_SEG21 ADC_IN13/
COMP1_INP
12 8 VSSA S- V
SSA --
13 9 VDDA S- V
DDA --
14 10 PA0-WKUP1 I/O FT PA0 USART2_CTS/
TIM2_CH1_ETR
WKUP1/ADC_IN0/
COMP1_INP
15 11 PA1 I/O FT PA1 USART2_RTS/TIM2_CH2/
LCD_SEG0
ADC_IN1/
COMP1_INP
16 12 PA2 I/O FT PA2 USART2_TX/TIM2_CH3/
TIM9_CH1/LCD_SEG1
ADC_IN2/
COMP1_INP
17 13 PA3 I/O TC PA3 USART2_RX/TIM2_CH4/
TIM9_CH2/LCD_SEG2
ADC_IN3/
COMP1_INP
18 - VSS_4 S- V
SS_4 --
19 - VDD_4 S- V
DD_4 --
Pin descriptions STM32L100x6/8/B-A
34/103 DocID025966 Rev 6
20 14 PA4 I/O TC PA4 SPI1_NSS/USART2_CK
ADC_IN4/
DAC_OUT1/
COMP1_INP
21 15 PA5 I/O TC PA5 SPI1_SCK/TIM2_CH1_ETR
ADC_IN5/
DAC_OUT2/
COMP1_INP
22 16 PA6 I/O FT PA6 SPI1_MISO/TIM3_CH1/
LCD_SEG3/TIM10_CH1
ADC_IN6/
COMP1_INP
23 17 PA7 I/O FT PA7 SPI1_MOSI/TIM3_CH2/
LCD_SEG4/TIM11_CH1
ADC_IN7/
COMP1_INP
24 - PC4 I/O FT PC4 LCD_SEG22 ADC_IN14/
COMP1_INP
25 - PC5 I/O FT PC5 LCD_SEG23 ADC_IN15/
COMP1_INP
26 18 PB0 I/O TC PB0 TIM3_CH3/LCD_SEG5
ADC_IN8/
COMP1_INP/
VREF_OUT
27 19 PB1 I/O FT PB1 TIM3_CH4/LCD_SEG6
ADC_IN9/
COMP1_INP/
VREF_OUT
28 20 PB2 I/O FT PB2/BOOT1 BOOT1 -
29 21 PB10 I/O FT PB10
I2C2_SCL/USART3_TX/
TIM2_CH3/
LCD_SEG10
-
30 22 PB11 I/O FT PB11 I2C2_SDA/USART3_RX
/TIM2_CH4/LCD_SEG11 -
31 23 VSS_1 S- V
SS_1 --
32 24 VDD_1 S- V
DD_1 --
33 25 PB12 I/O FT PB12
SPI2_NSS/I2C2_SMBA/
USART3_CK/
LCD_SEG12/
TIM10_CH1
ADC_IN18/
COMP1_INP/
34 26 PB13 I/O FT PB13 SPI2_SCK/USART3_CTS/
LCD_SEG13/TIM9_CH1
ADC_IN19/
COMP1_INP
Table 9. STM32L100x6/8/B-A pin definitions (continued)
Pins
Pin name
Pin type(1)
I/O structure
Main
function(2)
(after reset)
Pin functions
LQFP64
UFQFPN48
Alternate functions Additional
functions
DocID025966 Rev 6 35/103
STM32L100x6/8/B-A Pin descriptions
40
35 27 PB14 I/O FT PB14 SPI2_MISO/USART3_RTS/
LCD_SEG14/TIM9_CH2
ADC_IN20/
COMP1_INP
36 28 PB15 I/O FT PB15 SPI2_MOSI/LCD_SEG15/
TIM11_CH1
ADC_IN21/
COMP1_INP/
RTC_REFIN
37 - PC6 I/O FT PC6 TIM3_CH1/LCD_SEG24 -
38 - PC7 I/O FT PC7 TIM3_CH2/LCD_SEG25 -
39 - PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 -
40 - PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 -
41 29 PA8 I/O FT PA8 USART1_CK/MCO/LCD_COM0 -
42 30 PA9 I/O FT PA9 USART1_TX/LCD_COM1 -
43 31 PA10 I/O FT PA10 USART1_RX/LCD_COM2 -
44 32 PA11 I/O FT PA11 USART1_CTS/SPI1_MISO USB_DM
45 33 PA12 I/O FT PA12 USART1_RTS/SPI1_MOSI USB_DP
46 34 PA13 I/O FT JTMS-SWDIO JTMS-SWDIO -
47 35 VSS_2 S- V
SS_2 --
48 36 VDD_2 S- V
DD_2 --
49 37 PA14 I/O FT JTCK-SWCLK JCTK-SWCLK -
50 38 PA15 I/O FT JTDI
TIM2_CH1_ETR/PA15/
SPI1_NSS/
LCD_SEG17/JTDI
-
51 - PC10 I/O FT PC10
USART3_TX/LCD_SEG28/
LCD_SEG40/
LCD_COM4
-
52 - PC11 I/O FT PC11
USART3_RX/LCD_SEG29/
LCD_SEG41/
LCD_COM5
-
53 - PC12 I/O FT PC12
USART3_CK/LCD_SEG30/
LCD_SEG42/
LCD_COM6
-
54 - PD2 I/O FT PD2
TIM3_ETR/LCD_SEG31/
LCD_SEG43/
LCD_COM7
-
Table 9. STM32L100x6/8/B-A pin definitions (continued)
Pins
Pin name
Pin type(1)
I/O structure
Main
function(2)
(after reset)
Pin functions
LQFP64
UFQFPN48
Alternate functions Additional
functions
Pin descriptions STM32L100x6/8/B-A
36/103 DocID025966 Rev 6
55 39 PB3 I/O FT JTDO TIM2_CH2/PB3/SPI1_SCK/
LCD_SEG7/JTDO COMP2_INM
56 40 PB4 I/O FT NJTRST TIM3_CH1/PB4/SPI1_MISO/
LCD_SEG8/NJTRST COMP2_INP
57 41 PB5 I/O FT PB5 I2C1_SMBA/TIM3_CH2/
SPI1_MOSI/LCD_SEG9 COMP2_INP
58 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1/
USART1_TX -
59 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2
/USART1_RX PVD_IN
60 44 BOOT0 I B BOOT0 - -
61 45 PB8 I/O FT PB8
TIM4_CH3/I2C1_SCL/
LCD_SEG16/
TIM10_CH1
-
62 46 PB9 I/O FT PB9
TIM4_CH4/I2C1_SDA/
LCD_COM3/
TIM11_CH1
-
63 47 VSS_3 S- V
SS_3 --
64 48 VDD_3 S- V
DD_3 --
1. I = input, O = output, S = supply.
2. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower
number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1
and USART1 & USART2, respectively. Refer to Table 2 on page 10.
3. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose
PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
section in the STM32L1xxxx reference manual (RM0038).
4. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit
in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,
respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO
function.
Table 9. STM32L100x6/8/B-A pin definitions (continued)
Pins
Pin name
Pin type(1)
I/O structure
Main
function(2)
(after reset)
Pin functions
LQFP64
UFQFPN48
Alternate functions Additional
functions
STM32L100x6/8/B-A Pin descriptions
DocID025966 Rev 6 37/103
Table 10. Alternate function input/output
Port name
Digital alternate function number
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI
O8
AFI
O9 AFIO11 AFIO
12
AFIO
13 AFIO14 AFIO15
Alternate function
SYSTEM TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A USART
1/2/3 N/A N/A LCD N/A N/A RI SYSTEM
BOOT0 BOOT0 - - - - - - - - - - - - - -
NRST NRST - - - - - - - - - - - - - -
PA0-WKUP1 - TIM2_CH1_ETR - - - - - USART2_CTS - - - - - TIMx_IC1 EVENTOUT
PA1 - TIM2_CH2 - - - - - USART2_RTS - - [SEG0] - - TIMx_IC2 EVENTOUT
PA2 - TIM2_CH3 - TIM9_CH1 - - - USART2_TX - - [SEG1] - - TIMx_IC3 EVENTOUT
PA3 - TIM2_CH4 - TIM9_CH2 - - - USART2_RX - - [SEG2] - - TIMx_IC4 EVENTOUT
PA4 - - - - - SPI1_NSS - USART2_CK - - - - - TIMx_IC1 EVENTOUT
PA5 - TIM2_CH1_ETR - - - SPI1_SCK - - - - - - - TIMx_IC2 EVENTOUT
PA6 - - TIM3_CH1 TIM10_CH1 - SPI1_MISO - - - - [SEG3] - - TIMx_IC3 EVENTOUT
PA7 - - TIM3_CH2 TIM11_CH1 - SPI1_MOSI - - - - [SEG4] - - TIMx_IC4 EVENTOUT
PA8 MCO - - - - - - USART1_CK - - [COM0] - - TIMx_IC1 EVENTOUT
PA9 - - - - - - - USART1_TX - - [COM1] - - TIMx_IC2 EVENTOUT
PA10 - - - - - - - USART1_RX - - [COM2] - - TIMx_IC3 EVENTOUT
PA11 - - - - - SPI1_MISO - USART1_CTS - - - - - TIMx_IC4 EVENTOUT
PA12 - - - - - SPI1_MOSI - USART1_RTS - - - - - TIMx_IC1 EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - - - - - - TIMx_IC2 EVENTOUT
PA14 JTCK-
SWCLK - - - - - - - - - - - - TIMx_IC3 EVENTOUT
PA15 JTDI TIM2_CH1_ETR - - - SPI1_NSS - - - - SEG17 - - TIMx_IC4 EVENTOUT
PB0 - - TIM3_CH3 - - - - - - - [SEG5] - - - EVENTOUT
PB1 - - TIM3_CH4 - - - - - - - [SEG6] - - - EVENTOUT
PB2 BOOT1 - - - - - - - - - - - - - EVENTOUT
PB3 JTDO TIM2_CH2 - - - SPI1_SCK - - - - [SEG7] - - - EVENTOUT
Pin descriptions STM32L100x6/8/B-A
38/103 DocID025966 Rev 6
PB4 NJTRST - TIM3_CH1 - - SPI1_MISO - - - - [SEG8] - - - EVENTOUT
PB5 - - TIM3_CH2 - I2C1_
SMBA SPI1_MOSI - - - - [SEG9] - - - EVENTOUT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - - - - - - EVENTOUT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - - - - EVENTOUT
PB8 - - TIM4_CH3 TIM10_CH1* I2C1_SCL - - - - - SEG16 - - - EVENTOUT
PB9 - - TIM4_CH4 TIM11_CH1* I2C1_SDA - - - - - [COM3] - - - EVENTOUT
PB10 - TIM2_CH3 - - I2C2_SCL - - USART3_TX - - SEG10 - - - EVENTOUT
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - SEG11 - - - EVENTOUT
PB12 - - - TIM10_CH1 I2C2_
SMBA SPI2_NSS - USART3_CK - - SEG12 - - - EVENTOUT
PB13 - - - TIM9_CH1 - SPI2_SCK - USART3_CTS - - SEG13 - - - EVENTOUT
PB14 - - - TIM9_CH2 - SPI2_MISO - USART3_RTS - - SEG14 - - - EVENTOUT
PB15 - - - TIM11_CH1 - SPI2_MOSI - - - - SEG15 - - - EVENTOUT
PC0 - - - - - - - - - - SEG18 - - TIMx_IC1 EVENTOUT
PC1 - - - - - - - - - - SEG19 - - TIMx_IC2 EVENTOUT
PC2 - - - - - - - - - - SEG20 - - TIMx_IC3 EVENTOUT
PC3 - - - - - - - - - - SEG21 - - TIMx_IC4 EVENTOUT
PC4 - - - - - - - - - - SEG22 - - TIMx_IC1 EVENTOUT
PC5 - - - - - - - - - - SEG23 - - TIMx_IC2 EVENTOUT
PC6 - - TIM3_CH1 - - - - - - - SEG24 - - TIMx_IC3 EVENTOUT
PC7 - - TIM3_CH2 - - - - - - - SEG25 - - TIMx_IC4 EVENTOUT
PC8 - - TIM3_CH3 - - - - - - - SEG26 - - TIMx_IC1 EVENTOUT
PC9 - - TIM3_CH4 - - - - - - - SEG27 - - TIMx_IC2 EVENTOUT
Table 10. Alternate function input/output (continued)
Port name
Digital alternate function number
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI
O8
AFI
O9 AFIO11 AFIO
12
AFIO
13 AFIO14 AFIO15
Alternate function
SYSTEM TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A USART
1/2/3 N/A N/A LCD N/A N/A RI SYSTEM
STM32L100x6/8/B-A Pin descriptions
DocID025966 Rev 6 39/103
PC10 - - - - - - - USART3_TX - -
COM4 /
SEG28 /
SEG40
- - TIMx_IC3 EVENTOUT
PC11 - - - - - - - USART3_RX - -
COM5 /
SEG29 /
SEG41
- - TIMx_IC4 EVENTOUT
PC12 - - - - - - - USART3_CK - -
COM6 /
SEG30 /
SEG42
- - TIMx_IC1 EVENTOUT
PC13-
WKUP2 - - - - - - - - - - - - - TIMx_IC2 EVENTOUT
PC14-
OSC32_IN - - - - - - - - - - - - - TIMx_IC3 EVENTOUT
PC15-
OSC32_OUT - - - - - - - - - - - - - TIMx_IC4 EVENTOUT
PD2 - - TIM3_ETR - - - - - - -
COM7 /
SEG31 /
SEG43
- - TIMx_IC3 EVENTOUT
PH0-
OSC_IN - - - - - - - - ------ -
PH1-
OSC_OUT - - - - - - - - ------ -
Table 10. Alternate function input/output (continued)
Port name
Digital alternate function number
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI
O8
AFI
O9 AFIO11 AFIO
12
AFIO
13 AFIO14 AFIO15
Alternate function
SYSTEM TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A USART
