PD - 97100B IRFP4332PbF PDP SWITCH Features l Advanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low E PULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low Q G for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l175C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS min VDS (Avalanche) typ. RDS(ON) typ. @ 10V TJ max 250 300 29 175 V V m: C D D G G S D S TO-247AC G D S Gate Drain Source Description This HEXFET(R) Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Max. Parameter VGS ID @ TC = 25C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V 30 V 57 A ID @ TC = 100C Continuous Drain Current, VGS @ 10V 40 IDM Pulsed Drain Current 230 c gh Units IRP @ TC = 100C Repetitive Peak Current PD @TC = 25C Power Dissipation PD @TC = 100C Power Dissipation 180 Linear Derating Factor 2.4 W/C TJ Operating Junction and -40 to + 175 C TSTG Storage Temperature Range 120 360 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 W x 10lb in (1.1N m) N Thermal Resistance Parameter RJC RCS RJA Junction-to-Case f Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f Typ. --- 0.24 --- Max. 0.42 --- 40 Units C/W Notes through are on page 9 www.irf.com 1 12/15/09 IRFP4332PbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions VGS = 0V, ID = 250A V mV/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 35A BVDSS Drain-to-Source Breakdown Voltage 250 --- --- VDSS/TJ RDS(on) Breakdown Voltage Temp. Coefficient --- 170 --- Static Drain-to-Source On-Resistance --- 29 33 VGS(th) Gate Threshold Voltage 3.0 --- 5.0 V VGS(th)/TJ Gate Threshold Voltage Coefficient --- -14 --- mV/C IDSS Drain-to-Source Leakage Current --- --- 20 A --- --- 200 A VDS = 250V, VGS = 0V, TJ = 125C nA VGS = 20V IGSS e VDS = VGS, ID = 250A VDS = 250V, VGS = 0V Gate-to-Source Forward Leakage --- --- 100 Gate-to-Source Reverse Leakage --- --- -100 gfs Forward Transconductance 100 --- --- S VDS = 25V, ID = 35A Qg Total Gate Charge --- 99 150 nC VDD = 125V, ID = 35A, VGS = 10V Qgd Gate-to-Drain Charge --- 35 --- tst Shoot Through Blocking Time 100 --- --- EPULSE Energy per Pulse --- --- 520 920 --- VGS = -20V ns Input Capacitance --- 5860 --- Coss Output Capacitance --- 530 --- Crss Reverse Transfer Capacitance --- 130 --- Coss eff. Effective Output Capacitance --- 360 --- LD Internal Drain Inductance --- 5.0 --- J Internal Source Inductance --- 13 VDS = 200V, RG= 5.1, TJ = 25C L = 220nH, C= 0.3F, VGS = 15V VDS = 200V, RG= 5.1, TJ = 100C VGS = 0V pF VDS = 25V = 1.0MHz, VGS = 0V, VDS = 0V to 200V Between lead, nH LS VDD = 200V, VGS = 15V, RG= 4.7 L = 220nH, C= 0.3F, VGS = 15V --- Ciss e --- D 6mm (0.25in.) from package G and center of die contact S Avalanche Characteristics Parameter EAS EAR VDS(Avalanche) IAS d Repetitive Avalanche Energy c Repetitive Avalanche Voltagec Avalanche Currentd Single Pulse Avalanche Energy Typ. Max. Units --- 210 mJ --- 36 mJ 300 --- V --- 35 A Diode Characteristics Parameter IS @ TC = 25C Continuous Source Current Min. Typ. Max. Units --- --- ISM Pulsed Source Current c MOSFET symbol 57 (Body Diode) A --- --- Diode Forward Voltage --- --- showing the 230 integral reverse 1.3 V p-n junction diode. TJ = 25C, IS = 35A, VGS = 0V (Body Diode) VSD Conditions e trr Reverse Recovery Time --- 190 290 ns TJ = 25C, IF = 35A, VDD = 50V Qrr Reverse Recovery Charge --- 820 1230 nC di/dt = 100A/s 2 e www.irf.com IRFP4332PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 100 BOTTOM 5.5V 10 100 1 1 10 BOTTOM 