HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output DFN type package Relative Humidity and Temperature Digital Output, IC interface Fully calibrated Lead free sensor, reflow solderable Low power consumption Fast response time DESCRIPTION The HTU21D(F) is a new digital humidity sensor with temperature output by MEAS. Setting new standards in terms of size and intelligence, it is embedded in a reflow solderable Dual Flat No leads (DFN) package with a small 3 x 3 x 0.9 mm footprint. This sensor provides calibrated, linearized signals in digital, IC format. HTU21D(F) digital humidity sensors are dedicated humidity and temperature plug and play transducers for OEM applications where reliable and accurate measurements are needed. Direct interface with a micro-controller is made possible with the module for humidity and temperature digital outputs. These low power sensors are designed for high volume and cost sensitive applications with tight space constraints. Every sensor is individually calibrated and tested. Lot identification is printed on the sensor and an electronic identification code is stored on the chip - which can be read out by command. Low battery can be detected and a checksum improves communication reliability. The resolution of these digital humidity sensors can be changed by command (8/12bit up to 12/14bit for RH/T). With MEAS' improvements and miniaturization of this sensor, the performance-to-price ratio has been improved - and eventually, any device should benefit from its cutting edge energy saving operation mode. Optional PTFE filter/membrane (F) protects HTU21D digital humidity sensors against dust and water immersion, as well as against contamination by particles. PTFE filter/membranes preserve a high response time. The white PTFE filter/membrane is directly stuck on the sensor housing. FEATURES APPLICATIONS Full interchangeability with no calibration required in standard conditions Instantaneous desaturation after long periods in saturation phase Compatible with automatized assembly processes, including Pb free and reflow processes Individual marking for compliance to stringent traceability requirements HPC199_5 HTU21D(F) Sensor Datasheet Automotive: defogging, HVAC Home Appliance Medical Printers Humidifier www.meas-spec.com 1/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output NOMENCLATURE HTU2XY(F) With embedded PTFE filter: HTU2XYF Output Sensor: Y = D for Digital, I2C protocol = P for PWM interface, analog output Humidity accuracy : X = 0: +/-5%RH tolerance @55%RH = 1: +/-3%RH tolerance @55%RH HTU2XY Modules HTU2XYF Modules PERFORMANCE SPECS MAXIMUM RATINGS Ratings Symbol Value Unit Storage Temperature Tstg -40 to 125 C Supply Voltage (Peak) Vcc 3.8V Vdc Humidity Operating Range RH 0 to 100 %RH Temperature Operating Range Ta -40 to +125 C VDD to GND Digital I/O pins (DATA/SCK) to VDD Input current on any pin Peak conditions: less than 10% of the operating time -0.3 to 3.6V V -0.3 to VDD+0.3 V -10 to +10 mA Exposure to absolute maximum rating conditions for extended periods may affect the sensor reliability. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 2/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output ELECTRICAL AND GENERAL ITEMS (@T = 25C, @Vdd = 3V) Characteristics Symbol Min Voltage Supply VDD 1.5 Current consumption Sleep mode (1) idd Measuring Typ 300 Sleep mode Power Dissipation Average 8bit (2) Max Unit 3.0 3.6 V 0.02 0.14 A 450 500 A 0.06 0.5 W 2.7 Communication W digital 2-wire interface, IC protocol Heater 5.5mW/T=+0.5-1.5C VDD=3V Storage (1) Conditions: Vdd = 3V, SCK= 400kHz at 25C (2) Conditions: Vdd = 3V, SCK= 400kHz, Temp<60C, duty cycle <10% -40C/125C SENSOR PERFORMANCE RELATIVE HUMIDITY (@T = 25C, @Vdd = 3V) Characteristics Resolution Symbol Typ Max Unit 12 bits 0.04 %RH 8 bits 0.7 %RH Humidity Operating Range RH Relative Humidity Accuracy typ @25C (20%RH to 80%RH) max 0 100 2 %RH %RH See graph 1 Replacement %RH fully interchangeable Temperature coefficient (from 0C to 80C) Tcc Humidity Hysteresis Measuring Time Min (1) -0.15 1 %RH/C %RH 12 bits 14 16 ms 11 bits 7 8 ms 10 bits 4 5 ms 8 bits 2 3 ms 10 LSB PSRR Recovery time after 150 hours of condensation t Long term drift 10 s 0.5 %RH/yr (2) Response Time (at 63% of signal) from 33 to 75%RH RH 5 10 s (1) Typical values are recommended for calculating energy consumption while maximum values shall be applied for calculating waiting times in communication. (2) At 1m/s air flow HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 3/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output GRAPH 1 : RELATIVE HUMIDITY ERROR BUDGET CONDITIONS AT 25C Delta Relative Humidity (%RH) 10 Maximal Tolerance Typical Tolerance 9 8 7 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 Relative Humidity (%RH) 80 90 100 HTU21D(F) sensors are specified for optimum accuracy measurements within 5 to 95%RH. Operation out of this range (< 5% or > 95% RH, including condensation) is however possible. TEMPERATURE COEFFICIENT COMPENSATION