1/2/3 N/A N/A LCD N/A N/A RI SYSTEM
Memory mapping STM32L100x6/8/B-A
40/103 DocID025966 Rev 6
5 Memory mapping
The memory map is shown in the following figure.
Figure 5. Memory map
DocID025966 Rev 6 41/103
STM32L100x6/8/B-A Electrical characteristics
91
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
Please refer to device ErrataSheet for possible latest changes of electrical characteristics.
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.0 V (for the
1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 6.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 7.
Figure 6. Pin loading conditions Figure 7. Pin input voltage
DLF
& S)
0&8SLQ
DLG
0&8SLQ
9,1
Electrical characteristics STM32L100x6/8/B-A
42/103 DocID025966 Rev 6
6.1.6 Power supply scheme
Figure 8. Power supply scheme
069
9''1
$QDORJ
5&V3//
&203
*3,2V
287
,1
.HUQHO
ORJLF
&38
'LJLWDO
0HPRULHV
6WDQGE\SRZHUFLUFXLWU\
26&.57&
57&EDFNXSUHJLVWHUV
:DNHXSORJLF
1[Q)
[)
5HJXODWRU
9661
9''$
966$
$'&
'$&
/HYHOVKLIWHU
,2
/RJLF
9''
9''$
95()
95()
Q)
)
DocID025966 Rev 6 43/103
STM32L100x6/8/B-A Electrical characteristics
91
6.1.7 Optional LCD power supply scheme
Figure 9. Optional LCD power supply scheme
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an
external capacitance is needed for correct behavior of this converter.
6.1.8 Current consumption measurement
Figure 10. Current consumption measurement scheme
069
9
''1
1[Q)
[)
6WHSXS
&RQYHUWHU
9
661
9
''
Q)
9
/&'
9
/&'UDLO
9
/&'UDLO
9
/&'UDLO
9
/&'
3%
3%
3%
&
(;7
&
UDLO
/&'
96(/
&
UDLO
&
UDLO
2SWLRQ
2SWLRQ
1[Q)
[)
1[966
1[9''
966$
Q)
)
$
95()
95()
9''$
9/&'
069
Electrical characteristics STM32L100x6/8/B-A
44/103 DocID025966 Rev 6
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage
(including VDDA and VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.
Input voltage on five-volt tolerant pin VSS 0.3 VDD+4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all different ground pins(3)
3. Include VREF- pin.
-50
VESD(HBM)
Electrostatic discharge voltage
(human body model) see Section 6.3.11 -
Table 12. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
100
mA
ΣIVSS(2)
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
Total current out of sum of all VSS_x ground lines (sink)(1) 100
IVDD(PIN) Maximum current into each VDD_x power pin (source)(1) 70
IVSS(PIN) Maximum current out of each VSS_x ground pin (sink)(1) -70
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin - 25
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control
pins(2) 60
Total output current sourced by sum of all IOs and control
pins(2) -60
IINJ(PIN) (3)
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
Injected current on five-volt tolerant I/O(4) RST and B pins -5/+0
Injected current on any other pin(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
DocID025966 Rev 6 45/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3 Operating conditions
6.3.1 General operating conditions
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 11 for maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 11: Voltage characteristics for the maximum allowed input voltage
values.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 105 °C
TLEAD Maximum lead temperature during soldering see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
°C
Table 14. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 32
MHzfPCLK1 Internal APB1 clock frequency - 0 32
fPCLK2 Internal APB2 clock frequency - 0 32
VDD Standard operating voltage BOR detector enabled,
at power on 1.8 3.6 V
VDDA(1) Analog operating voltage
(ADC and DAC used)
Must be the same voltage as
VDD(2) 1.8 3.6 V
VIN I/O input voltage
FT pins: 2.0 V VDD –0.3 5.5(3)
V
FT pins: VDD < 2.0 V –0.3 5.25(3)
BOOT0 0 5.5
Any other pin –0.3 VDD+0.3
PDPower dissipation at TA = 85 °C(4) LQFP64 package - 444
mW
UFQFPN48 package - 606
TA Ambient temperature range Maximum power dissipation –40 85
TJJunction temperature range -40 °C TA 85°C -40 105 °C
1. When the ADC is used, refer to Table 55: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and operation.
3. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
Electrical characteristics STM32L100x6/8/B-A
46/103 DocID025966 Rev 6
6.3.2 Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in the following table.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 64: Thermal characteristics on
page 98).
Table 15. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tVDD(1)
VDD rise time rate BOR detector enabled 0 -
µs/V
VDD fall time rate
BOR detector enabled 20 -
BOR detector disabled 0 - 1000
TRSTTEMPO(1) Reset temporization VDD rising, BOR enabled - 2 3.3 ms
VPOR/PDR
Power on/power down reset
threshold
Falling edge 1 1.5 1.65
V
Rising edge 1.3 1.5 1.65
VBOR0 Brown-out reset threshold 0
Falling edge 1.67 1.7 1.74
V
Rising edge 1.69 1.76 1.8
VBOR1 Brown-out reset threshold 1
Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.03 2.07
VBOR2 Brown-out reset threshold 2
Falling edge 2.22 2.30 2.35
Rising edge 2.31 2.41 2.44
VBOR3 Brown-out reset threshold 3
Falling edge 2.45 2.55 2.60
Rising edge 2.54 2.66 2.7
VBOR4 Brown-out reset threshold 4
Falling edge 2.68 2.8 2.85
Rising edge 2.78 2.9 2.95
DocID025966 Rev 6 47/103
STM32L100x6/8/B-A Electrical characteristics
91
VPVD0
Programmable voltage detector
threshold 0
Falling edge 1.8 1.85 1.88
V
Rising edge 1.88 1.94 1.99
VPVD1 PVD threshold 1
Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
VPVD2 PVD threshold 2
Falling edge 2.20 2.24 2.28
Rising edge 2.28 2.34 2.38
VPVD3 PVD threshold 3
Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
VPVD4 PVD threshold 4
Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
VPVD5 PVD threshold 5
Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
VPVD6 PVD threshold 6
Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
Vhyst Hysteresis voltage
BOR0 threshold - 40 -
mV
All BOR and PVD thresholds
excepting BOR0 -100-
1. Guaranteed by characterization results.
Table 15. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L100x6/8/B-A
48/103 DocID025966 Rev 6
6.3.3 Embedded internal reference voltage
The parameters given in the following table are based on characterization results, unless
otherwise specified.
Table 16. Embedded internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C ±5 °C,
VDDA= 3 V ±10 mV
0x1FF8 0078-0x1FF8 0079
Table 17. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT out(1) Internal reference voltage – 40 °C < TJ < +85 °C 1.202 1.224 1.242 V
IREFINT
Internal reference current
consumption - - 1.4 2.3 µA
TVREFINT Internal reference startup time - - 2 3 ms
VVREF_MEAS
VDDA voltage during VREFINT factory
measure - 2.99 3 3.01 V
AVREF_MEAS
Accuracy of factory-measured VREF
value (2)
Including uncertainties
due to ADC and VDDA
values
--±5 mV
TCoeff(3) Temperature coefficient –40 °C < TJ < +85 °C - 25 100 ppm/°C
ACoeff(3) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm
VDDCoeff(3)(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V
TS_vrefint(3) ADC sampling time when reading the
internal reference voltage -4--µs
TADC_BUF(3) Startup time of reference voltage
buffer for ADC ---10µs
IBUF_ADC(3) Consumption of reference voltage
buffer for ADC - - 13.5 25 µA
IVREF_OUT(3) VREF_OUT output current(5) ---1µA
CVREF_OUT(3) VREF_OUT output load - - - 50 pF
ILPBUF(3) Consumption of reference voltage
buffer for VREF_OUT and COMP - - 730 1200 nA
VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26
% VREFINT
VREFINT_DIV2(3) 1/2 reference voltage - 49 50 51
VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76
1. Guaranteed by test in production.
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
3. Guaranteed by characterization results.
4. Shortest sampling time can be determined in the application by multiple interactions.
5. To guarantee less than 1% VREF_OUT deviation.
DocID025966 Rev 6 49/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.4 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code. The current consumption is measured as described in Figure 10: Current
consumption measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code, unless otherwise
specified.
The current consumption values are derived from the tests performed under ambient
temperature TA=25°C and VDD supply voltage conditions summarized in Table 14: General
operating conditions, unless otherwise specified.
The MCU is placed under the following conditions:
All I/O pins are configured in analog input mode.
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time, 64-bit access and prefetch is adjusted depending on
fHCLK frequency and voltage range to provide the best CPU performance.
When the peripherals are enabled fAPB1 = fAPB2 = fAHB.