5.5V 10 60s PULSE WIDTH Tj = 25C 0.1 60s PULSE WIDTH Tj = 175C 1 100 0.1 1 VDS, Drain-to-Source Voltage (V) 100 Fig 2. Typical Output Characteristics 3.5 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current() 10 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics TJ = 175C 10 TJ = 25C 1 0.1 VDS = 25V 60s PULSE WIDTH 0.01 4.0 5.0 6.0 7.0 ID = 35A VGS = 10V 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1000 1000 L = 220nH C = 0.3F 100C 25C L = 220nH C = Variable 100C 25C 800 Energy per pulse (J) 800 Energy per pulse (J) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 600 400 600 400 200 200 0 0 150 160 170 180 190 200 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 100 110 120 130 140 150 160 170 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFP4332PbF 1000 1400 L = 220nH C= 0.3F C= 0.2F C= 0.1F 1000 ISD , Reverse Drain Current (A) Energy per pulse (J) 1200 800 600 400 200 100 TJ = 175C 10 1 TJ = 25C VGS = 0V 0 0.1 25 50 75 100 125 150 0.2 Temperature (C) Fig 7. Typical EPULSE vs.Temperature 10000 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 20 Coss = Cds + Cgd Ciss 6000 4000 Coss 2000 Crss 1 1.0 1.2 ID= 35A VDS = 200V VDS = 125V 16 VDS = 50V 12 8 4 10 100 0 1000 40 80 120 160 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 60 1000 ID, Drain-to-Source Current (A) 50 ID, Drain Current (A) 0.8 0 0 40 30 20 10 0 OPERATION IN THIS AREA LIMITED BY R DS(on) 1sec 100 100sec 10sec 10 1 Tc = 25C Tj = 175C Single Pulse 0.1 25 50 75 100 125 150 175 TJ , Junction Temperature (C) Fig 11. Maximum Drain Current vs. Case Temperature 4 0.6 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 8000 0.4 VSD, Source-to-Drain Voltage (V) 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 0.40 EAS, Single Pulse Avalanche Energy (mJ) () RDS (on), Drain-to -Source On Resistance IRFP4332PbF ID = 35A 0.30 0.20 0.10 TJ = 125C TJ = 25C 1000 I D 8.3A 13A BOTTOM 35A TOP 800 600 400 200 0.00 0 5 6 7 8 9 10 25 VGS, Gate-to-Source Voltage (V) 75 100 125 150 175 Starting TJ , Junction Temperature (C) Fig 13. On-Resistance Vs. Gate Voltage Fig 14. Maximum Avalanche Energy Vs. Temperature 180 5.0 ton= 1s Duty cycle = 0.25 Half Sine Wave Square Pulse 160 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 50 4.0 ID = 250A 3.0 2.0 140 120 100 80 60 40 20 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 50 75 TJ , Temperature ( C ) 100 125 150 175 Case Temperature (C) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature Thermal Response ( ZthJC ) 1 D = 0.50 0.1 0.20 0.10 J 0.05 0.01 0.02 0.01 R1 R1 J 1 R2 R2 R3 R3 Ri (C/W) C 2 1 Ci= i/Ri Ci= i/Ri 2 3 3 (sec) 0.069565 0.000074 0.172464 0.001546 0.178261 0.019117 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP4332PbF Driver Gate Drive D.U.T + - - * RG * * * * *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + V DD ** + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET(R) Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01 tp I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. Id Vds 50K 12V Vgs .2F .3F D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Fig 20a. Gate Charge Test Circuit 6 Qgs1 Qgs2 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFP4332PbF A RG PULSE A C DRIVER L VCC B RG PULSE B Ipulse DUT tST Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFP4332PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com IRFP4332PbF TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/