EQUATION Using the following temperature coefficient compensation equation will guarantee Relative Humidity accuracy given p.3, from 0C to 80C: RH compensatedT RH actualT (25 Tactual ) CoeffTemp RHactualT Tactual CoeffTemp Ambient humidity in %RH, computed from HTU21D(F) sensor Humidity cell temperature in C, computed from HTU21D(F) sensor Temperature coefficient of the HTU21D(F) in %RH/C HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 4/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output TEMPERATURE Characteristics Symbol Resolution Min Unit 0.01 C 12 bit 0.04 C T -40 +125 typ Temperature Accuracy @25C Max 14 bit Temperature Operating Range 0.3 max C C See graph 2 Replacement Measuring time Typ C fully interchangeable (1) 14 bit 44 50 ms 13 bit 22 25 ms 12 bit 11 13 ms 11 bit 6 7 ms 25 LSB PSSR Long term drift 0.04 C/yr (2) Response Time (at 63% of signal) from 15C to 45C T 10 s (1) Typical values are recommended for calculating energy consumption while maximum values shall be applied for calculating waiting times in communication. (2) At 1m/s air flow GRAPH 2 : TEMPERATURE ERROR BUDGET Maximal Tolerance Typical Tolerance Delta Temperature (C) 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 -40 -20 0 20 40 60 Temperature (C) 80 100 120 USER GUIDE HTU21D(F) APPLICATION INFORMATION Soldering instructions: Lead free reflow soldering recommended process For soldering HTU21D(F) sensor standard reflow soldering ovens may be used. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 5/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output HTU21D(F) sensor as a humidity sensitive component (as classified by IPC/JEDEC J-STD-020 or equivalent documented procedure with peak temperature at 260C during up to 30 seconds for Pb-free assembly in IR/convection reflow ovens) must be handled in a manner consistent with IPC/JEDEC J-STD-033 or an equivalent documented procedure. IPC-1601 provides humidity control, handling and packing of PCBs. The HTU21D(F) s ensor is qualified to withstand one lead free reflow soldering recommended process profile below according to JEDEC standard. Mount parts within 24 hours after printing solder paste to avoid potential dry up. For manual soldering, contact time must be limited to 5 seconds at up to 350C. For the design of the HTU21D(F) sensor footprint, it is recommended to use dimensions according to figure below. Recommended footprint for HTU21D(F) sensors. Values in mm. No specific conditioning of devices is necessary after soldering process, either manual or reflow soldering. Optimized performance in case of metrological measurements can be reached with stabilization of devices (24 hours at 25C / 55%RH). Similar process is advised after exposure of the devices to extreme relative humidity conditions. In no case, neither after manual nor reflow soldering, a board wash shall be applied. Therefore, it is strongly recommended to use a "no-clean" solder paste. In case of applications with exposure of the sensor to corrosive gases or condensed water (i.e. environments with high relative humidity) the soldering pads shall be sealed (e.g. conformal coating) to prevent loose contacts or short cuts. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 6/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output Storage Conditions and Handling Instructions It is recommended to store HTU21D(F) sensor in its original packaging at following conditions: Temperature shall be in the range of -40C - 125C. Temperature Effects Relative humidity reading strongly depends on temperature. Therefore, it is essential to keep humidity sensors at the same temperature as the air of which the relative humidity is to be measured. In case of testing or qualification the reference sensor and test sensor must show equal temperature to allow for comparing humidity readings. The HTU21D(F) sensor should be mounted in a way that prevents heat transfer from electronic sensor or that keeps it as low as possible. Advice can be ventilation, reduction of copper layers between the HTU21D(F) sensor and the rest of the PCB or milling a slit into the PCB around the sensor (1mm minimum width). Example of HTU21D(F) sensor mounting with slits mills to minimize heat transfer Materials Used for Sealing / Mounting For sealing and gluing (use sparingly), use high filled epoxy for electronic packaging and silicone. For any specific material please request to humidity.application@meas-spec.com. Window must remain uncovered. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 7/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output Wiring Considerations and Signal Integrity Carrying the SCK and DATA signal parallel and in close proximity (e.g. in wires) for more than 10 cm may result in cross talk and loss of communication. This may be resolved by routing VDD and/or GND between the two data signals and/or using shielded cables. Furthermore, slowing down SCK frequency will possibly improve signal integrity. Power supply pins (VDD, GND) must be bypassed with a 100nF capacitor if wires are used. Capacitor should be placed as close as possible to the sensor. ESD (ElectroStatic Discharge) ESD immunity is qualified according to: JEDEC JESD22-A114 method (Human Body Model at 4kV) for pads & open window JEDEC JESD22-A115 method (Machine Model 200V) ESDA ESD-STM5.3.1-1999 and AEC-Q100-011 (charged device model, 750V corner pins, 500V other pins) Latch-up immunity is provided at a force current of 100mA with Tamb=25C according to JEDEC JESD78. For exposure beyond named limits the sensor need additional protection circuit. INTERFACE SPECIFICATION N Function 1 DATA Comment Data bit-stream 2 GND Ground 3 NC Must be left unconnected 4 NC Must be left unconnected 5 VDD Supply Voltage 6 SCK Selector for RH or Temp Ground or unconnected PAD Typical application circuit, including pull-up resistor Rp and decoupling of VDD and GND by a capacitor. Power Pins (VDD, GND) The supply voltage of HTU21D(F) sensors must be in the range of 1.5VDC - 3.6VDC. Recommended supply voltage is 3VDC (regulated). However the typical application circuit includes a pull-up resistor R on data wire and a 100nF decoupling capacitor between VDD and GND, placed as close as possible to the sensor. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 8/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output Serial clock input (SCK) SCK is used to synchronize the communication between microcontroller and HTU21D(F) sensor. Since the interface consists of fully static logic there is no minimum SCK frequency. Serial data (DATA) The DATA pin is used to transfer data in and out of the device. For sending a command to the HTU21D(F) sensor, DATA is valid on the rising edge of SCK and must remain stable while SCK is high. After the falling edge of SCK, the DATA value may be changed. For safe communication DATA shall be valid t SU and tHD before the rising and after the falling edge of SCK, respectively. For reading data from the HTU21D(F) sensor, DATA is valid tVD after SCK has gone low and remains valid until the next falling edge of SCK. An external pull-up resistor (e.g. 10k) on SCK is required to pull the signal high only for open collector or open drain technology microcontrollers. In most of the cases, pull-up resistors are internally included in I/O circuits of microcontrollers. ELECTRICAL CHARACTERISTICS Input/output DC characteristics (VDD=3V, Temperature=25C unless otherwise noted) Characteristics Low level output VDD=3V voltage -4mA2.25V `1': VDD<2.25V 3, 4, 5 3 Reserved 2 1 Enable on-chip heater 1 1 Disable OTP reload (1) This status bit is updated after each measurement `0' `0' `1' Cut-off value for "End of Battery" signal may vary by 0.1V. Reserved bits must not be changed. OTP reload active loads default settings after each time a measurement command is issued. IC communication reading and writing the user register example In this example, the resolution is set to 8 bits / 12 bits (for RH/Temp) from default configuration. S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 0 0 0 0 0 0 0 ACK 1 1 1 0 0 1 1 1 ACK 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 0 0 0 0 0 0 1 ACK 0 0 0 0 0 0 1 0 NACK IC address + write S Read Register Command IC address + read S Register content 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 0 0 0 0 0 0 0 ACK 1 1 1 0 0 1 1 0 ACK 55 56 57 58 59 60 61 62 63 0 0 0 0 0 0 1 1 ACK IC address + write Write Register Command P Register Content to be written Grey blocks are controlled by HTU21D(F) sensor. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 13/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output CRC Checksum 8 5 4 HTU21D(F) sensor provides a CRC-8 checksum for error detection. The polynomial used is X + X + X + 1. Basic Considerations CRC stands for Cyclic Redundancy Check. It is one of the most effective error detection schemes and requires a minimal amount of resources. The types of errors that are detectable with CRC that is implemented in HTU21D(F) sensors are: Any odd number of errors anywhere within the data transmission All double-bit errors anywhere within the transmission Any cluster of errors that can be contained within an 8-bit window (1-8 bits incorrect) Most larger clusters of errors A CRC is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents; on retrieval the calculation is repeated, and corrective action can be taken against presumed data corruption if the check values do not match. CRCs are so called because the check (data verification) value is a redundancy (it expands the message without adding information) and the algorithm is based on cyclic codes. CRCs are popular because they are simple to implement in binary hardware, easy to analyze mathematically, and particularly good at detecting common errors caused by noise in transmission channels. Because the check value has a fixed length, the function that generates it is occasionally used as a hash function. CRC for HTU21D(F) sensors using IC Protocol When HTU21D(F) sensors are run by communicating