853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
1
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
GENERAL DESCRIPTION
The ICS853011C is a low skew, high perfor-
mance 1-to-2 Differential-to-2.5V/3.3V LVPECL/
ECL Fanout Buffer and a member of the
HiPerClockS family of High Performance
Clock Solutions from ICS. The ICS853011C
is characterized to operate from either a 2.5V or a 3.3V
power supply. Guaranteed output and part-to-part skew
characteristics make the ICS853011C ideal for those
clock distribution applications demanding well defined
performance and repeatability.
FEATURES
2 differential 2.5V/3.3V LVPECL / ECL outputs
1 differential PCLK, nPCLK input pair
PCLK, nPCLK pair can accept the following
differential input levels: LVPECL, LVDS, CML, SSTL
Output frequency: 3GHz
Translates any single ended input signal to 3.3V
LVPECL levels with resistor bias on nPCLK input
Output skew: 5ps (typical)
Part-to-part skew: TBD
Propagation delay: 250ps (typical)
LVPECL mode operating voltage supply range:
VCC = 2.375V to 3.8V, VEE = 0V
ECL mode operating voltage supply range:
VCC = 0V, VEE = -3.8V to -2.375V
-40°C to 85°C ambient operating temperature
Pin compatible with MC100LVEP11 and SY100EP11U
BLOCK DIAGRAM PIN ASSIGNMENT
ICS853011C
8-Lead SOIC
3.90mm x 4.90mm x 1.37mm package body
M Package
Top View
Q0
nQ0
Q1
nQ1
1
2
3
4
HiPerClockS
ICS
Vcc
PCLK
nPCLK
VEE
8
7
6
5
Q0
nQ0
Q1
nQ1
PCLK
nPCLK
ICS853011C
8-Lead TSSOP, 118 mil
3mm x 3mm x 0.95mm package body
G Package
Top View
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
2
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
TABLE 1. PIN DESCRIPTIONS
TABLE 2. PIN CHARACTERISTICS
rebmuNemaNepyTnoitpircseD
2,10Qn,0QtuptuO.slevelecafretniLCEPVL.riaptuptuolaitnereffiD
4,31Qn,1QtuptuO.sleveleca
fretniLCEPVL.riaptuptuolaitnereffiD
5V
EE
rewoP.nipylppusevitageN
6KLCPntupnI /pulluP
nwodlluP .slevelecafretniLCEPVL.tupnikcolC
7KLCPtupnInwodlluP .slevel
ecafretniLCEPVL.gnitaolftfelnehwWOLtluafeD.tupnikcolC
8V
CC
rewoP.nipylppusevitisoP
:ETON
nwodlluPdnapulluP
.seulavlacipytrof,scitsiretcarahCniP,2elbaTeeS.srotsisertupnilanretniotrefer
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
R
NWODLLUP
rotsiseRnwodlluPtupnI 57K
R
PULLUP
rotsiseRpulluPtupnI 73K
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
3
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
CC
egatloVylppuSevitisoP 573.23.38.3V
I
EE
tnerruCylppuSrewoP 81Am
ABSOLUTE MAXIMUM RATINGS
TABLE 3B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage
to the device. These ratings are stress specifi-
cations only. Functional operation of product at
these conditions or any conditions beyond those
listed in the
DC Characteristics
or
AC Character-
istics
is not implied. Exposure to absolute maxi-
mum rating conditions for extended periods may
affect product reliability.
lobmySretemaraP C°04-C°52C°58 stinU
niMpyTxaMniMpyTxaMniMpyTxaM
V
HO
1ETON;egatloVhgiHtuptuO
572.2592.2592.2V
V
LO
1ETON;egatloVwoLtuptuO
545.125.1535.1V
V
PP
egatloVtupnIkaeP-ot-kaeP
008008008V
V
RMC
egatloVhgiHtupnI
3,2ETON;egnaRedoMnommoC
V
I
HI
tupnI
tnerruChgiH KLCPn,KLCP
Aµ
I
LI
tupnI
tnerruCwoL
KLCP
Aµ
KLCPn
Aµ
Vhtiw1:1yravsretemaraptuptuodnatupnI
CC
V.
EE
.V5.0-otV529.0+yravnac
05htiwdetanimretstuptuO:1ETON Vot
OCC
.V2-
VsadenifedsiegatlovedomnommoC:2ETON
HI
.
