LMH6672
SNOS957H –APRIL 2001–REVISED AUGUST 2014
www.ti.com
8 Power Supply Recommendations
8.1 Thermal Management
The LMH6672 is a high-speed, high power, dual operational amplifier with a very high slew rate and very low
distortion. For ease of use, it uses conventional voltage feedback. These characteristics make the LMH6672
ideal for applications where driving low impedances of 25 to 100 Ωsuch as xDSL and active filters.
A class AB output stage allows the LMH6672 to deliver high currents to low impedance loads with low distortion
while consuming low quiescent supply current. For most op-amps, class AB topology means that internal power
dissipation is rarely an issue, even with the trend to smaller surface mount packages. However, the LMH6672
has been designed for applications where high levels of power dissipation may be encountered.
Several factors contribute to power dissipation and consequently higher junction temperatures. These factors
need to be well understood if the LMH6672 is to perform to specifications in all applications. This section will
examine the typical application shown in Figure 44 as an example. Because both amplifiers are in a single
package, the calculations are for the total power dissipated by both amplifiers.
There are two separate contributors to the internal power dissipation:
1. The product of the supply voltage and the quiescent current when no signal is being delivered to the external
load.
2. The additional power dissipated while delivering power to the external load.
The first of these components appears easy to calculate simply by inspecting the data sheet. The typical
quiescent supply current for this part is 7.2 mA per amplifier. Therefore, with a ±6 volt supply, the total power
dissipation is:
PD= VS× 2 × lQ= 12 × (14.4×10-3) = 173 mW
where
• (VS= VCC + VEE) (1)
With a thermal resistance of 172°C/W for the SOIC package, this level of internal power dissipation will result in a
junction temperature (TJ) of 30°C above ambient.
Using the worst-case maximum supply current of 18 mA and an ambient of 85°C, a similar calculation results in a
power dissipation of 216 mW, or a TJof 122°C.
This is approaching the maximum allowed TJof 150°C before a signal is applied. Fortunately, in normal
operation, this term is reduced, for reasons that will soon be explained.
The second contributor to high TJis the power dissipated internally when power is delivered to the external load.
This cause of temperature rise is more difficult to calculate, even when the actual operating conditions are
known.
To maintain low distortion, in a Class AB output stage, an idle current, IQ, is maintained through the output
transistors when there is little or no output signal. In the LMH6672, about 4.8 mA of the total quiescent supply
current of 14.4 mA flows through the output stages.
Under normal large signal conditions, as the output voltage swings positive, one transistor of the output pair will
conduct the load current, while the other transistor shuts off, and dissipates no power. During the negative signal
swing this situation is reversed, with the lower transistor sinking the load current while the upper transistor is cut
off. The current in each transistor will approximate a half wave rectified version of the total load current.
Because the output stage idle current is now routed into the load, 4.8 mA can be subtracted from the quiescent
supply current when calculating the quiescent power when the output is driving a load.
16 Submit Documentation Feedback Copyright © 2001–2014, Texas Instruments Incorporated
Product Folder Links: LMH6672