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used).
The HSE user clock applied to OSC_IN input follows the characteristics specified in
Table 27: High-speed external user clock characteristics.
For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins.
For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise.
Electrical characteristics STM32L100x6/8/B-A
50/103 DocID025966 Rev 6
Table 18. Current consumption in Run mode, code with data processing running from Flash
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
IDD (Run
from Flash)
Supply
current in
Run mode,
code
executed
from Flash
fHSE = fHCLK
up to 16 MHz, included
fHSE = fHCLK/2 above
16 MHz
(PLL ON)(2)
Range 3, VCORE=1.2 V
VOS[1:0] = 11
1 MHz 215 285
µA2 MHz 400 490
4 MHz 725 1000
Range 2, VCORE=1.5 V
VOS[1:0] = 10
4 MHz 0.915 1.3
mA
8 MHz 1.75 2.15
16 MHz 3.4 4
Range 1, VCORE=1.8 V
VOS[1:0] = 01
8 MHz 2.1 2.9
16 MHz 4.2 5.2
32 MHz 8.25 9.6
HSI clock source (16
MHz)
Range 2, VCORE=1.5 V
VOS[1:0] = 10 16 MHz 3.5 4.4
Range 1, VCORE=1.8 V
VOS[1:0] = 01 32 MHz 8.2 10.2
MSI clock, 65 kHz
Range 3, VCORE=1.2 V
VOS[1:0] = 11
65 kHz 0.041 0.085
MSI clock, 524 kHz 524 kHz 0.125 0.180
MSI clock, 4.2 MHz 4.2 MHz 0.775 0.935
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
DocID025966 Rev 6 51/103
STM32L100x6/8/B-A Electrical characteristics
91
Table 19. Current consumption in Run mode, code with data processing running from RAM
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
IDD (Run
from RAM)
Supply current in
Run mode, code
executed from
RAM, Flash
switched off
fHSE = fHCLK
up to 16 MHz,
included
fHSE = fHCLK/2 above
16 MHz
(PLL ON)(2)
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1 MHz 185 255
µA2 MHz 345 435
4 MHz 645 930
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
4 MHz 0.755 1.5
mA
8 MHz 1.5 2.2
16 MHz 3.0 3.6
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 1.8 2.9
16 MHz 3.6 4.3
32 MHz 7.15 8.5
HSI clock source
(16 MHz)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 2.95 3.7
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 7.15 8.7
MSI clock, 65 kHz Range 3,
VCORE=1.2 V
VOS[1:0] = 11
65 kHz 39 115
µAMSI clock, 524 kHz 524 kHz 110 205
MSI clock, 4.2 MHz 4.2 MHz 690 870
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Electrical characteristics STM32L100x6/8/B-A
52/103 DocID025966 Rev 6
Table 20. Current consumption in Sleep mode
Symbol Parameter Conditions fHCLK Typ Max(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
IDD
(Sleep)
Supply
current in
Sleep
mode,
Flash OFF
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz (PLL
ON)(2)
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1 MHz 50 155
µA
2 MHz 78.5 235
4 MHz 140 370(3)
3. Guaranteed by test in production.
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
4 MHz 165 375
8 MHz 310 530
16 MHz 590 1000
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 350 615
16 MHz 680 1200
32 MHz 1600 2350
HSI clock source
(16 MHz)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 640 970
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 1600 2350
MSI clock, 65 kHz Range 3,
VCORE=1.2 V
VOS[1:0] = 11
65 kHz 19 60
MSI clock, 524 kHz 524 kHz 33 90
MSI clock, 4.2 MHz 4.2 MHz 145 210
Supply
current in
Sleep
mode,
Flash ON
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz (PLL
ON)(2)
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1 MHz 60.5 145
µA
2 MHz 89.5 225
4 MHz 150 360
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
4 MHz 180 370
8 MHz 320 490
16 MHz 605 895
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 380 565
16 MHz 695 1070
32 MHz 1600 2200
HSI clock source
(16 MHz)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 650 970
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 1600 2320
MSI clock, 65 kHz Range 3,
VCORE=1.2V
VOS[1:0] = 11
65 kHz 29.5 65
MSI clock, 524 kHz 524 kHz 44 80
MSI clock, 4.2 MHz 4.2 MHz 155 220
DocID025966 Rev 6 53/103
STM32L100x6/8/B-A Electrical characteristics
91
Table 21. Current consumption in Low power run mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD (LP
Run)
Supply
current in
Low power
run mode
All
peripherals
OFF, code
executed
from RAM,
Flash
switched
OFF, VDD
from 1.8 V
to 3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 10.9 12
µA
TA = 85 °C 16.5 23
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C 15 16
TA = 85 °C 22 29
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 29 37
TA = 55 °C 32.5 40
TA = 85 °C 35.5 54
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.8 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 23 24
TA = 85 °C 31 34
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C 29 31
TA = 85 °C 38 41
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 46 55
TA = 55 °C 48 59
TA = 85 °C 53.5 72
IDD Max
(LP
Run)(2)
Max allowed
current in
Low power
run mode
VDD from
1.8 V to
3.6 V
---200
1. Guaranteed by characterization results, unless otherwise specified.
2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator.
Consumption of the I/Os is not included in this limitation.
Electrical characteristics STM32L100x6/8/B-A
54/103 DocID025966 Rev 6
Table 22. Current consumption in Low power sleep mode
Symbol Parameter Conditions Typ Max(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
IDD (LP
Sleep)
Supply
current in
Low power
sleep
mode
All
peripherals
OFF, VDD
from 1.8 V
to 3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash OFF
TA = -40 °C to 25 °C 5.5 -
µA
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash ON
TA = -40 °C to 25 °C 15 16
TA = 85 °C 20 23
MSI clock, 65 kHz
fHCLK = 65 kHz,
Flash ON
TA = -40 °C to 25 °C 15 16
TA = 85 °C 20.5 23
MSI clock,
131 kHz
fHCLK = 131 kHz,
Flash ON
TA = -40 °C to 25 °C 18 20
TA = 55 °C 21 22
TA = 85 °C 23 27
TIM9 and
USART1
enabled,
Flash ON,
VDD from
1.8 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 15 16
TA = 85 °C 20 22
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C 15 16
TA = 85 °C 20.5 23
MSI clock,
131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 18 20
TA = 55 °C 21 22
TA = 85 °C 23 27
IDD Max
(LP
Sleep)
Max
allowed
current in
Low power
Sleep
mode
VDD from
1.8 V to
3.6 V
---200
DocID025966 Rev 6 55/103
STM32L100x6/8/B-A Electrical characteristics
91
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions Typ(1) Max
(1)(2) Unit
IDD (Stop
with RTC)
Supply current in
Stop mode with
RTC enabled
RTC clocked by LSI,
regulator in LP mode, HSI
and HSE OFF
(no independent
watchdog)
LCD OFF
TA = -40°C to 25°C
VDD = 1.8 V 1.13 -
µA
TA = -40°C to 25°C 1.38 4
TA = 55°C 1.70 6
TA= 85°C 3.30 10
LCD ON
(static
duty)(3)
TA = -40°C to 25°C 1.50 6
TA = 55°C 1.80 7
TA= 85°C 3.45 12
LCD ON
(1/8
duty)(4)
TA = -40°C to 25°C 3.80 10
TA = 55°C 4.30 11
TA= 85°C 6.10 16
RTC clocked by LSE
external clock (32.768
kHz), regulator in LP
mode, HSI and HSE OFF
(no independent
watchdog)
LCD OFF
TA = -40°C to 25°C 1.50 -
TA = 55°C 1.90 -
TA= 85°C 3.65 -
LCD ON
(static
duty)(3)
TA = -40°C to 25°C 1.60 -
TA = 55°C 2.05 -
TA= 85°C 3.75 -
LCD ON
(1/8
duty)(1)
TA = -40°C to 25°C 3.90 -
TA = 55°C 4.55 -
TA= 85°C 6.35 -
RTC clocked by LSE (no
independent watchdog)(5) LCD OFF
TA = -40°C to 25°C
VDD = 1.8 V 1.23 -
TA = -40°C to 25°C
VDD = 3.0 V 1.50 -
TA = -40°C to 25°C
VDD = 3.6 V 1.75 -
IDD (Stop)
Supply current in
Stop mode (
RTC disabled)
Regulator in LP mode, HSI and HSE
OFF, independent watchdog and LSI
enabled
TA = -40°C to 25°C 1.80 2.2
Regulator in LP mode, LSI, HSI and
HSE OFF (no independent watchdog)
TA = -40°C to 25°C 0.434 1
TA = 55°C 0.735 3
TA= 85°C 2.350 9
IDD (WU
from Stop)
RMS (root mean
square) supply
current during
wakeup time
when exiting
from Stop mode
MSI = 4.2 MHz
VDD = 3.0 V
TA = -40°C to 25°C
2-
mA
MSI = 1.05 MHz 1.45 -
MSI = 65 kHz(6) 1.45 -
Electrical characteristics STM32L100x6/8/B-A
56/103 DocID025966 Rev 6
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise specified.
2. Guaranteed by characterization results, unless otherwise specified.
3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
6. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time
of the wakeup period, the current is similar to the Run mode current.
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions Typ(1) Max
(1)(2) Unit
IDD
(Standby
with RTC)
Supply current in Standby
mode with RTC enabled
RTC clocked by LSI (no
independent watchdog)
TA = -40 °C to 25 °C
VDD = 1.8 V 0.865 -
µA
TA = -40 °C to 25 °C 1.11 1.9
TA = 55 °C 1.15 2.2
TA= 85 °C 1.35 4
RTC clocked by LSE (no
independent watchdog)(3)
TA = -40 °C to 25 °C
VDD = 1.8 V 0.97 -
TA = -40 °C to 25 °C 1.28 -
TA = 55 °C 1.4 -
TA= 85 °C 1.7 -
IDD
(Standby)
Supply current in Standby
mode with RTC disabled
Independent watchdog
and LSI enabled TA = -40 °C to 25 °C 1.0 1.7
Independent watchdog