VsiKLCPn,KLCProfegatlovtupnimumixameht,snoitacilppadedne-elgnisroF:3ETON
CC
.V3.0+
Supply Voltage, VCC 4.6V (LVPECL mode, VEE = 0)
Negative Supply Voltage, VEE -4.6V (ECL mode, VCC = 0)
Inputs, VI (LVPECL mode) -0.5V to VCC + 0.5V
Inputs, VI (ECL mode) 0.5V to VEE - 0.5V
Outputs, IO
Continuous Current 50mA
Surge Current 100mA
Operating Temperature Range, TA -40°C to +85°C
Storage Temperature, TSTG -65°C to 150°C
Package Thermal Impedance, θJA 112.7°C/W (0 lfpm)
(Junction-to-Ambient) for 8 Lead SOIC
Package Thermal Impedance, θJA 101.7°C/W (0 m/s)
(Junction-to-Ambient) for 8 Lead TSSOP
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
4
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V
lobmySretemaraP C°04-C°52C°58 stinU
niMpyTxaMniMpyTxaMniMpyTxaM
f
XAM
ycneuqerFtuptuO333zHG
t
DP
1ETON;yaleDnoitagaporP042052062sp
t
)o(ks4,2ETON;wekStuptuO555sp
t
)pp(ks4,3ETON;wekStraP-ot-traP sp
t
R
/t
F
emiTllaF/esiRtuptuO%08ot%02061061061sp
cdoelcyCytuDtuptuOfzHG1050505%
ftaderusaemerasretemarapllA .detonesiwrehto
sselnu,zHG7.1
.tniopgnissorctuptuolaitnereffidehtottniopgnissorctupnilaitnereffidehtmorfderusaeM:1ETON
.snoitidnocdaollauqehtiwdnaegatlovylppusemasehttastuptuoneewtebwekssadenifeD:2ETON
.stniopssorclaitner
effidtuptuoehttaderusaeM
daollauqehtiwdnasegatlovylppusemasehttagnitareposecivedtnereffidnostuptuoneew
tebwekssadenifeD:3ETON
.stniopssorclaitnereffidehttaderusaemerastuptuoeht,ecivedhcaenostupnifoepytemas
ehtgnisU.snoitidnoc
.56dradnatSCEDEJhtiwecnadroccanidenifedsiretemarapsihT:4ETON
lobmySretemaraP C°04-C°52C°58 stinU
niMpyTxaMniMpyTxaMniMpyTxaM
V
HO
1ETON;egatloVhgiHtuptuO
574.1594.1594.1V
V
LO
1ETON;egatloVwoLtuptuO
547.027.0537.0V
V
PP
egatloVtupnIkaeP-ot-kaeP
008008008V
V
RMC
egatloVhgiHtupnI
3,2ETON;egnaRedoMnommoC
V
I
HI
tupnI
tnerruChgiH KLCPn,KLCP
Aµ
I
LI
tupnI
tnerruCwoL
KLCP
Aµ
KLCPn
Aµ
Vhtiw1:1yravsretemaraptuptuodnatupnI
CC
V.
EE
.V5.0-otV529.0+yravnac
05htiwdetanimretstuptuO:1ETON Vot
OCC
.V2-
VsadenifedsiegatlovedomnommoC:2ETON
HI
.
VsiKLCPn,KLCProfegatlovtupnimumixameht,snoitacilppadedne-elgnisroF:3ETON
CC
.V3.0+
lobmySretemaraP C°04-C°52C°58 stinU
niMpyTxaMniMpyTxaMniMpyTxaM
V
HO
1ETON;egatloVhgiHtuptuO
520.1-500.1-500.1-V
V
LO
1ETON;egatloVwoLtuptuO
557.1-87.1-567.1-V
V
PP
egatloVtupnIkaeP-ot-kaeP
008008008V
V
RMC
egatloVhgiHtupnI
3,2ETON;egnaRedoMnommoC
V
I
HI
tupnI
tnerruChgiH KLCPn,KLCP
Aµ
I
LI
tupnIKLCP
Aµ
tnerruCwoLKLCPn
Aµ
Vhtiw1:1yravsretemaraptuptuodnatupnI
CC
V.
EE
.V5.0-otV529.0+yravnac
05htiwdetanimretstuptuO:1ETON Vot
OCC
.V2-
VsadenifedsiegatlovedomnommoC:2ETON
HI
.
