ON Semiconductor PNP 2N6035 Plastic Darlington Complementary Silicon Power Transistors 2N6036* NPN 2N6038 . . . designed for general-purpose amplifier and low-speed switching applications. 2N6039 * * High DC Current Gain -- hFE = 2000 (Typ) @ IC = 2.0 Adc * Collector-Emitter Sustaining Voltage -- @ 100 mAdc * * * *ON Semiconductor Preferred Device VCEO(sus) = 60 Vdc (Min) -- 2N6035, 2N6038 = 80 Vdc (Min) -- 2N6036, 2N6039 Forward Biased Second Breakdown Current Capability IS/b = 1.5 Adc @ 25 Vdc Monolithic Construction with Built-In Base-Emitter Resistors to LimitELeakage Multiplication Space-Saving High Performance-to-Cost Ratio TO-225AA Plastic Package DARLINGTON 4-AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60, 80 VOLTS 40 WATTS IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII IIIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII IIIII IIII IIII III IIIIIIIIIII IIIII IIII IIII III IIIIIIIIIII IIIII IIIIIII III IIII IIII IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII IIIII IIIIIII III IIIIIIIIIIII IIIII IIIIII III IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIII IIIII IIIIII III IIIIIIIIIIII IIIII IIIIII III IIIIIIIIIIII IIIII IIIIII III MAXIMUM RATINGS (1) Rating Collector-Emitter Voltage Collector-Base Voltage Emitter-Base Voltage Collector Current -- Continuous Peak Base Current Total Power Dissipation @ TC = 25C Derate above 25C Total Power Dissipation @ TA = 25C Derate above 25C Operating and Storage Junction Temperature Range Symbol VCEO VCB 2N6035 2N6038 2N6036 2N6039 Unit 60 80 Vdc 60 80 Vdc VEB IC 5.0 Vdc 4.0 8.0 Adc IB PD 100 mAdc 40 0.32 Watts W/C PD 1.5 0.012 Watts TJ, Tstg -65 to +150 C 3 2 1 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. BASE CASE 77-09 TO-225AA TYPE THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient Symbol Max Unit JC JA 3.12 C/W 83.3 C/W (1) Indicates JEDEC Registered Data. Preferred devices are ON Semiconductor recommended choices for future use and best overall value. Semiconductor Components Industries, LLC, 2002 April, 2002 - Rev. 10 1 Publication Order Number: 2N6035/D 2N6035 2N6036 2N6038 2N6039 PD, POWER DISSIPATION (WATTS) TA TC 4.0 40 3.0 30 TC 2.0 20 1.0 10 0 0 TA 0 20 40 60 80 100 T, TEMPERATURE (C) 120 Figure 1. Power Derating http://onsemi.com 2 140 160 2N6035 2N6036 2N6038 2N6039 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III IIIIIIIIIIIIIIIIIIIIII IIIII III IIII III ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted) Characteristic Symbol Min Max Unit 60 80 -- -- -- -- 100 100 -- -- -- -- 100 100 500 500 -- -- 0.5 0.5 -- 2.0 500 750 100 -- 15,000 -- -- -- 2.0 3.0 OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (IC = 100 mAdc, IB = 0) VCEO(sus) 2N6035, 2N6038 