with the standard IC protocol, an 8-bit CRC can be used to detect transmission errors. The CRC covers all read data transmitted by the sensor. CRC properties for HTU21D(F) sensors communicating with IC protocol are listed in the table below. CRC with IC protocol Generator polynomial Initialization Protected data Final Operation 8 5 4 X +X +X +1 0x00 Read data none CRC calculation To compute an n-bit binary CRC, line the bits representing the input in a row, and position the (n+1)-bit pattern representing the CRC's divisor (called a "polynomial") underneath the left-hand end of the row. This is first padded with zeroes corresponding to the bit length n of the CRC. If the input bit above the leftmost divisor bit is 0, do nothing. If the input bit above the leftmost divisor bit is 1, the divisor is XORed into the input (in other words, the input bit above each 1-bit in the divisor is toggled). The divisor is then shifted one bit to the right, and the process is repeated until the divisor reaches the right-hand end of the input row. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 14/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output Since the left most divisor bit zeroed every input bit it touched, when this process ends the only bits in the input row that can be nonzero are the n bits at the right-hand end of the row. These n bits are the remainder of the division step, and will also be the value of the CRC function. The validity of a received message can easily be verified by performing the above calculation again, this time with the check value added instead of zeroes. The remainder should equal zero if there are no detectable errors. CRC examples The input message 11011100 (0xDC) will have as result 01111001 (0x79). The input message 01101000 00111010 (0x683A: 24.7C) will have as result 01111100 (0x7C). The input message 01001110 10000101 (0x4E85: 32.3%RH) will have as result 01101011 (0x6B). CONVERSION OF SIGNAL OUTPUTS Default resolution is set to 12-bit relative humidity and 14-bit temperature readings. Measured data are transferred in two byte packages, i.e. in frames of 8-bit length where the most significant bit (MSB) is transferred first (left aligned). Each byte is followed by an acknowledge bit. The two status bits, the last bits of LSB, must be set to `0' before calculating physical values. To accommodate/adapt any process variation (nominal capacitance value of the humidity die), tolerances of the sensor above 100%RH and below 0%RH must be considered. As a consequence: 118%RH corresponds to 0xFF which is the maximum RH digital output that can be sent out from the ASIC. RH output can reach 118%RH and above this value, there will have a clamp of the RH output to this value. -6%RH corresponds to 0x00 which is the minimum RH digital output that can be sent out from the ASIC. RH output can reach -6%RH and below this value, there will have a clamp of the RH output to this value. Relative Humidity conversion With the relative humidity signal output SRH, the relative humidity is obtained by the following formula (result in %RH), no matter which resolution is chosen: RH 6 125 S RH 216 In the example given p.10, the transferred 16-bit relative humidity data is 0x7C80: 31872. The relative humidity results to be 54.8%RH. Temperature conversion The temperature T is calculated by inserting temperature signal output STemp into the following formula (result in C), no matter which resolution is chosen: Temp 46.85 175.72 HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 15/22 S Temp 216 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output APPLICATION: DEW POINT TEMPERATURE MEASUREMENT The dew point is the temperature at which the water vapor in the air becomes saturated and condensation begins. The dew point is associated with relative humidity. A high relative humidity indicates that the dew point is closer to the current air temperature. Relative humidity of 100% indicates that the dew point is equal to the current temperature (and the air is maximally saturated with water). When the dew point stays constant and temperature increases, relative humidity will decrease. Dew point temperature of the air is calculated using Ambient Relative Humidity and Temperature measurements from HTU21D(F) sensor with following formulas given below: Partial Pressure (PPTamb) formula from Ambient Temperature: PPTamb 10 B A (Tamb C ) Dew point Temperature (Td) formula from Partial Pressure (PPTamb): B Td C PPTamb log 10 RH amb 100 A PPTamb RHamb Tamb Td A, B, C Partial Pressure in mmHg at ambient temperature (T amb) Ambient humidity in %RH, computed from HTU21D(F) sensor Humidity cell temperature in C, computed from HTU21D(F) sensor Calculated Dew Point in C Constants: A=8.1332; B=1762.39; C=235.66 HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 16/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output PACKAGE OUTLINE HTU21D Sensor Dimensions HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 