and LSI OFF
TA = -40 °C to 25 °C 0.277 0.6
TA = 55 °C 0.31 0.9
TA = 85 °C 0.52 2.75
IDD (WU
from
Standby)
RMS supply current during
wakeup time when exiting
from Standby mode
-VDD = 3.0 V
TA = -40 °C to 25 °C 1-mA
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise specified.
2. Guaranteed by characterization results, unless otherwise specified.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
DocID025966 Rev 6 57/103
STM32L100x6/8/B-A Electrical characteristics
91
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Table 25. Peripheral current consumption(1)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=
1.8 V
VOS[1:0] = 01
Range 2,
VCORE=
1.5 V
VOS[1:0] = 10
Range 3,
VCORE=
1.2 V
VOS[1:0] = 11
Low-power
sleep and run
APB1
TIM2 11.3 9.0 7.3 9.0
µA/MHz
(fHCLK)
TIM3 11.4 9.1 7.1 9.1
TIM4 11.3 9.0 7.3 9.0
TIM6 3.9 3.1 2.5 3.1
TIM7 4.2 3.3 2.6 3.3
LCD 4.7 3.6 2.9 3.6
WWDG 3.7 2.9 2.4 2.9
SPI2 5.9 4.8 3.9 4.8
USART2 8.1 6.6 5.1 6.6
USART3 7.9 6.4 5.0 6.4
I2C1 7.8 6.1 4.9 6.1
I2C2 7.2 5.7 4.6 5.7
USB 12.7 10.3 8.1 10.3
PWR 3.1 2.4 2.0 2.4
DAC 6.6 5.3 4.3 5.3
COMP 5.3 4.3 3.4 4.3
Electrical characteristics STM32L100x6/8/B-A
58/103 DocID025966 Rev 6
APB2
SYSCFG & RI 2.2 1.9 1.6 1.9
µA/MHz
(fHCLK)
TIM9 9.1 7.3 5.9 7.3
TIM10 6.0 4.9 3.9 4.9
TIM11 5.8 4.6 3.8 4.6
ADC(2) 8.7 7.0 5.6 7.0
SPI1 4.4 3.4 2.8 3.4
USART1 8.1 6.5 5.2 6.5
AHB
GPIOA 4.4 3.5 2.9 3.5
GPIOB 4.4 3.5 2.9 3.5
GPIOC 3.7 3.0 2.5 3.0
GPIOD 3.6 2.8 2.4 2.8
GPIOH 3.7 2.9 2.4 2.9
CRC 0.6 0.4 0.4 0.4
FLASH 12.2 10.2 7.8 -(3)
DMA1 12.4 10.1 8.2 10.1
All enabled 160 135 103 124.8
IDD (RTC) 0.4
µA
IDD (LCD) 3.1
IDD (ADC)(4) 1450
IDD (DAC)(5) 340
IDD (COMP1) 0.16
IDD (COMP2)
Slow mode 2
Fast mode 5
IDD (PVD / BOR)(6) 2.6
IDD (IWDG) 0.25
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the
following conditions: fHCLK = 32 MHz (Range 1), fHCLK = 16 MHz (Range 2), fHCLK = 4 MHz (Range 3), fHCLK = 64kHz (Low-
power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in
both cases. No I/O pins toggling.
2. HSI oscillator is OFF for this measure.
3. In low-power sleep and run mode, the Flash memory must always be in power-down mode.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI
consumption not included).
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD/2. DAC is in buffered mode, output is left floating.
6. Including supply current of internal reference voltage.
Table 25. Peripheral current consumption(1) (continued)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=
1.8 V
VOS[1:0] = 01
Range 2,
VCORE=
1.5 V
VOS[1:0] = 10
Range 3,
VCORE=
1.2 V
VOS[1:0] = 11
Low-power
sleep and run
DocID025966 Rev 6 59/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.5 Wakeup time from Low-power mode
The wakeup times given in the following table are measured with the MSI RC oscillator. The
clock source used to wake up the device depends on the current operating mode:
Sleep mode: the clock source is the clock that was set before entering Sleep mode
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
Table 26. Low-power mode wakeup timings
Symbol Parameter Conditions Typ Max(1)
1. Guaranteed by characterization results, unless otherwise specified
Unit
tWUSLEEP Wakeup from Sleep mode fHCLK = 32 MHz 0.4 -
µs
tWUSLEEP_LP
Wakeup from Low-power
sleep mode
fHCLK = 262 kHz
fHCLK = 262 kHz
Flash enabled 46 -
fHCLK = 262 kHz
Flash switched OFF 46 -
tWUSTOP
Wakeup from Stop mode,
regulator in Run mode fHCLK = fMSI = 4.2 MHz 8.2 -
Wakeup from Stop mode,
regulator in low-power
mode
fHCLK = fMSI = 4.2 MHz
Voltage Ranges 1 and 2 7.7 8.9
fHCLK = fMSI = 4.2 MHz
Voltage Range 3 8.2 13.1
fHCLK = fMSI = 2.1 MHz 10.2 13.4
fHCLK = fMSI = 1.05 MHz 16 20
fHCLK = fMSI = 524 kHz 31 37
fHCLK = fMSI = 262 kHz 57 66
fHCLK = fMSI = 131 kHz 112 123
fHCLK = MSI = 65 kHz 221 236
tWUSTDBY
Wakeup from Standby
mode
FWU bit = 1
fHCLK = MSI = 2.1 MHz 58 104
Wakeup from Standby
mode
FWU bit = 0
fHCLK = MSI = 2.1 MHz 2.6 3.25 ms
Electrical characteristics STM32L100x6/8/B-A
60/103 DocID025966 Rev 6
6.3.6 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the
recommended clock input waveform is shown in Figure 11.
Figure 11. High-speed external clock source AC timing diagram
Table 27. High-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency
CSS is on or
PLL is used 1
832MHz
CSS is off, PLL
not used 0
VHSEH OSC_IN input pin high level voltage
-
0.7VDD -V
DD
VHSEL OSC_IN input pin low level voltage VSS 0.3VDD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 12 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
Cin(HSE) OSC_IN input capacitance - - 2.6 - pF
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
DocID025966 Rev 6 61/103
STM32L100x6/8/B-A Electrical characteristics
91
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a low-
speed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Figure 12. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 29. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 28. Low-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
fLSE_ext User external clock source frequency 1 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7VDD -V
DD -
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD -
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 465 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 10
CIN(LSE) OSC32_IN input capacitance - 0.6 - pF
Table 29. HSE oscillator characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 1 24 MHz
RFFeedback resistor - 200 - kΩ
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
Electrical characteristics STM32L100x6/8/B-A
62/103 DocID025966 Rev 6
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
C
Recommended load
capacitance versus
equivalent serial resistance
of the crystal (RS)(3)
RS = 30 Ω -20 - pF
IHSE HSE driving current VDD= 3.3 V, VIN = VSS
with 30 pF load -- 3 mA
IDD(HSE)
HSE oscillator power
consumption
C = 20 pF
fOSC = 16 MHz -- 2.5 (startup)
0.7 (stabilized)
mA
C = 10 pF
fOSC = 16 MHz -- 2.5 (startup)
0.46 (stabilized)
gmOscillator transconductance Startup 3.5 - - mA
/V
tSU(HSE)
(4) Startup time VDD is stabilized - 1 - ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Table 29. HSE oscillator characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID025966 Rev 6 63/103
STM32L100x6/8/B-A Electrical characteristics
91
Figure 13. HSE oscillator circuit diagram
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 14. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 30. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Typ Max Unit
fLSE
Low speed external oscillator
frequency - - 32.768 - kHz
RFFeedback resistor - - 1.2 - MΩ
C(2)
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
RS = 30 kΩ-8 -pF
ILSE LSE driving current VDD = 3.3 V, VIN = VSS --1.1µA
IDD (LSE)
LSE oscillator current
consumption
VDD = 1.8 V - 450 -
nAVDD = 3.0 V - 600 -
VDD = 3.6V - 750 -
gmOscillator transconductance - 3 - - µA/V
tSU(LSE)(4)
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
Startup time VDD is stabilized - 1 - s
26&B287
26&B,1
I
+6(
WRFRUH
&
/
&
/
5
)
670
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
J
P
5
P
&
P
/
P
&
2
5HVRQDWRU
DLE
Electrical characteristics STM32L100x6/8/B-A
64/103 DocID025966 Rev 6
Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 14 ).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray
where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically,
it is between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if the user chooses a resonator with a load capacitance of CL = 6 pF and
Cstray = 2 pF, then CL1 = CL2 = 8 pF.
Figure 14. Typical application with a 32.768 kHz crystal
DLE
26&B287
26&B,1 I/6(
&/
5)
670/[[
N+]
UHVRQDWRU
&/
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
DocID025966 Rev 6 65/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.7 Internal clock source characteristics
The parameters given in the following table are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
Table 31. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency VDD = 3.0 V - 16 - MHz
TRIM(1)(2)
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
HSI user-trimmed
resolution
Trimming code is not a multiple of 16 - ± 0.4 0.7 %
Trimming code is a multiple of 16 - - ± 1.5 %
ACCHSI(2)
2. Guaranteed by characterization results.
-VDDA = 1.8 V to 3.6 V
TA = -40 to 85 °C -10 - +10 %
tSU(HSI)(2) HSI oscillator
startup time - - 3.7 6 µs
IDD(HSI)(2) HSI oscillator
power consumption - - 100 140 µA
Table 32. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
fLSI(1)
1. Guaranteed by test in production.
LSI frequency 26 38 56 kHz
DLSI(2)
2. This is a deviation for an individual part, once the initial frequency has been measured.
LSI oscillator frequency drift
0°C TA 85°C -10 - 4 %