VsiKLCPn,KLCProfegatlovtupnimumixameht,snoitacilppadedne-elgnisroF:3ETON
CC
.V3.0+
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
5
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
PARAMETER MEASUREMENT INFORMATION
OUTPUT LOAD AC TEST CIRCUIT DIFFERENTIAL INPUT LEVEL
OUTPUT SKEW
PART-TO-PART SKEW
OUTPUT RISE/FALL TIME PROPAGATION DELAY
V
CMR
Cross Points
V
PP
VEE
nPCLK
VCC
PCLK
SCOPE
Qx
nQx
LVPECL
2V
-1.8V to -0.375V
t
sk(pp)
t
sk(o)
nQx
Qx
nQy
Qy
PAR T 1
PAR T 2
nQx
Qx
nQy
Qy
Clock
Outputs 20%
80% 80%
20%
t
R
t
F
V
SWING
tPD
nPCLK
Q0, Q1
nQ0, nQ1
PCLK
VCC
V EE
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
Pulse Width
t
PERIOD
t
PW
t
PERIOD
odc =
Q0, Q1
nQ0, nQ1
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
6
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
V
CC
- 2V
5050
RTT
Z
o
= 50
Z
o
= 50
FOUT FIN
RTT = Z
o
1
((V
OH
+ V
OL
) / (V
CC
– 2)) – 2
APPLICATION INFORMATION
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT
3.3V
125125
8484
Zo = 50
Zo = 50
FOUT FIN
The clock layout topology shown below is a typical termina-
tion for LVPECL outputs. The two different layouts mentioned
are recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that gen-
erate ECL/LVPECL compatible outputs. Therefore, terminating
resistors (DC current path to ground) or current sources must
be used for functionality. These outputs are designed to drive
50 transmission lines. Matched impedance techniques should
be used to maximize operating frequency and minimize signal
distortion.
Figures 2A and 2B
show two different layouts which
are recommended only as guidelines. Other suitable clock lay-
outs may exist and it would be recommended that the board
designers simulate to guarantee compatibility across all printed
circuit and clock component process variations.
TERMINATION FOR 3.3V LVPECL OUTPUTS
FIGURE 2B. LVPECL OUTPUT TERMINATIONFIGURE 2A. LVPECL OUTPUT TERMINATION
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS
VCC
R2
1K
V_REF
C1
0.1u
R1
1K
Single Ended Clock Input
PCLK
nPCLK
Figure 1
shows how the differential input can be wired to accept
single ended levels. The reference voltage V_REF = VCC/2 is
generated by the bias resistors R1, R2 and C1. This bias circuit
should be located as close as possible to the input pin. The ratio
of R1 and R2 might need to be adjusted to position the V_REF in
the center of the input voltage swing. For example, if the input
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V
and R2/R1 = 0.609.
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
7
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
TERMINATION FOR 2.5V LVPECL OUTPUT
Figure 3A
and
Figure 3B
show examples of termination for 2.5V
LVPECL driver. These terminations are equivalent to terminat-
ing 50 to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to
ground level. The R3 in Figure 3B can be eliminated and the
termination is shown in
Figure 3C.
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE
R2
50
Zo = 50 Ohm
VCCO=2.5V
R1
50
Zo = 50 Ohm
+
-
2.5V
2,5V LVPECL
Driv er
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE
VCCO=2.5V
R1
50
R2
50
Zo = 50 Ohm
R3
18
2,5V LVPECL
Driv er
Zo = 50 Ohm
+
-
2.5V
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE
R2
62.5
2.5V
2,5V LVPECL
Driv er
R3
250
Zo = 50 Ohm
Zo = 50 Ohm
R4
62.5
2.5V
+
-
R1
250
VCCO=2.5V
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
8
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
LVPECL CLOCK INPUT INTERFACE
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other
differential signals. Both VSWING and VOH must meet the VPP
and VCMR input requirements.
Figures 4A to 4E
show interface
examples for the HiPerClockS PCLK/nPCLK input driven by
the most common driver types. The input interfaces suggested
here are examples only. If the driver is from another vendor,
use their termination recommendation. Please consult with the
vendor of the driver component to confirm the driver termina-
tion requirements.
FIGURE 4A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN
BY A CML DRIVER
FIGURE 4B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN
BY AN SSTL DRIVER
FIGURE 4C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER
FIGURE 4D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN
BY A 3.3V LVDS DRIVER
PCLK/nPCLK
2.5V
Zo = 60 Ohm
SSTL
HiPerClockS
PCLK
nPCLK
R2
120
3.3V
R3
120
Zo = 60 Ohm
R1
120
R4
120
2.5V
FIGURE 4E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER WITH AC COUPLE
HiPerClockS
PCLK
nPCLK
PCLK/nPCLK
3.3V
R2
50
R1
50
3.3V
Zo = 50 Ohm
CML
3.3V
Zo = 50 Ohm
3.3V
HiPerClockS
PCLK
nPCLK
R2
84
R3
125
Input
Zo = 50 Ohm
R4
125
R1
84
LVPECL
3.3V
3.3V
Zo = 50 Ohm
C2
R2
1K
R5
100
Zo = 50 Ohm
3.3V
3.3V
C1
R3
1K
LVDS
R4
1K
HiPerClockS
PCLK
nPCLK
R1
1K
Zo = 50 Ohm
3.3V
PCLK/nPCLK
3.3V
R5
100 - 200
3.3V
3.3V
HiPerClockS
PCLK
nPCLK
R1
125
PCLK/nPCLK
R2
125
R3
84
C1
C2
Zo = 50 Ohm
R4
84
Zo = 50 Ohm
R6
100 - 200
3.3V LVPECL
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
9
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS853011C.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS853011C is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 3.8V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 18mA = 68.4mW
Power (outputs)MAX = 30.94mW/Loaded Output pair
If all outputs are loaded, the total power is 2 * 30.94mW = 61.88mW
Total Power_MAX (3.8V, with all outputs switching) = 68.4mW + 61.88mW = 130.3mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA
must be used. Assuming a
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5A below.