2N6036, 2N6039 Collector-Cutoff Current (VCE = 60 Vdc, IB = 0) (VCE = 80 Vdc, IB = 0) 2N6035, 2N6038 2N6036, 2N6039 Collector-Cutoff Current (VCE = 60 Vdc, VBE(off) = 1.5 Vdc) (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) (VCE = 60 Vdc, VBE(off) = 1.5 Vdc, TC = 125C) (VCE = 80 Vdc, VBE(off) = 1.5 Vdc, TC = 125C) 2N6035, 2N6038 2N6036, 2N6039 2N6035, 2N6038 2N6036, 2N6039 Collector-Cutoff Current (VCB = 60 Vdc, IE = 0) (VCB = 80 Vdc, IE = 0) 2N6035, 2N6038 2N6036, 2N6039 Vdc A ICEO A ICEX ICBO Emitter-Cutoff Current (VBE = 5.0 Vdc, IC = 0) IEBO mAdc mAdc ON CHARACTERISTICS DC Current Gain (IC = 0.5 Adc, VCE = 3.0 Vdc) (IC = 2.0 Adc, VCE = 3.0 Vdc) (IC = 4.0 Adc, VCE = 3.0 Vdc) hFE -- Collector-Emitter Saturation Voltage (IC = 2.0 Adc, IB = 8.0 mAdc) (IC = 4.0 Adc, IB = 40 mAdc) VCE(sat) Vdc Base-Emitter Saturation Voltage (IC = 4.0 Adc, IB = 40 mAdc) VBE(sat) -- 4.0 Vdc Base-Emitter On Voltage (IC = 2.0 Adc, VCE = 3.0 Vdc) VBE(on) -- 2.8 Vdc Small-Signal Current-Gain (IC = 0.75 Adc, VCE = 10 Vdc, f = 1.0 MHz) |hfe| 25 -- -- Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) Cob -- -- 200 100 DYNAMIC CHARACTERISTICS 2N6035, 2N6036 2N6038, 2N6039 pF *Indicates JEDEC Registered Data. 4.0 V V2 approx +8.0 V RB 51 0 V1 approx -12 V D1 8.0 k 60 +4.0 V 25 s tr, tf 10 ns DUTY CYCLE = 1.0% ts tf 1.0 0.8 tr 0.6 0.4 for td and tr, D1 is disconnected and V2 = 0, RB and RC are varied to obtain desired test currents. 0.2 0.04 0.06 For NPN test circuit, reverse diode, polarities and input pulses. VCC = 30 V IB1 = IB2 IC/IB = 250 TJ = 25C 2.0 t, TIME (s) CC RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS -30 V D1 MUST BE FAST RECOVERY TYPE, eg: 1N5825 USED ABOVE IB 100 mA RC SCOPE MSD6100 USED BELOW IB 100 mA TUT Figure 2. Switching Times Test Circuit PNP NPN 0.1 td @ VBE(off) = 0 0.2 0.4 0.6 1.0 IC, COLLECTOR CURRENT (AMP) Figure 3. Switching Times http://onsemi.com 3 2.0 4.0 r(t), TRANSIENT THERMAL RESISTANCE, NORMALIZED 2N6035 2N6036 2N6038 2N6039 1.0 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 0.1 0.07 0.05 0.03 0.02 P(pk) JC(t) = r(t) JC JC = 3.12C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN t1 READ TIME AT t1 t2 TJ(pk) - TC = P(pk) JC(t) DUTY CYCLE, D = t1/t2 0.05 0.02 SINGLE PULSE 0.01 0.01 0.02 0.03 0.01 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 t, TIME (ms) 10 Figure 4. Thermal Response http://onsemi.com 4 20 30 50 100 200 300 500 1000 2N6035 2N6036 2N6038 2N6039 ACTIVE-REGION SAFE-OPERATING AREA IC, COLLECTOR CURRENT (AMP) 5.0ms 3.0 2.0 1.0ms TJ = 150C BONDING WIRE LIMITED THERMALLY LIMITED @ TC = 25C (SINGLE PULSE) SECOND BREAKDOWN LIMITED 0.3 0.2 7.0 dc 0.3 0.2 70 20 10 30 50 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 0.1 5.0 100 1.0ms TJ = 150C BONDING WIRE LIMITED THERMALLY LIMITED @ TC = 25C (SINGLE PULSE) SECOND BREAKDOWN LIMITED 1.0 0.7 0.5 2N6036 2N6035 100 s 5.0ms 3.0 2.0 dc 1.0 0.7 0.5 0.1 5.0 1.0 7.0 5.0 100 s IC, COLLECTOR CURRENT (AMP) 1.0 7.0 5.0 2N6039 2N6038 7.0 10 30 50 70 20 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 5. 