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - - 200 µs
IDD(LSI)(3) LSI oscillator power consumption - 400 510 nA
Electrical characteristics STM32L100x6/8/B-A
66/103 DocID025966 Rev 6
Multi-speed internal (MSI) RC oscillator
Table 33. MSI oscillator characteristics
Symbol Parameter Condition Typ Max Unit
fMSI
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI range 0 65.5 -
kHz
MSI range 1 131 -
MSI range 2 262 -
MSI range 3 524 -
MSI range 4 1.05 -
MHzMSI range 5 2.1 -
MSI range 6 4.2 -
ACCMSI Frequency error after factory calibration - ±0.5 - %
DTEMP(MSI)(1) MSI oscillator frequency drift
0 °C TA 85 °C -±10 - %
DVOLT(MSI)(1) MSI oscillator frequency drift
1.8 V VDD 3.6 V, TA = 25 °C --2.5%/V
IDD(MSI)(2) MSI oscillator power consumption
MSI range 0 0.75 -
µA
MSI range 1 1 -
MSI range 2 1.5 -
MSI range 3 2.5 -
MSI range 4 4.5 -
MSI range 5 8 -
MSI range 6 15 -
tSU(MSI) MSI oscillator startup time
MSI range 0 30 -
µs
MSI range 1 20 -
MSI range 2 15 -
MSI range 3 10 -
MSI range 4 6 -
MSI range 5 5 -
MSI range 6,
Voltage range 1
and 2
3.5 -
MSI range 6,
Voltage range 3 5-
DocID025966 Rev 6 67/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.8 PLL characteristics
The parameters given in Table 34 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
tSTAB(MSI)(2) MSI oscillator stabilization time
MSI range 0 - 40
µs
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
MSI range 4 - 2.5
MSI range 5 - 2
MSI range 6,
Voltage range 1
and 2
-2
MSI range 3,
Voltage Range 3 -3
fOVER(MSI) MSI oscillator frequency overshoot
Any range to
range 5 -4
MHz
Any range to
range 6 -6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
Table 33. MSI oscillator characteristics (continued)
Symbol Parameter Condition Typ Max Unit
Table 34. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max(1)
1. Guaranteed by characterization results.
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT
.
2- 24MHz
PLL input clock duty cycle 45 - 55 %
fPLL_OUT PLL output clock 2 - 32 MHz
tLOCK
PLL lock time
PLL input = 16 MHz
PLL VCO = 96 MHz
- 115 160 µs
Jitter Cycle-to-cycle jitter - - ± 600 ps
IDDA(PLL) Current consumption on VDDA - 220 450
µA
IDD(PLL) Current consumption on VDD - 120 150
Electrical characteristics STM32L100x6/8/B-A
68/103 DocID025966 Rev 6
6.3.9 Memory characteristics
The characteristics are given at TA = -40 to 85 °C unless otherwise specified.
RAM memory
Flash memory and data EEPROM
Table 35. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
STOP mode (or RESET) 1.8 - - V
Table 36. Flash memory and data EEPROM characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design.
Unit
VDD
Operating voltage
Read / Write / Erase - 1.8 - 3.6 V
tprog
Programming / erasing time for
byte / word / double word / half-
page
Erasing - 3.28 3.94
ms
Programming - 3.28 3.94
IDD
Average current during whole
program/erase operation
TA = 25 °C, VDD = 3.6 V
-300-µA
Maximum current (peak) during
program/erase operation -1.52.5mA
Table 37. Flash memory, data EEPROM endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
Typ Max
NCYC(2)
Cycling (erase / write)
Program memory TA = -40°C to
85 °C
1--
kcycles
Cycling (erase / write)
EEPROM data memory 100 - -
tRET(2)
2. Characterization is done according to JEDEC JESD22-A117.
Data retention (program memory) after
1 kcycle at TA = 85 °C
TRET = +85 °C
10 - -
years
Data retention (EEPROM data memory)
after 100 kcycles at TA = 85 °C 10 - -
DocID025966 Rev 6 69/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during the device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 38. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
Table 38. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
Electrical characteristics STM32L100x6/8/B-A
70/103 DocID025966 Rev 6
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.11 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.
Table 39. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. frequency range
Unit
4 MHz
voltage
Range 3
16 MHz
voltage
Range 2
32 MHz
voltage
Range 1
SEMI Peak level
VDD = 3.3 V,
TA = 25 °C,
LQFP100 package
compliant with IEC
61967-2
0.1 to 30 MHz -16 -7 -3
dBµV30 to 130 MHz -12 2 12
130 MHz to 1GHz -11 0 8
SAE EMI Level 1 1.5 2 -
Table 40. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming to
JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming to
ANSI/ESD STM5.3.1 All C4 500 V
1. Guaranteed by characterization results.
DocID025966 Rev 6 71/103
STM32L100x6/8/B-A Electrical characteristics
91
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence, oscillator
frequency deviation, LCD levels).
The test results are given in Table 42.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Table 41. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +85 °C conforming to JESD78A II level A
Table 42. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on all 5 V tolerant (FT) pins -5 NA(1)
1. Injection is not possible.
mAInjected current on BOOT0 -0 NA(1)
Injected current on any other pin -5 +5
Electrical characteristics STM32L100x6/8/B-A
72/103 DocID025966 Rev 6
6.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under conditions summarized in Table 14. All I/Os are CMOS and TTL compliant.
Table 43. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage
TC and FT I/O - - 0.3 VDD(1)(2)
V
BOOT0 - 0.14 VDD(2)
VIH Input high level voltage
TC I/O 0.45 VDD+0.38(2) --
FT I/O 0.39 VDD+0.59(2) --
BOOT0 0.15 VDD+0.56(2) --
Vhys
I/O Schmitt trigger voltage
hysteresis(2)
TC and FT I/O - 10% VDD(3) -
BOOT0 - 0.01 -
Ilkg Input leakage current(4)
VSS VIN VDD
I/Os with LCD --±50
nA
VSS VIN VDD
I/Os with analog
switches
--±50
VSS VIN VDD
I/Os with analog
switches and LCD
--±50
VSS VIN VDD
I/Os with USB --±250
VSS VIN VDD
TC and FT I/O --±50
FT I/O
VDD VIN 5V --±10uA
RPU
Weak pull-up equivalent
resistor(5)(1) VIN = VSS 25 45 65 kΩ
RPD
Weak pull-down equivalent
resistor(5) VIN = VDD 25 45 65 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Guaranteed by test in production.
2. Guaranteed by design.
3. With a minimum of 200 mV.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
DocID025966 Rev 6 73/103
STM32L100x6/8/B-A Electrical characteristics
91
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with the non-standard VOL/VOH specifications given in Table 44.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
Table 44. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)(2) Output low level voltage for an I/O pin IIO = 8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3)(2) Output high level voltage for an I/O pin VDD-0.4 -
VOL (1)(4) Output low level voltage for an I/O pin IIO = 4 mA
1.8 V < VDD < 2.7 V
-0.45
VOH (3)(4) Output high level voltage for an I/O pin VDD-0.45 -
VOL(1)(4) Output low level voltage for an I/O pin IIO = 20 mA
2.7 V < VDD < 3.6 V
-1.3
VOH(3)(4) Output high level voltage for an I/O pin VDD-1.3 -
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of
IIO (I/O ports and control pins) must not exceed IVSS.
2. Guaranteed by test in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum
of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results.
Electrical characteristics STM32L100x6/8/B-A
74/103 DocID025966 Rev 6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 15 and
Table 45, respectively.
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14.
Table 45. I/O AC characteristics(1)
OSPEEDRx
[1:0] bit
value(1)
Symbol Parameter Conditions Min Max(2) Unit
00
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400
kHz
CL = 50 pF, VDD = 1.8 V to 2.7 V - 400
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 625
ns
CL = 50 pF, VDD = 1.8 V to 2.7 V - 625
01
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 2
MHz
CL = 50 pF, VDD = 1.8 V to 2.7 V - 1
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 125
ns
CL = 50 pF, VDD = 1.8 V to 2.7 V - 250
10
Fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 10
MHz
CL = 50 pF, VDD = 1.8 V to 2.7 V - 2
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V - 25
ns
CL = 50 pF, VDD = 1.8 V to 2.7 V - 125
11
Fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 50
MHz
CL = 50 pF, VDD = 1.8 V to 2.7 V - 8
tf(IO)out
tr(IO)out
Output rise and fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5
ns
CL = 50 pF, VDD = 1.8 V to 2.7 V - 30
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-8-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0038 reference manual for a description of
GPIO Port configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 15.
DocID025966 Rev 6 75/103
STM32L100x6/8/B-A Electrical characteristics
91
Figure 15. I/O AC characteristics definition
6.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 46).
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14.
AIC