17/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output HTU21DF Sensor Dimensions Dimensions are given in mm, tolerances are 0.1mm. The die pad (thermal center pad) is internally connected to GND. Packaging Type HTU21D(F) sensors are provided in DFN packaging. DFN stands for Dual Flat No leads. The HTU21D(F) sensor chip is mounted to a lead frame made of Cu and plated with Ni/Pd/Au. Chip and lead frame are over molded by green epoxy-based mold compound. Please note that side walls of sensors are diced and hence lead frame at diced edge is not covered with respective protective coating. The total weight of the sensor is 0.025g. Traceability Information HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 18/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output All HTU21D(F) sensors are laser marked with an alphanumeric, five-digit code on the sensor as pictured below. The marking on the HTU21D(F) sensor consists of two lines with five digits each: The first line denotes the sensor type: HTU21. The second line denotes several information as: o The first digit of the second line defines the output mode: D = digital and IC P = PWM o The second digit defines the manufacturing year: 2 = 2012, 3 = 2013, etc. o The last three digits represent an alphanumeric tracking code. That code can be decoded by MEAS only and allows for tracking on batch level through production, calibration and testing and will be provided upon justified request. Laser marking on HTU21D(F) sensor Reels are also labeled, as displayed below and give additional traceability information. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 19/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output With: XX: O: (F): NN: TTTTTTTTT: YY: DDD: QQQQ: Sensor Type (21 for HTU21D(F)) Output mode (D = Digital, P = PWM) Sensor with PTFE membrane (only for HTU21DF) Product revision number MEAS Traceability Code Two last digits of the year Day of the year Quantity per real (400, 1500 or 5000 units) Tape and Reel Packaging HTU21D(F) sensors are shipped in tape & reel packaging, sealed into antistatic ESD bags. Standard packaging sizes are 400, 1500 and 5000 units per reel. Each reel contains 440mm (55 pockets) header tape and 200mm (25 pockets) trailer tape. The drawing of the packaging tapes with sensor orientation is shown in the picture below. USER DIRECTION OF UNREELING Packaging reels For 400 and 1500 units: outside diameter of 7" (178mm) and a 1/2" (13mm) diameter arbor hole. For 5000 units: outside diameter of 13" (330mm) and a 1/2" (13mm) diameter arbor hole. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 20/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output ORDERING INFORMATION ** HTU21D - I.C 21D RH/T DIGITAL MODULE** PACKAGE: TAPE AND REEL M.P.Q OF 400 PIECES, 1500 PIECES OR 5000 PIECES HPP845E031R4 - I.C 21D RH/T DIGITAL MODULE in tape and reel of 400 pieces HPP845E031R1 - I.C 21D RH/T DIGITAL MODULE in tape and reel of 1500 pieces HPP845E031R5 - I.C 21D RH/T DIGITAL MODULE in tape and reel of 5000 pieces ** HTU21DF - I.C 21DF RH/T DIGITAL MODULE WITH PTFE MEMBRANE ** PACKAGE: TAPE AND REEL M.P.Q OF 400 PIECES, 1500 PIECES OR 5000 PIECES HPP845E131R4 - I.C 21DF RH/T DIGITAL MODULE in tape and reel of 400 pieces HPP845E131R1 - I.C 21DF RH/T DIGITAL MODULE in tape and reel of 1500 pieces HPP845E131R5 - I.C 21DF RH/T DIGITAL MODULE in tape and reel of 5000 pieces ** I.C 21D DEMOKIT - HPP845KIT ** This is a USB device for MEAS Model HTU21D Digital Relative Humidity & Temperature sensor demonstration. Supporting up to 4 sensor acquisitions at the same time, it shows the consistency of different sensors and test sensor functions conveniently. For detailed information, please request to humidity.application@meas-spec.com. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 21/22 April 2014 HTU21D(F) RH/T Sensor IC Digital Relative Humidity sensor with Temperature output Customer Service contact details Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3 FRANCE Tel:+33 (0)5 820.822.02 Fax:+33 (0)5.820.821.51 Sales: humidity.sales@meas-spec.com MEAS Website: http://www.meas-spec.com/humidity-sensors.aspx Edition 0 A 2 3 4 5 Comments Document creation General update HTU21DF product with embedded PTFE membrane reference added, Storage conditions after soldering process updated (typing error), ESD performances updated, complementary information on RH output signal in "Conversion of signal outputs" paragraph, information on tape and reel packaging added, HTU21D demokit availability information added. Correction of IC communication reading and writing, correction of soldering peak temperature Obsolescence of HTU21S (SDM interface) version External package dimensions update Part number and designation modification Who D. LE GALL D. LE GALL-ZIRILLI Date April 12 February 13 D. LE GALL-ZIRILLI July 13 M.ROBERT October 2013 M.ROBERT January 2014 M.ROBERT April 2014 The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others. HPC199_5 HTU21D(F) Sensor Datasheet www.meas-spec.com 22/22 April 2014