2N6035, 2N6036 100 Figure 6. 2N6038, 2N6039 200 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 5 and 6 is based on T J(pk) = 150C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) < 150C. TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. TC = 25C C, CAPACITANCE (pF) 100 70 50 Cob 30 Cib 20 10 0.04 0.06 0.1 PNP NPN 0.2 0.4 0.6 1.0 2.0 4.0 6.0 10 VR, REVERSE VOLTAGE (VOLTS) Figure 7. Capacitance http://onsemi.com 5 20 40 2N6035 2N6036 2N6038 2N6039 PNP 2N6035, 2N6036 NPN 2N6038, 2N6039 6.0 k 6.0 k 4.0 k 3.0 k 25C 2.0 k -55C 1.0 k 800 600 400 300 0.04 0.06 0.1 0.2 1.0 0.4 0.6 IC, COLLECTOR CURRENT (AMP) 3.0 k 25C 2.0 k -55C 1.0 k 800 600 400 300 0.04 0.06 4.0 2.0 VCE = 3.0 V TJ = 125C 4.0 k hFE , DC CURRENT GAIN hFE , DC CURRENT GAIN VCE = 3.0 V TC = 125C 0.1 0.2 1.0 0.4 0.6 IC, COLLECTOR CURRENT (AMP) 2.0 4.0 3.4 TJ = 25C 3.0 2.6 VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 8. DC Current Gain IC = 0.5 A 1.0 A 2.2 2.0 A 4.0 A 1.8 1.4 1.0 0.6 0.1 0.2 0.5 1.0 2.0 5.0 10 IB, BASE CURRENT (mA) 20 100 50 3.4 3.0 2.6 IC = 0.5 A TJ = 25C 1.0 A 4.0 A 2.0 A 2.2 1.8 1.4 1.0 0.6 0.1 0.2 0.5 1.0 2.0 10 5.0 IB, BASE CURRENT (mA) 20 50 100 Figure 9. Collector Saturation Region 2.2 2.2 TJ = 25C TJ = 25C 1.4 1.8 VBE(sat) @ IC/IB = 250 V, VOLTAGE (VOLTS) V, VOLTAGE (VOLTS) 1.8 VBE @ VCE = 3.0 V 1.0 VCE(sat) @ IC/IB = 250 0.6 0.2 0.04 0.06 1.4 VBE(sat) @ IC/IB = 250 VBE @ VCE = 3.0 V 1.0 VCE(sat) @ IC/IB = 250 0.6 0.1 0.2 0.4 0.6 1.0 0.2 0.04 0.06 2.0 4.0 0.1 0.2 0.4 0.6 1.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 10. "On" Voltages http://onsemi.com 6 2.0 4.0 2N6035 2N6036 2N6038 2N6039 PACKAGE DIMENSIONS TO-225AA CASE 77-09 ISSUE W -B- U F Q -A- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. C M 1 2 3 H K J V G S R 0.25 (0.010) A M M B M D 2 PL 0.25 (0.010) M A M B M STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. BASE http://onsemi.com 7 DIM A B C D F G H J K M Q R S U V INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.130 0.094 BSC 0.050 0.095 0.015 0.025 0.575 0.655 5 TYP 0.148 0.158 0.045 0.065 0.025 0.035 0.145 0.155 0.040 --- MILLIMETERS MIN MAX 10.80 11.04 7.50 7.74 2.42 2.66 0.51 0.66 2.93 3.30 2.39 BSC 1.27 2.41 0.39 0.63 14.61 16.63 5 TYP 3.76 4.01 1.15 1.65 0.64 0.88 3.69 3.93 1.02 --- 2N6035 2N6036 2N6038 2N6039 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800-282-9855 Toll Free USA/Canada http://onsemi.com 8 2N6035/D