TR)/OUT
/54054
%84%2.!,
/.P&
-AXIMUMFREQUENCYISACHIEVEDIFTRTF4ANDIFTHEDUTYCYCLEIS



WHENLOADEDBYP&
4
TF)/OUT
Table 46. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1) NRST input low level voltage - - - 0.3 VDD
V
VIH(NRST)(1) NRST input high level voltage - 0.39 VDD+0.59 -
VOL(NRST)(1) NRST output low level voltage
IOL = 2 mA
2.7 V < VDD < 3.6 V --
0.4
IOL = 1.5 mA
1.8 V < VDD < 2.7 V --
Vhys(NRST)(1) NRST Schmitt trigger voltage
hysteresis --10%V
DD(2) mV
RPU
Weak pull-up equivalent
resistor(3) VIN = VSS 25 45 65 kΩ
VF(NRST)(1) NRST input filtered pulse - - - 50 ns
VNF(NRST)(1) NRST input not filtered pulse - 350 - - ns
1. Guaranteed by design.
2. 200 mV minimum value.
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is around 10%.
Electrical characteristics STM32L100x6/8/B-A
76/103 DocID025966 Rev 6
Figure 16. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 46. Otherwise the reset will not be taken into account by the device.
6.3.15 TIM timer characteristics
The parameters given in Table 47 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
DLE
670/[[
538
1567