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:
85°C + 0.130W * 103.3°C/W = 98.4°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 153.3°C/W 128.5°C/W 115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 112.7°C/W 103.3°C/W 97.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 5A. THERMAL RESISTANCE θθ
θθ
θJA FOR 8-PIN SOIC, FORCED CONVECTION
TABLE 5B. THERMAL RESISTANCE θθ
θθ
θJA FOR 8-PIN TSSOP, FORCED CONVECTION
θθ
θθ
θJA by Velocity (Meters per Second)
012
Multi-Layer PCB, JEDEC Standard Test Boards 101.7°C/W 90.5°C/W 89.8°C/W
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
10
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in
Figure 5.
To calculate worst case power dissipation into the load, use the following equations which assume a 50 load, and a termination
voltage of V
CC
- 2V.
For logic high, VOUT = VOH_MAX = VCC_MAX –0.935V
(VCC_MAX - VOH_MAX
) = 0.935V
For logic low, VOUT = VOL_MAX = VCC_MAX
– 1.67V
(VCC_MAX - VOL_MAX
) = 1.67V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(VOH_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOH_MAX) = [(2V - (VCC_MAX - VOH_MAX
))/R
L
] * (VCC_MAX
- VOH_MAX) =
[(2V - 0.935V)/50] * 0.935V = 19.92mW
Pd_L = [(VOL_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOL_MAX) = [(2V - (VCC_MAX - VOL_MAX
))/R
L
] * (VCC_MAX
- VOL_MAX) =
[(2V - 1.67V)/50] * 1.67V = 11.02mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION
VOUT
Q1
VCC - 2V
RL
50
VCC
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
11
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
RELIABILITY INFORMATION
TRANSISTOR COUNT
The transistor count for ICS853011C is: 96
TABLE 6A. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 153.3°C/W 128.5°C/W 115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 112.7°C/W 103.3°C/W 97.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 6B. θJAVS. AIR FLOW TABLE FOR 8 LEAD TSSOP
θθ
θθ
θJA by Velocity (Meters per Second)
012
Multi-Layer PCB, JEDEC Standard Test Boards 101.7°C/W 90.5°C/W 89.8°C/W
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
12
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC
TABLE 7A. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MS-012
LOBMYS sretemilliM
NUMINIMMUMIXAM
N8
A53.157.1
1A01.052.0
B33.015.0
C91.052.0
D08.400.5
E08.300.4
eCISAB72.1
H08.502.6
h52.005.0
L04.07
2.1
α°8
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
13
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP
TABLE 7B. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MO-187
LOBMYS sretemilliM
muminiMmumixaM
N8
A--01.1
1A0 51.0
2A97.079.0
b22.083.0
c80.032.0
DCISAB00.3
ECISAB09.4
1ECISAB00.3
eCISAB56.0
1
eCISAB59.1
L04.008.0
α°8
aaa--01.0
853011CM www.icst.com/products/hiperclocks.html REV. A MARCH 19, 2004
14
Integrated
Circuit
Systems, Inc.
ICS853011C
LOW SKEW, 1-TO-2
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
PRELIMINARY
TABLE 8. ORDERING INFORMATION
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product
for use in life support devices or critical medical instruments.
rebmuNredrO/traPgnikraMegakcaPtnuoCerutarepmeT
MC110358SCIC110358CIOSdael8ebutrep69C°58otC°04-
TMC110358SCIC1103
58leeRdnaepaTnoCIOSdael80052C°58otC°04-
FLMC110358SCIFLC1103CIOSdael8"eerFdaeL"ebutrep69C°58otC°04-
TFLMC11035
8SCIFLC1103leeRdnaepaTnoCIOSdael8"eerFdaeL"0052C°58otC°04-
GC110358SCIC110POSSTdael8ebutrep69C°58otC°04-
TGC110
358SCIC110leeRdnaepaTnoPOSSTdael80052C°58otC°04-
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.