5SDD 41H4000 5SDD 41H4000 Old part no. DV 889-4100-40 Rectifier Diode Properties Industry standard housing Suitable for parallel operation High operating temperature Low forward voltage drop Key Parameters = 4 000 V RRM = 4 136 I FAVm = 46 000 I FSM = 0.905 V TO = 0.109 rT V A A V m Types VRRM 5SDD 41H4000 5SDD 41H3800 4 000 V 3 800 V Conditions: Tj = -40 / 160 C, half sine waveform, f = 50 Hz Mechanical Data Fm Mounting force 50 5 kN m Weight 0.9 kg DS Surface creepage distance 40 mm Da Air strike distance 20 mm Fig. 1 Case ABB s.r.o. Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic tel.: +420 261 306 250, http://www.abb.com/semiconductors TS - DV/156/05 Jul-10 1 of 7 5SDD 41H4000 Maximum Ratings VRRM Maximum Limits Unit 4 000 3 800 V 4 136 A 6 497 A 100 mA 5SDD 41H4000 5SDD 41H3800 Repetitive peak reverse voltage Tj = -40 / 160 C IFAVm Average forward current Tc = 85 C IFRMS RMS forward current Tc = 85 C IRRM Repetitive reverse current VR = VRRM IFSM 2 It Non repetitive peak surge current tp = 8.3 ms 49 000 A VR = 0 V, half sine pulse tp = 10 ms 46 000 A Limiting load integral tp = 8.3 ms 10 020 000 A2s VR = 0 V, half sine pulse tp = 10 ms 10 580 000 A2s Tjmin -Tjmax Operating temperature range -40 / 160 C TSTG Storage temperature range -40 / 160 C Value Unit Unless otherwise specified Tj = 160 C Characteristics min typ max VT0 Threshold voltage 0.905 V rT Forward slope resistance 0.109 m 1.310 V IF1 = 6 283 A, IF2 = 18 850 A VFM Maximum forward voltage IFM = 4 000 A Qrr Recovered charge IrrM Reverse recovery maximum current trr Reverse recovery time VR = 100 V, IFM = 2000 A, diF/dt = -30 A/s 4 600 C 340 A 26 s Unless otherwise specified Tj = 160 C ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 2 of 7 5SDD 41H4000 Thermal Parameters Rthjc Rthch Thermal resistance junction to case Thermal resistance case to heatsink Value Unit double side cooling 8.0 K/kW anode side cooling 14.5 cathode side cooling 18.0 double side cooling 2.5 single side cooling 5.0 K/kW Transient Thermal Impedance i 1 2 3 4 i ( s ) 0.4406 0.1045 0.0092 0.0022 Ri( K/kW ) 4.533 2.255 0.868 0.345 Analytical function for transient thermal impedance 4 Z thjc = Ri (1 - exp( -t / i )) 9 Conditions: Fm = 50 5 kN, Double side cooled Correction for periodic waveforms 180 sine: 1.0 K/kW 120 sine: 1.5 K/kW 60 sine: 2.5 K/kW 180 rectangular: 0.9 K/kW 120 rectangular: 1.5 K/kW 60 rectangular: 2.5 K/kW Transient therm al im pedance junction to case Zthjc ( K/kW ) i =1 8 7 6 5 4 3 2 1 0 0,001 0,01 0,1 1 10 Square w ave pulse duration t d ( s ) Fig. 2 Dependence transient thermal impedance junction to case on square pulse ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 3 of 7 5SDD 41H4000 IF ( A ) 20000 160 C T j = 25 C 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 0 1 2 3 VF (V) 4 20 i2dt 80 IFSM ( kA ) 100 i 2dt (106 A2s) IFSM ( kA ) Fig. 3 Maximum forward voltage drop characteristics 50 40 15 30 60 VR = 0 V 10 20 40 5 V R 0.5 V RRM 10 I FSM 20 1 10 t ( ms ) 0 100 Fig. 4 Surge forward current vs. pulse length, half sine wave, single pulse, VR = 0 V, Tj = Tjmax 0 1 10 100 Number n of cycles at 50 Hz Fig. 5 Surge forward current vs. number of pulses, half sine wave, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 4 of 7 5SDD 41H4000 10000 = 60 120 180 9000 8000 PT ( W ) PT ( W ) 10000 = 30 270 DC 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 1000 2000 3000 0 4000 5000 I FAV ( A ) Fig. 6 Forward power loss vs. average forward current, sine waveform, f = 50 Hz, T = 1/f 3000 4000 5000 160 140 120 120 DC 2000 Fig. 7 Forward power loss vs. average forward current, square waveform, f = 50 Hz, T = 1/f 140 100 1000 I FAV ( A ) TC ( C ) TC ( C ) 160 180 8000 DC 0 60 90 120 9000 100 DC 270 80 80 = 60 60 0 1000 2000 120 = 30 180 60 3000 4000 5000 0 1000 60 2000 90 3000 180 4000 5000 I FAV ( A ) I FAV ( A ) Fig. 8 Max. case temperature vs. aver. forward current, sine waveform, f = 50 Hz, T = 1/f 120 Fig. 9 Max.case temperature vs. aver. forward current, square waveform, f = 50 Hz, T = 1/f ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 5 of 7 5SDD 41H4000 Fig. 10 Q rr (C) 7000 maxim um 6000 average Recovered charge Qrr vs. rate of fall forward current diF/dt, trapezoid pulse, IFM = 2 000 A, VR = 100 V, Tj = Tjmax m inimum 5000 4000 3000 2000 0 20 40 60 - di F /dt (A/s) 500 trr (s) IrrM (A) 40 400 30 maxim um 300 average m ax. 20 m inim um 200 avg. m inim um 100 10 0 20 40 60 - di F /dt (A/s) Fig. 11 Reverse recovery maximum current IrrM vs. rate of fall forward current diF/dt, trapezoid pulse, IFM = 2 000 A, VR = 100 V, Tj = Tjmax 0 20 40 60 - di F /dt (A/s) Fig. 12 Reverse recovery time trr vs. rate of fall forward current diF/dt, trapezoid pulse, IFM = 2 000 A, VR = 100 V, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 6 of 7 5SDD 41H4000 I FM v F (t), iF (t) i F (t) - di F /dt t rr ts tf v F (t) 5 I rrM Q rr 0.25 I rrM 0.9 I rrM VR V rrM -1000 t -1000 Fig. 13 Typical waveforms and definition of symbols at reverse recovery of a diode Notes: ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - DV/156/05 Jul-10 7 of 7