9''
)LOWHU
,QWHUQDOUHVHW
)
([WHUQDOUHVHWFLUFXLW
Table 47. TIMx(1) characteristics
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
-1-t
TIMxCLK
fTIMxCLK = 32 MHz 31.25 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
-0f
TIMxCLK/2 MHz
fTIMxCLK = 32 MHz 0 16 MHz
ResTIM Timer resolution - - 16 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
- 1 65536 tTIMxCLK
fTIMxCLK = 32 MHz 0.0312 2048 µs
tMAX_COUNT Maximum possible count
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 32 MHz - 134.2 s
DocID025966 Rev 6 77/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.16 Communication interfaces
I2C interface characteristics
The STM32L100x6/8/B-A product line I2C interface meets the requirements of the standard
I2C communication protocol with the following restrictions: SDA and SCL are not “true”
open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O
pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 48. Refer also to Section 6.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 48. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast
mode clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time - 3450(3) -900
(3)
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
tSP
Pulse width of spikes that
are suppressed by the
analog filter
050
(4)
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
050
(4) ns
Electrical characteristics STM32L100x6/8/B-A
78/103 DocID025966 Rev 6
Figure 17. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistors
2. RP = pull-up resistors
3. VDD_I2C = I2C bus supply
4. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 49. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x801B
300 0x8024
200 0x8035
100 0x00A0
50 0x0140
20 0x0320
ĂŝϭϳϴϱϱĐ
^dZd
^
Z^
ZW
/ϮďƵƐ
ZW
Z^
sͺ/Ϯ
sͺ/Ϯ
^dDϯϮ>ϭdždž
^
^>
ƚĨ;^Ϳ ƚƌ;^Ϳ
^>
ƚŚ;^dͿ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
ƚƐƵ;^Ϳ
ƚƌ;^<Ϳ ƚĨ;^<Ϳ
ƚŚ;^Ϳ
^dZdZWd
^dZd
ƚƐƵ;^dͿ
ƚƐƵ;^dKͿ
^dKW ƚƐƵ;^d^dKͿ
DocID025966 Rev 6 79/103
STM32L100x6/8/B-A Electrical characteristics
91
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 14.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 50. SPI characteristics(1)
1. The characteristics above are given for voltage Range 1.
Symbol Parameter Conditions Min Max(2)
2. Guaranteed by characterization results.
Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 16
MHz
Slave mode - 16
Slave transmitter - 12(3)
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty
cycle (DuCy(SCK)) ranging between 40 to 60%.
tr(SCK)(2)
tf(SCK)(2)
SPI clock rise and fall
time Capacitive load: C = 30 pF - 6 ns
DuCy(SCK) SPI slave input clock duty
cycle Slave mode 30 70 %
tsu(NSS) NSS setup time Slave mode 4tHCLK -
ns
th(NSS) NSS hold time Slave mode 2tHCLK -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode tSCK/2 5t
SCK/2+3
tsu(MI)(2)
Data input setup time
Master mode 5 -
tsu(SI)(2) Slave mode 6 -
th(MI)(2)
Data input hold time
Master mode 5 -
th(SI)(2) Slave mode 5 -
ta(SO)(4)
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the
data.
Data output access time Slave mode 0 3tHCLK
tv(SO) (2) Data output valid time Slave mode - 33
tv(MO)(2) Data output valid time Master mode - 6.5
th(SO)(2)
Data output hold time
Slave mode 17 -
th(MO)(2) Master mode 0.5 -
Electrical characteristics STM32L100x6/8/B-A
80/103 DocID025966 Rev 6
Figure 18. SPI timing diagram - slave mode and CPHA = 0
Figure 19. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DocID025966 Rev 6 81/103
STM32L100x6/8/B-A Electrical characteristics
91
Figure 20. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
USB characteristics
The USB interface is USB-IF certified (full speed).
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Table 51. USB startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB transceiver startup time 1 µs
Electrical characteristics STM32L100x6/8/B-A
82/103 DocID025966 Rev 6
Figure 21. USB timings: definition of data signal rise and fall time
Table 52. USB DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input levels
VDD USB operating voltage(2)
2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
-3.03.6V
VDI(3)
3. Guaranteed by characterization results.
Differential input sensitivity I(USB_DP, USB_DM) 0.2 -
VVCM(3) Differential common mode range Includes VDI range 0.8 2.5
VSE(3) Single ended receiver threshold - 1.3 2.0
Output levels
VOL(4)
4. Guaranteed by test in production.
Static output level low RL of 1.5 kΩ to 3.6 V(5)
5. RL is the load connected on the USB drivers.
-0.3
V
VOH(4) Static output level high RL of 15 kΩ to VSS(5) 2.8 3.6
Table 53. USB: full speed electrical characteristics
Driver characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification section 7 (version 2.0).
CL = 50 pF 420ns
tfFall Time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WIWU
DocID025966 Rev 6 83/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.17 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 55 are guaranteed by design.
Table 54. ADC clock frequency
Symbol Parameter Conditions Min Max Unit
fADC
ADC clock
frequency
Voltage
Range 1 &
2
2.4 V VDDA 3.6 V
0.480
16
MHz1.8 V VDDA 2.4 V 8
Voltage Range 3 4
Table 55. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 1.8 - 3.6 V
IVDDA
Current on the VDDA input
pin
Peak -
1400
2150
µA
Average - 1900
VAIN Conversion voltage range - 0(1) -V
DDA V
fS
12-bit sampling rate
Direct channels - - 1
Msps
Multiplexed channels - - 0.76
10-bit sampling rate
Direct channels - - 1.07
Msps
Multiplexed channels - - 0.8
8-bit sampling rate
Direct channels - - 1.23
Msps
Multiplexed channels - - 0.89
6-bit sampling rate
Direct channels - - 1.45
Msps
Multiplexed channels - - 1
tSSampling time(2)
Direct channels
2.4 V VDDA 3.6 V 0.25 - -
µs
Multiplexed channels
2.4 V VDDA 3.6 V 0.56 - -
Direct channels
1.8 V VDDA 2.4 V 0.56 - -
Multiplexed channels
1.8 V VDDA 2.4 V 1- -
- 4 - 384 1/fADC
tCONV
Total conversion time
(including sampling time)
fADC = 16 MHz 1 - 24.75 µs
-
4 to 384 (sampling
phase) +12 (successive
approximation)
1/fADC
CADC
Internal sample and hold
capacitor
Direct channels -
16
-
pF
Multiplexed channels - -
Electrical characteristics STM32L100x6/8/B-A
84/103 DocID025966 Rev 6
fTRIG
External trigger frequency
Regular sequencer
12-bit conversions - - Tconv+1 1/fADC
6/8/10-bit conversions - - Tconv 1/fADC
fTRIG
External trigger frequency
Injected sequencer
12-bit conversions - - Tconv+2 1/fADC
6/8/10-bit conversions - - Tconv+1 1/fADC
RAIN Signal source impedance(2) ---50κΩ
tlat
Injection trigger conversion
latency
fADC = 16 MHz 219 - 281 ns
-3.5-4.51/f
ADC
tlatr
Regular trigger conversion
latency
fADC = 16 MHz 156 - 219 ns
-2.5-3.51/f
ADC
tSTAB Power-up time - - - 3.5 µs
1. VSSA must be tied to ground.
2. See Table 57: Maximum source impedance RAIN max for RAIN limitations
Table 55. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 56. ADC accuracy(1)(2)
Symbol Parameter Test conditions Min(3) Typ Max(3) Unit
ET Total unadjusted error
2.4 V VDDA 3.6 V
fADC = 8 MHz, RAIN = 50
TA = -40 to 85 °C
-2.54
LSB
EO Offset error - 1 2
EG Gain error - 1.5 3.5
ED Differential linearity error - 1 2
EL Integral linearity error - 2 3
ENOB Effective number of bits
2.4 V VDDA 3.6 V
fADC = 16 MHz, RAIN = 50
TA = -40 to 85 °C
Finput =10 kHz
9.5 10 - bits
SINAD Signal-to-noise and
distortion ratio 59 62 -
dB
SNR Signal-to-noise ratio 60 62 -
THD Total harmonic distortion - -72 -69
ENOB Effective number of bits 1.8 V VDDA 2.4 V
fADC = 8 MHz or 4 MHz,
RAIN = 50
TA = -40 to 85 °C
Finput =10 kHz
9.5 10 - bits
SINAD Signal-to-noise and
distortion ratio 59 62 -
dB
SNR Signal-to-noise ratio 60 62 -
THD Total harmonic distortion - -72 -69
ET Total unadjusted error
1.8 V VDDA 2.4 V
fADC = 4 MHz, RAIN = 50
TA = -40 to 85 °C
-23
LSB
EO Offset error - 1 1.5
EG Gain error - 1.5 2.5
ED Differential linearity error - 1 2
EL Integral linearity error - 3
1. ADC DC accuracy values are measured after internal calibration.
DocID025966 Rev 6 85/103
STM32L100x6/8/B-A Electrical characteristics
91
Figure 22. ADC accuracy characteristics
Figure 23. Typical connection diagram using the ADC
1. Refer to Table 57: Maximum source impedance RAIN max for the value of RAIN and Table 55: ADC
characteristics for the value of CADC
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
([DPSOHRIDQDFWX DOWUDQVIHUFXUYH
7KHLGHDOWUDQV IHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH



     



DLH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
966$ 9''$
/6%,'($/
('
(/
(2
(7
(*
>/6%,'($/ 
95()

9''$

RUGHSHQGLQJRQSDFNDJH
DLH
670/[[
9''$
$,1[
,/Q$
5$,1
&SDUDVLWLF
9$,1
ELW
FRQYHUWHU
&$'&
6DPSOHDQGKROG
$'&FRQYHUWHU
Electrical characteristics STM32L100x6/8/B-A
86/103 DocID025966 Rev 6
Figure 24. Maximum dynamic current consumption on VDDA supply pin during ADC
conversion
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 8. The 100 nF capacitors
should be ceramic (good quality). They should be placed as close as possible to the chip.
ADC clock
Sampling (n cycles) Conversion (12 cycles)
IDDA
1300 µA
1700 µA
MS36686V1
Table 57. Maximum source impedance RAIN max(1)
Ts
(µs)
RAIN max (kOhm)
Ts (cycles)
fADC= 16 MHz(2)
Multiplexed channels Direct channels
2.4 V < VDDA< 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA< 3.3 V 1.8 V < VDDA < 2.4 V
0.25 Not allowed Not allowed 0.7 Not allowed 4
0.5625 0.8 Not allowed 2.0 1.0 9
1 2.0 0.8 4.0 3.0 16
1.5 3.0 1.8 6.0 4.5 24
3 6.8 4.0 15.0 10.0 48
6 15.0 10.0 30.0 20.0 96
12 32.0 25.0 50.0 40.0 192
24 50.0 50.0 50.0 50.0 384
1. Guaranteed by design.
2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be
reduced with respect to the minimum sampling time Ts (us).
DocID025966 Rev 6 87/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.18 DAC electrical specifications
Data guaranteed by design, unless otherwise specified.
Table 58. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 - 3.6 V
IDDA(1)
Current consumption on
VDDA supply
VDDA = 3.3 V
No load, middle code (0x800) - 330 540 µA
No load, worst code (0xF1C) - 540 870 µA
RLResistive load DAC output
buffer ON
Connected to VSSA 5- -
kΩ
Connected to VDDA 25 - -
CLCapacitive load DAC output buffer ON - - 50 pF
ROOutput impedance DAC output buffer OFF 12 16 20 kΩ
VDAC_OUT Voltage on DAC_OUT
output
DAC output buffer ON 0.2 - VDDA
0.2 V
DAC output buffer OFF 0.5 - VDDA
1LSB mV
DNL(1) Differential non linearity(2)
CL 50 pF, RL 5 kΩ
DAC output buffer ON -1.5 3
LSB
No RL, CL 50 pF
DAC output buffer OFF -1.5 3
INL(1) Integral non linearity(3)
CL 50 pF, RL 5 kΩ
DAC output buffer ON -2 4
No RL, CL 50 pF
DAC output buffer OFF -2 4
Offset(1) Offset error at code 0x800 (4)
CL 50 pF, RL 5 kΩ
DAC output buffer ON 10 ±25
No RL, CL 50 pF
DAC output buffer OFF 5 ±8
Offset1(1) Offset error at code 0x001(5) No RL, CL 50 pF
DAC output buffer OFF 1.5 ±5
dOffset/dT(1) Offset error temperature
coefficient (code 0x800)
VDDA = 3.3V,TA = 0 to 50 °C
DAC output buffer OFF -20 -10 0
µV/°C
VDDA = 3.3V, TA = 0 to 50 °C
DAC output buffer ON 020 50
Gain(1) Gain error(6)
CL 50 pF, RL 5 kΩ
DAC output buffer ON -+0.1 /
-0.2%
+0.2 / -
0.5%
%
No RL, CL 50 pF
DAC output buffer OFF -+0 / -
0.2%
+0 / -
0.4%
Electrical characteristics STM32L100x6/8/B-A
88/103 DocID025966 Rev 6
dGain/dT(1) Gain error temperature
coefficient
VDDA = 3.3V, TA = 0 to 50 °C
DAC output buffer OFF -10 -2 0
µV/°C
VDDA = 3.3V, TA = 0 to 50 °C
DAC output buffer ON -40 -8 0
TUE(1) Total unadjusted error
CL 50 pF, RL 5 kΩ
DAC output buffer ON -12 30
LSB
No RL, CL 50 pF
DAC output buffer OFF -8 12
tSETTLING
Settling time (full scale: for a
12-bit code transition
between the lowest and the
highest input codes till
DAC_OUT reaches final
value ±1LSB
CL 50 pF, RL 5 kΩ-7 12µs
Update rate
Max frequency for a correct
DAC_OUT change (95% of
final value) with 1 LSB
variation in the input code
CL 50 pF, RL 5 kΩ- - 1 Msps
tWAKEUP
Wakeup time from off state
(setting the ENx bit in the
DAC Control register)(7)
CL 50 pF, RL 5 kΩ-9 15µs
PSRR+ VDDA supply rejection ratio
(static DC measurement) CL 50 pF, RL 5 kΩ- -60 -35 dB
1. Guaranteed by characterization results.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code
4095.
4. Difference between the value measured at Code (0x800) and the ideal value = VDDA/2.
5. Difference between the value measured at Code (0x001) and the ideal value.
6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.
7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
Table 58. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID025966 Rev 6 89/103
STM32L100x6/8/B-A Electrical characteristics
91
Figure 25. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.19 Comparator
5/
&/
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
AI6
Table 59. Comparator 1 characteristics
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization results.
Unit
VDDA Analog supply voltage - 1.8 3.6 V
R400K R400K value - - 400 -
kΩ
R10K R10K value - - 10 -
VIN
Comparator 1 input
voltage range -0.6-V
DDA V
tSTART Comparator startup time - - 7 10
µs
td Propagation delay(2)
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
--310
Voffset Comparator offset - - ±3±10 mV
dVoffset/dt
Comparator offset
variation in worst voltage
stress conditions
VDDA = 3.6 V
VIN+ = 0 V
VIN- = VREFINT
TA = 25 °C
0 1.5 10 mV/1000 h
ICOMP1 Current consumption(3)
3. Comparator consumption only. Internal reference voltage not included.
- - 160 260 nA
Electrical characteristics STM32L100x6/8/B-A
90/103 DocID025966 Rev 6
Table 60. Comparator 2 characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by characterization results.
Unit
VDDA Analog supply voltage - 1.8 - 3.6 V
VIN Comparator 2 input voltage range - 0 - VDDA V
tSTART Comparator startup time
Fast mode - 15 20
µs
Slow mode - 20 25
td slow Propagation delay(2) in slow mode
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
1.8 V VDDA 2.7 V - 1.8 3.5
2.7 V VDDA 3.6 V - 2.5 6
td fast Propagation delay(2) in fast mode
1.8 V VDDA 2.7 V - 0.8 2
2.7 V VDDA 3.6 V - 1.2 4
Voffset Comparator offset error - - ±4±20 mV
dThreshold/
dt
Threshold voltage temperature
coefficient
VDDA = 3.3V
TA = 0 to 50 °C
V- = VREFINT
,
3/4 VREFINT
,
1/2 VREFINT
,
1/4 VREFINT
- 15 100 ppm
/°C
ICOMP2 Current consumption(3)
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
Fast mode - 3.5 5
µA
Slow mode - 0.5 2
DocID025966 Rev 6 91/103
STM32L100x6/8/B-A Electrical characteristics
91
6.3.20 LCD controller
The STM32L100x6/8/B-A devices embed a built-in step-up converter to provide a constant
LCD reference voltage independently from the VDD voltage. An external capacitor Cext must
be connected to the VLCD pin to decouple this converter.
Table 61. LCD controller characteristics
Symbol Parameter Min Typ Max Unit
VLCD LCD external voltage - - 3.6
V
VLCD0 LCD internal reference voltage 0 - 2.6 -
VLCD1 LCD internal reference voltage 1 - 2.73 -
VLCD2 LCD internal reference voltage 2 - 2.86 -
VLCD3 LCD internal reference voltage 3 - 2.98 -
VLCD4 LCD internal reference voltage 4 - 3.12 -
VLCD5 LCD internal reference voltage 5 - 3.26 -
VLCD6 LCD internal reference voltage 6 - 3.4 -
VLCD7 LCD internal reference voltage 7 - 3.55 -
Cext VLCD external capacitance 0.1 - 2 µF
ILCD(1)
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD
connected
Supply current at VDD = 2.2 V - 3.3 -
µA
Supply current at VDD = 3.0 V - 3.1 -
RHtot(2)
2. Guaranteed by characterization results.
Low drive resistive network overall value 5.28 6.6 7.92 MΩ
RL(2) High drive resistive network total value 192 240 288 kΩ
V44 Segment/Common highest level voltage - - VLCD V
V34 Segment/Common 3/4 level voltage - 3/4 VLCD -
V
V23 Segment/Common 2/3 level voltage - 2/3 VLCD -
V12 Segment/Common 1/2 level voltage - 1/2 VLCD -
V13 Segment/Common 1/3 level voltage - 1/3 VLCD -
V14 Segment/Common 1/4 level voltage - 1/4 VLCD -
V0Segment/Common lowest level voltage 0 - -
ΔVxx(2) Segment/Common level voltage error
TA = -40 to 85 °C--± 50 mV
Package information STM32L100x6/8/B-A
92/103 DocID025966 Rev 6
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package
information
Figure 26. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 62. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
Min Typ Max Typ Min Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
DocID025966 Rev 6 93/103
STM32L100x6/8/B-A Package information
102
Figure 27. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended
footprint
1. Dimensions are in millimeters.
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 62. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical
data (continued)
Symbol
millimeters inches(1)
Min Typ Max Typ Min Max



 










AIC
Package information STM32L100x6/8/B-A
94/103 DocID025966 Rev 6
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 28. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
5HYLVLRQFRGH
670/
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQ
LQGHQWLILHU
5%7$
5
DocID025966 Rev 6 95/103
STM32L100x6/8/B-A Package information
102
7.2 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information
Figure 29. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
Package information STM32L100x6/8/B-A
96/103 DocID025966 Rev 6
Figure 30. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint
1. Dimensions are in millimeters.
Table 63. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031




 







!"?&0?6


 



DocID025966 Rev 6 97/103
STM32L100x6/8/B-A Package information
102
UFQFPN48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 31. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

3URGXFW
LGHQWLILFDWLRQ 45.-
$6"
3
:88
3LQ
LGHQWLILFDWLRQ 5HYLVLRQFRGH
'DWHFRGH
069
Package information STM32L100x6/8/B-A
98/103 DocID025966 Rev 6
7.3 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Figure 32. Thermal resistance
Table 64. Thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch 33
069
7HPSHUDWXUH&
3
'P:






    
/4)3
8)4)31
)RUELGGHQDUHD
7-!7-PD[
DocID025966 Rev 6 99/103
STM32L100x6/8/B-A Package information
102
7.3.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Ordering information STM32L100x6/8/B-A
100/103 DocID025966 Rev 6
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 65. Ordering information scheme
Example: STM32 L 100 R B T 6 A TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
100
Pin count
C = 48 pins
R = 64 pins
Flash memory size
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
Package
T = LQFP
U = UFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C
Options
A = Device generation A
Packing
TR = tape and reel
No character = tray or tube
DocID025966 Rev 6 101/103
STM32L100x6/8/B-A Revision history
102
9 Revision history
Table 66. Document revision history
Date Revision Changes
25-Mar-2014 1 Initial release.
27-Oct-2014 2
Updated DMIPS features in cover page and Section 2: Description
Updated current consumption in Table 20: Current consumption in
Sleep mode.
Updated Table 25: Peripheral current consumption with new
measured values.
Updated Table 57: Maximum source impedance RAIN max adding
note 2.
03-Feb-2015 3
Updated Section 7: Package information with new package device
markings.
Updated Figure 5: Memory map.
30-Apr-2015 4
Updated Section 7: Package information structure: Paragraph titles
and paragraph heading level.
Updated Table 62: LQFP64 10 x 10 mm, 64-pin low-profile quad flat
package mechanical data.
Updated Section 7: Package information for LQFP64 and
UFQFPN48 package device markings, adding text for device
orientation versus pin 1 identifier.
Updated Table 17: Embedded internal reference voltage
temperature coefficient at 100ppm/°C and table footnote 3:
“guaranteed by design” changed by “guaranteed by characterization
results”.
Updated Table 60: Comparator 2 characteristics new maximum
threshold voltage temperature coefficient at 100ppm/°C.
25-Apr-2016 5
Updated Table 40: ESD absolute maximum ratings CDM class.
Updated all the notes, removing ‘not tested in production’.
Updated Table 11: Voltage characteristics adding note about VREF-
pin.
Updated Table 3: Functionalities depending on the operating power
supply range LSI and LSE functionalities putting “Y” in Standby
mode.
Removed note 1 below Figure 2: Clock tree.
Updated Section 7: Package information replacing “Marking of
engineering samples” by “device marking”.
Updated Table 58: DAC characteristics resistive load.
Revision history STM32L100x6/8/B-A
102/103 DocID025966 Rev 6
28-Aug-2017 6
Updated Table 43: I/O static characteristics pull-up and pull-down
values.
Updated Table 46: NRST pin characteristics pull-up values.
Updated Section 7: Package information adding information about
other optional marking or inset/upset marks.
Updated note 1 below all the package device marking figures.
Updated Nested vectored interrupt controller (NVIC) in Section 3.2:
ARM® Cortex®-M3 core with MPU about process state
automatically saved.
Updated Table 3: Functionalities depending on the operating power
supply range removing I/O operation column and adding note about
GPIO speed.
Updated Table 42: I/O current injection susceptibility note by
‘injection is not possible’.
Updated Figure 16: Recommended NRST pin protection note about
the 0.1uF capacitor.
Updated Section 3.1: Low-power modes Low-power run mode
(MSI) RC oscillator clock.
Updated Table 5: Working mode-dependent functionalities (from
Run/active down to standby) disabling I2C functionality in Low-
power Run and Low-power Sleep modes.
Table 66. Document revision history (continued)
Date Revision Changes
DocID025966 Rev 6 103/103
STM32L100x6/8/B-A
103
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved