WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 1 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
256Kx32 SSRAM/4Mx32 SDRAM – External Memory
Solution for Texas Instruments TMS320C6000 DSP
FEATURES
Clock speeds:
SSRAM: 200, 166,150, and 133 MHz
SDRAMs: 125 and 100 MHz
DSP Memory Solution
• Texas Instruments TMS320C6201
• Texas Instruments TMS320C6701
Packaging:
153 pin BGA, JEDEC MO-163
3.3V Operating supply voltage
Direct control interface to both the SSRAM and SDRAM
ports on the “C6x”
Common address and databus
65% space savings vs. monolithic solution
Reduced system inductance and capacitance
DESCRIPTION
The WED9LC6816V is a 3.3V, 256K x 32 Synchronous Pipe line
SRAM and a 4Mx32 Synchronous DRAM array con struct ed with
one 256K x 32 SBSRAM and two 4Mx16 SDRAM die mounted on
a multilayer laminate sub strate. The device is packaged in a 153
lead, 14mm x 22mm, BGA.
The WED9LC6816V provides a total memory solution for the
Texas Instruments TMS320C6201 and the TMS320C6701 DSPs
The Synchronous Pipeline SRAM is available with clock speeds
of 200, 166,150 and 133 MHz, allowing the user to de vel op a fast
external memory for the SSRAM interface port .
The SDRAM is available in clock speeds of 125 and 100 MHz,
allowing the user to develop a fast external memory for the SDRAM
interface port.
The WED9LC6816V is available in both commercial and in dus tri al
temperature ranges.
This product is subject to change without notice.
TOP VIEW
123456789
ADQ19 DQ23 VCC VSS VSS VSS VCC DQ24 DQ28
BDQ18 DQ22 VCC VSS SDCE# VSS VCC DQ25 DQ29
CVCCQ VCCQ VCC SDWE# SDA10 NC VCC VCCQ VCCQ
DDQ17 DQ21 VCC VSS VSS VSS VCC DQ26 DQ30
EDQ16 DQ20 VCC VSS SDCK VSS VCC DQ27 DQ31
FVCCQ VCCQ VCC VSS VSS VSS VCC VCCQ VCCQ
GNC NC NC SDRAS# SDCAS# VSS A2 A4 A5
HNC NC A8 VSS VSS NC A1 A3 A10
JA6 A7 A9 VSS VSS NC A0 A11 A12
KA17 NC/A18 NC/A19 VSS VSS NC NC A13 A14
LNC NC NC BWE2# BWE3# NC NC A15 A16
MVCCQ VCCQ VCC BWE0# BWE1# NC VCC VCCQ VCCQ
NDQ12 DQ11 VCC VSS VSS VSS VCC DQ4 DQ0
PDQ13 DQ10 VCC VSS SSCK VSS VCC DQ5 DQ1
RVCCQ VCCQ VCC VSS VSS VSS VCC VCCQ VCCQ
TDQ14 DQ9 VCC SSADC# SSWE# NC VCC DQ6 DQ2
UDQ15 DQ8 VCC SSOE# SSCE# NC VCC DQ7 DQ3
PIN DESCRIPTION
A0-17 Address Bus
DQ0-31 Data Bus
SSCK SSRAM Clock
SSADC# SSRAM Address Status Control
SSWE# SSRAM Write Enable
SSOE# SSRAM Output Enable
SDCK SDRAM Clock
SDRAS# SDRAM Row Address Strobe
SDCAS# SDRAM Column Address Strobe
SDWE# SDRAM Write Enable
SDA10 SDRAM Address 10/auto precharge
BWE0-3# SSRAM Byte Write Enables SDRAM
SDQM 0-3
SSCE# Chip Enable SSRAM Device
SDCE# Chip Enable SDRAM Device
VCC Power Supply pins
VCCQ Data Bus Power Supply pins,
VSS Ground
NC No Contact
Figure 1 – PIN CONFIGURATION
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 2 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 2 – BLOCK DIAGRAM
A
0-17
DQ
8-15
DQ
0-7
DQ
8-15
DQ
0-7
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
BWE#
BW
1
#
BW
2
#
BW
3
#
BW
4
#
CE
2
#
OE#
ADSC#
CK#
DQ
0-31
A
0
A
1
DQ
24-31
DQ
16-23
DQ
25-32
DQ
17-24
DQ
9-16
DQ
1-8
DQ
8-15
DQ
0-7
A
0
A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
11
A
10
/AP
BA
0
BA
1
LDQM#
UDQM#
CS#
RAS#
CAS#
WE#
CK#
A
0
A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
11
A
10
/AP
BA
0
BA
1
LDQM#
UDQM#
CS#
RAS#
CAS#
WE#
CK#
A
12
A
13
A
12
A
13
DQ
8-15
DQ
0-7
DQ
24-31
DQ
16-23
SSWE#
BWE
0
#
BWE
1
#
BWE
2
#
BWE
3
#
SSCE#
SSOE#
SSADC#
SSCK#
SDA
10
SDCE#
SDRAS#
SDCAS#
SDWE#
SDCK#
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 3 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
OUTPUT FUNCTIONAL DESCRIPTIONS
Symbol Type Signal Polarity Function
SSCK Input Pulse Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.
SSADC#
SSOE#
SSWE#
Input Pulse Active Low When sampled at the positive rising edge of the clock, SSADC#, SSOE#, and SSWE# de ne the operation
to be executed by the SSRAM.
SSCE# Input Pulse Active Low SSCE# disable or enable SSRAM device operation.
SDCK Input Pulse Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.
SDCE# Input Pulse Active Low SDCE# disable or enable device operation by masking or enabling all inputs except SDCK and BWE0
SDRAS#
SDCAS#
SDWE#
Input Pulse Active Low When sampled at the positive rising edge of the clock, SDCAS#, SDRAS#, and SDWE# de ne
the operation to be executed by the SDRAM.
A0-17,
SDA10 Input Level
Address bus for SSRAM and SDRAM
A0 and A1 are the burst address inputs for the SSRAM
During a Bank Active command cycle, A0-11, SDA10 de nes the row address (RA0-10) when sampled at the
rising clock edge.
During a Read or Write command cycle, A0-7 de nes the column address (CA0-7) when sampled at the
rising clock edge. In addition to the row address, SDA10 is used to invoke autoprecharge operation at the
end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and A12 and A13 de ne
the bank to be precharged. If SDA10 is low, autoprecharge is disabled.
During a Precharge command cycle, SDA10 is used in conjunction with A12 and A13 to control which
bank(s) to precharge. If SDA10 is high, all banks will be precharged regardless of the state of A12 and A13.
If SDA10 is low, then A12 and A13 are used to de ne which bank to precharge.
DQ0-31 Input
Output Level Data Input/Output are multiplexed on the same pins.
BWE0-3# Input Pulse BWE0-3# perform the byte write enable function for the SSRAM and DQM function for the SDRAM. BWE0#
is associated with DQ0-7, BWE1# with DQ8-15, BWE2# with DQ16-23 and BWE3# with DQ24-31.
VCC, VSS Supply Power and ground for the input buffers and the core logic.
VCCQ Supply Data power supply pins, VCC and VCCQ are internally tied together
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 4 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
ABSOLUTE MAXIMUM RATINGS
Voltage on VCC Relative to VSS -0.5V to +4.6V
VIN (DQx) -0.5V to VCC +0.5V
Storage Temperature (BGA) -55°C to +125°C
Junction Temperature +150°C
Short Circuit Output Current 100 mA
*Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage
to the device. This is a stress rating only and functional operation of the device at these or any other
conditions greater than those indicated in operational sections of this speci cations is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)
Parameter Symbol Min Max Units
Supply Voltage (1) VCC 3.135 3.6 V
Input High Voltage (1,2) VIH 2.0 VCC +0.3 V
Input Low Voltage (1,2) VIL -0.3 0.8 V
Input Leakage Current 0 VIN VCC ILI -10 10 μA
Output Leakage (Output Disabled) 0
VIN VCC
ILO -10 10 μA
SSRAM Output High (IOH = -4mA) (1) VOH 2.4 V
SSRAM Output Low (IOL = 8mA) (1) VOL 0.4 V
SDRAM Output High (IOH = -2mA) VOH 2.4 V
SDRAM Output Low (IOL = 2mA) VOL 0.4 V
NOTES:
1. All voltages referenced to VSS (GND).
2. Overshoot: VIH +6.0V for t tKC/2
Underershoot: VIL -2.0V for t tKC/2
DC ELECTRICAL CHARACTERISTICS
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)
Description Conditions Symbol Frequency Typ Max Units
Power Supply Current Operating
(1,2,3)
SSRAM Active / DRAM Auto Refresh ICC1 133MHz 500 625 mA
150MHz 500 650
166MHz 550 700
200MHz 600 800
Power Supply Current Operating
(1,2,3)
SSRAM Active / DRAM Idle ICC2 133MHz 325 425 mA
150MHz 350 450
166MHz 400 495
200MHz 450 585
Power Supply Current Operating
(1,2,3)
SSRAM Active / SSRAM Idle ICC3 83MHz 500 625 mA
100MHz 500 650
125MHz 550 700
CMOS Standby SSCE# and SDCE# VCC -0.2V, All other inputs at VSS +0.2
VIN or VIN VCC -0.2V, CK frequency = 0
ISB1 20.0 40.0 mA
TTL Standby SSCE# and SDCE# VIH min All other inputs at VIL max VIN
or VIN VCC -0.2V, CK frequency = 0
ISB2 30.0 55.0 mA
Auto Refresh ICC5 250 300 mA
NOTES:
1. ICC (operating) is speci ed with no output current. ICC (operating) increases with faster cycle times and greater output loading.
2. "Device idle" means device is deselected (CE = VIH) Clock is running at max frequency and Addresses are switching each cycle.
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is speci ed at speci ed frequency.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 5 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
SSRAM AC CHARACTERISTICS
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)
Parameter Symbol
200MHz 166MHz 150MHz 133MHz
UnitsMin Max Min Max Min Max Min Max
Clock Cycle Time tKHKH 5678ns
Clock HIGH Time tKLKH 1.6 2.4 2.6 2.8 ns
Clock LOW Time tKHKL 1.6 2.4 2.6 2.8 ns
Clock to output valid tKHQV 2.5 3.5 3.8 4.0 ns
Clock to output invalid tKHQX 1.5 1.5 1.5 1.5 ns
Clock to output on Low-Z tKQLZ 0000ns
Clock to output in High-Z tKQHZ 1.5 3 1.5 3.5 1.5 3.8 1.5 4.0 ns
Output Enable to output valid tOELQV 2.5 3.5 3.8 4.0 ns
Output Enable to output in Low-Z tOELZ 0000ns
Output Enable to output in High-Z tOEHZ 3.0 3.5 3.5 3.8 ns
Address, Control, Data-in Setup Time to Clock tS1.5 1.5 1.5 1.5 ns
Address, Control, Data-in Hold Time to Clock tH0.5 0.5 0.5 0.5 ns
SSRAM OPERATION TRUTH TABLE
Operation Address Used SSCE# SSADC# SSWE# SSOE# DQ
Deselected Cycle, Power Down None H L X X High-Z
WRITE Cycle, Begin Burst External L L L X D
READ Cycle, Begin Burst External L L H L Q
READ Cycle, Begin Burst External L L H H High-Z
READ Cycle, Suspend Burst Current X H H L Q
READ Cycle, Suspend Burst Current X H H H High-Z
READ Cycle, Suspend Burst Current H H H L Q
READ Cycle, Suspend Burst Current HHHHHigh-Z
WRITE Cycle, Suspend Burst Current X H L X D
WRITE Cycle, Suspend Burst Current H H L X D
NOTE:
1. X means “don’t care”, H means logic HIGH. L means logic LOW.
2. All inputs except SSOE# must meet setup and hold times around the rising edge (LOW to HIGH) of SSCK.
3. Suspending burst generates wait cycle
4. For a write operation following a read operation, SSOE# must be HIGH before the input data required setup time plus High-Z time for SSOE# and staying HIGH through out the input data hold time.
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
BGA CAPACITANCE
Description Conditions Symbol Max Units
Address Input Capacitance (1) tA = 25°C; f = 1MHz CI 8 pF
Input/Output Capacitance (DQ) (1) tA = 25°C; f = 1MHz CO 10 pF
Control Input Capacitance (1) tA = 25°C; f = 1MHz CA 8 pF
Clock Input Capacitance (1) tA = 25°C; f = 1MHz CCK 6 pF
NOTE:
1. This parameter is sampled.
SSRAM PARTIAL TRUTH TABLE
Function SSWE# BWE0# BWE1# BWE2# BWE3#
READ H XXXX
WRITE one Byte (DQ0-7) L L H H H
WRITE all Bytes LLLLL
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 6 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 3 – SSRAM READ TIMING
SSCK
SSWE#
tKHKL tKLKH
tKHKH
SSCE#
SSADC#
tS
tS
tS
tH
tH
DQ
tKHQX
tKQLZ
Q(A1)Q(A2)Q(A3) Q(A4)
tKHQV
Q(A5)
A5
ADDR tH
A1 A2 A3 A4
SSOE#
tOELQV tOEHZ
Figure 4 – SSRAM WRITE TIMING
tKHKL tKLKH
tKHKH
tKHGWX
t
Must be HIGH
tH
tS
D(A1) D(A2) D(A3) D(A4) D(A5)
tStH
tH
tH
tS
tHtOEHZ
A1 A2 A3 A4 A5
SH
SSCK
SSWE#
SSCE#
SSADC#
DQ
ADDR
SSOE#
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 7 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
SDRAM AC CHARACTERISTICS
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)
Parameter Symbol 125MHz 100MHz 83MHz Units
Min Max Min Max Min Max
Clock Cycle Time (1) CL = 3 tCC 8 1000 10 1000 12 1000 ns
CL = 2 tCC 10 1000 12 1000 15 1000 ns
Clock to valid Output delay (1,2) tSAC 678ns
Output Data Hold Time (2) tOH 333ns
Clock HIGH Pulse Width (3) tCH 333ns
Clock LOW Pulse Width (3) tCL 333ns
Input Setup Time (3) tSS 222ns
Input Hold Time (3) tSH 111ns
CK to Output Low-Z (2) tSLZ 222ns
CK to Output High-Z tSHZ 778ns
Row Active to Row Active Delay (4) tRRD 20 20 24 ns
RAS\ to CAS\ Delay (4) tRCD 20 20 24 ns
Row Precharge Time (4) tRP 20 20 24 ns
Row Active Time (4) tRAS 50 10,000 50 10,000 60 10,000 ns
Row Cycle Time - Operation (4) tRC 70 80 90 ns
Row Cycle Time - Auto Refresh (4,8) tRFC 70 80 90 ns
Last Data in to New Column Address Delay (5) tCDL 111CK
Last Data in to Row Precharge (5) tRDL 111CK
Last Data in to Burst Stop (5) tBDL 111CK
Column Address to Column Address Delay (6) tCCD 1.5 1.5 1.5 CK
Number of Valid Output Data (7) 2 2 2 ea
121
NOTES:
1. Parameters depend on programmed CAS# latency.
2. If clock rise time is longer than 1ns (tRISE/2 -0.5)ns should be added to the parameter.
3. Assumed input rise and fall time = 1ns. If trise of tfall are longer than 1ns. [(tRISE = tFALL)/2] - 1ns should be added to the parameter.
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the next higher integer.
5. Minimum delay is required to complete write.
6. All devices allow every cycle column address changes.
7. In case of row precharge interrupt, auto precharge and read burst stop.
8. A new command may be given tRFC after self-refresh exit.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 8 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
CLOCK FREQUENCY AND LATENCY PARAMETERS – 125MHz SDRAM (Unit = number of clock)
Frequency CAS
Latency tRC
70ns tRAS
50ns tRP
20ns tRRD
20ns tRCD
20ns tCCD
10ns tCDL
10ns tRDL
10ns
125MHz (8.0ns) 3 9 6323111
100MHz (10.0ns) 3 7 5222111
83MHz (12.0ns) 2 6 4222111
CLOCK FREQUENCY AND LATENCY PARAMETERS – 100MHz SDRAM (Unit = number of clock)
Frequency CAS
Latency tRC
70ns tRAS
50ns tRP
20ns tRRD
20ns tRCD
20ns tCCD
10ns tCDL
10ns tRDL
10ns
100MHz (10.0ns) 3 7 5222111
83MHz (12.0ns) 2 6 5222111
REFRESH CYCLE PARAMETERS
Parameter Symbol -10 -12 Units
Min Max Min Max
Refresh Period (1,2) tREF —64—64ms
NOTES:
1. 4096 cycles
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.
SDRAM COMMAND TRUTH TABLE
Function SDCE# SDRAS# SDCAS# SDWE# BWE# A12, A13 SDA10 A11-0 Notes
Mode Register Set L L L L X OP CODE
Auto Refresh (CBR) L L L H X X X
Precharge Single Bank L L H L X BA L 2
Precharge all Banks L L H L X X H
Bank Activate L L H H X BA Row Address 2
Write L H L L X BA L 2
Write with Auto Precharge L H L L X BA H 2
Read L H L L X BA L 2
Read with Auto Precharge L H L H X BA H 2
Burst Termination L H H L X X X 3
No Operation L H H H X X X
Device Deselect H X X X X X X
Data Write/Output Disable X X X X L X X 4
Data Mask/Output Disable X X X X H X X 4
NOTES:
1. All of the SDRAM operations are de ned by states of SDCE#, SDWE#, SDRAS#, SDCAS#, and BWE 0-3 at the positive rising edge of the clock.
2. Bank Select (BA), A12 (BA0) and A13 (BA1) select between different banks.
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.
4. The BWE# has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE# goes high at a clock timing the data outputs are disabled and become high impedance after a two
clock delay. BWE# also provides a data mask function for Write cycles. When it activates, the Write operation at the clock is prohibited (zero clock latency).
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 9 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
MODE REGISTER SET TABLE
M3 = 0
1
2
4
8
Reserved
Reserved
Reserved
Full Page
M3 = 1
1
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Standard Operation
All other states reserved
0
-
0
-
Defined
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
Reserved
2
3
Reserved
Reserved
Reserved
Reserved
Burst Length
M0
0
1
0
1
0
1
0
1
Burst LengthCAS Latency BT
A9A7A6A5A4A3
A8A2A1A0
Mode Register (Mx)
Address Bus
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
M3
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
M6-M0
M8 M7
Op Mode
A10
A11
Reserved*
WB
0
1
Write Burst Mode
Programmed Burst Length
Single Location Access
M9
*Should program
M11, M10 = "0, 0"
to ensure compatibility
with future devices.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 10 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
SDRAM CURRENT STATE TRUTH TABLE
Current
State Command Action Notes
SDCE# SDRAS# SDCAS# SDWE# A12 & A13
(BA) A11-A0 Description
Idle L L L L OP Code Mode Register Set Set the Mode Register 1
L L L H X X Auto or Self Refresh Start Auto 1
L L H L X X Precharge No Operation
L L H H BA Row Address Bank Activate Activate the speci ed bank and row
L H L L BA Column Write w/o Precharge ILLEGAL 2
L H L H BA Column Read w/o Precharge ILLEGAL 1
L H H L X X Burst Termination No Operation 1
L H H H X X No Operation No Operation
H X X X X X Device Deselect No Operation
Row Active L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge Precharge 3
L L H H BA Row Address Bank Activate ILLEGAL 1
L H L L BA Column Write Start Write; Determine if Auto Precharge 4,5
L H L H BA Column Read Start Read; Determine if Auto Precharge 4,5
L H H L X X Burst Termination No Operation
L H H H X X No Operation No Operation
H X X X X X Device Deselect No Operation
Read L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge Terminate Burst; Start the Precharge
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write Terminate Burst; Start the Write cycle 5,6
L H L H BA Column Read Terminate Burst; Start a new Read cycle 5,6
L H H L X X Burst Termination Terminate the Burst
L H H H X X No Operation Continue the Burst
H X X X X X Device Deselect Continue the Burst
Write L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge Terminate Burst; Start the Precharge
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write Terminate Burst; Start a new Write cycle 5,6
L H L H BA Column Read Terminate Burst; Start the Read cycle 5,6
L H H L X X Burst Termination Terminate the Burst
L H H H X X No Operation Continue the Burst
H X X X X X Device Deselect Continue the Burst
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 11 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
SDRAM CURRENT STATE TRUTH TABLE (cont'd)
Current
State Command Action Notes
SDCE# SDRAS# SDCAS# SDWE# A12 & A13
(BA) A11-A0 Description
Read with Auto
Precharge
L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge ILLEGAL 2
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write ILLEGAL
L H L H BA Column Read ILLEGAL
L H H L X X Burst Termination ILLEGAL
L H H H X X No Operation Continue the Burst
H X X X X X Device Deselect Continue the Burst
Write with Auto
Precharge
L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge ILLEGAL 2
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write ILLEGAL
L H L H BA Column Read ILLEGAL
L H H L X X Burst Termination ILLEGAL
L H H H X X No Operation Continue the Burst
H X X X X X Device Deselect Continue the Burst
Precharging L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge No Operation; Bank(s) idle after tRP
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write w/o Precharge ILLEGAL 2
L H L H BA Column Read w/o Precharge ILLEGAL 20
L H H L X X Burst Termination No Operation; Bank(s) idle after tRP
L H H H X X No Operation No Operation; Bank(s) idle after tRP
H X X X X X Device Deselect No Operation; Bank(s) idle after tRP
Row Activating L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge ILLEGAL 2
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write ILLEGAL 2
L H L H BA Column Read ILLEGAL 2
L H H L X X Burst Termination No Operation; Row active after tRCD
L H H H X X No Operation No Operation; Row active after tRCD
H X X X X X Device Deselect No Operation; Row active after tRCD
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 12 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
SDRAM Current State Truth Table (cont'd)
Current
State Command Action Notes
SDCE# SDRAS# SDCAS# SDWE# A12 & A13
(BA) A11-A0 Description
Write Recovering L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto orSelf Refresh ILLEGAL
L L H L X X Precharge ILLEGAL 2
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write Start Write; Determine if Auto Precharge 6
L H L H BA Column Read Start Read; Determine if Auto Precharge 6
L H H L X X Burst Termination No Operation; Row active after tDPL
L H H H X X No Operation No Operation; Row active after tDPL
H X X X X X Device Deselect No Operation; Row active after tDPL
Write Recovering
with Auto
Precharge
L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto orSelf Refresh ILLEGAL
L L H L X X Precharge ILLEGAL 2
L L H H BA Row Address Bank Activate ILLEGAL 2
L H L L BA Column Write ILLEGAL 2,6
L H L H BA Column Read ILLEGAL 2,6
L H H L X X Burst Termination No Operation; Precharge after tDPL
L H H H X X No Operation No Operation; Precharge after tDPL
H X X X X X Device Deselect No Operation; Precharge after tDPL
Refreshing L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge ILLEGAL
L L H H BA Row Address Bank Activate ILLEGAL
L H L L BA Column Write ILLEGAL
L H L H BA Column Read ILLEGAL
L H H L X X Burst Termination No Operation; Idle after tRC
L H H H X X No Operation No Operation; Idle after tRC
H X X X X X Device Deselect No Operation; Idle after tRC
Mode Register
Accessing
L L L L OP Code Mode Register Set ILLEGAL
L L L H X X Auto or Self Refresh ILLEGAL
L L H L X X Precharge ILLEGAL
L L H H BA Row Address Bank Activate ILLEGAL
L H L L BA Column Write ILLEGAL
L H L H BA Column Read ILLEGAL
L H H L X X Burst Termination ILLEGAL
L H H H X X No Operation No Operation; Idle after two clock cycles
H X X X X X Device Deselect No Operation; Idle after two clock cycles
NOTES:
1. Both Banks must be idle otherwise it is an illegal action.
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the Current State then the action may be legal
depending on the state of that bank.
3. The minimum and maximum Active time (tRAS) must be satis ed.
4. The RAS# to CAS# Delay (tRCD) must occur before the command is given.
5. Address SDA10 is used to determine if the Auto Precharge function is activated.
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.
The command is illegal if the minimum bank to bank delay time (tRRD) is not satis ed.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 13 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 5 – SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @ CAS LATENCY = 3,
BURST LENGTH = 1
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDCE#
SDRAS#
SDCAS#
ADDR
BA0, 1
[A12,A13]
SDA10
DQ
SDWE#
tCC tCH tCL
tRCD
tRAS
tSS tSH
tRCD
tSS tSH
tSS tSH
tSS tSH tSS tSH
tCCD
tRP
tRAC tSAC
tSLZ tOH
tSS
tSS
tSS
tSH
tSH
tSH
Ra Ca Cb Cc Rb
BS
BS
BS
BS
BSBS
Ra Rb
Qa Db Qc
Row Active Read Write ReadPrecharge Row Active DON’T CARE
BWE#
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 14 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 6 – SDRAM POWER UP SEQUENCE
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDCE#
SDRAS#
SDCAS#
ADDR
BA0,1
[A12,A13]
SDA10
DQ
SDWE#
BWE#
tRP
HIGH-Z
Precharge
(All Banks) Auto Refresh Auto Refresh Mode Register Set
DON’T CARE
Key RAa
High level is necessary
RAa
tRFC tRFC
Row Active
(A-Bank)
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 15 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 7 – SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDCE#
SDRAS#
SDWE#
ADDR Ra Ca0 Cb0
CL=2
CL=3
tRAC
Note 3
tRAC
Note 3
tSAC
tSAC
tSHZ Note 4
tSHZ Note 4
Qa0 Qa1 Qa2
BA0, 1
[A12,A13]
SDA10 Ra Rb
BWE#
Row Active
(A-Bank) Read
(A-Bank) Precharge
(A-Bank) Row Active
(A-Bank) Write
(A-Bank) Precharge
(A-Bank)
DON’T CARE
SDCAS#
Rb
DQ
tOH
tOH
Qa3 Db0 Db1 Db2 Db3
Qa0 Qa1 Qa2 Qa3 Db0 Db1 Db2 Db3
tRDL
tRDL
tRC
tRCD
Note 1
NOTES:
1. Minimum row cycle times are required to complete internal DRAM operation.
2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will be Hi-Z (tSHZ)
after the clock.
3. Access time from Row active command. tCC *(tRCD + CAS Latency - 1) + tSAC.
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 16 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 8 – SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDRAS#
SDWE#
BWE#
SDCAS#
ADDR Ra Ca0 Cb0 Cd0
Cc0
BA0, 1
[A12,A13]
SDA10 Ra
CL=2 Qa0 Qa1 Qb0 Qb1 Qb2 Dd0
Dc0 Dc1 Dd1
tRDL
CL=3
DQ
Qa0 Qa1 Qa2 Qa3 Dd0
Dc0 Dc1 Dd1
tCDL
Row Active
(A-Bank) Read
(A-Bank) Read
(A-Bank) Write
(A-Bank) Write
(A-Bank) Precharge
(A-Bank) DON’T CARE
tRCD
SDCE#
Note 2
Note 3
Note 1
NOTES:
1. To write data before burst read ends. BWE# should be asserted three cycle prior to write command to avoid bus contention.
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.
3. BWE# should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be
masked internally.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 17 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 9 – SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDWE#
SDCAS#
ADDR RAa RBbCAa CBb CAe
CBd
CAc
BA0, 1
[A12,A13]
SDA10 RAa RBb
CL=2 QAa1
QAa0 QAa2 QAa3 QBb0 QBb1 QBb2 QAc1
QBb3 QAc0 QBd0 QBd1 QAe0 QAe1
CL=3
DQ
QAa1
QAa0 QAa2 QAa3 QBb0 QBb1 QAc0QBb2 Qbb3 QAc1 QBd0 QBd1 QAe0 QAe1
Row Active
(A-Bank) Row Active
(B-Bank)
Read
(A-Bank)
Read
(B-Bank) Read
(A-Bank) Read
(B-Bank) Read
(A-Bank) Precharge
(A-Bank) DON’T CARE
SDCE#
SDRAS#
BWE#
Note 2
Note 1
NOTES:
1. SDCE# can be “don’t care” when SDRAS#, SDCAS# and SDWE# are high at the clock going high edge.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 18 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 10 – SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
Note 2
SDCE#
SDRAS#
SDCAS#
ADDR RAa CAa RBb CBb
CAc
CBb
BA0, 1
[A12,A13]
SDA10 RAa RBb
DQ DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DBd0
DAc0 DAc1 DBd1
tRDL
tCDL
SDWE#
BWE#
Row Active
(A-Bank) Row Active
(A-Bank)
Write
(A-Bank)
Write
(B-Bank) Write
(A-Bank) Write
(B-Bank) Precharge
(Both Banks)
DON’T CARE
Note 1
NOTES:
1. To interrupt burst write by Row precharge, BWE# should be asserted to mask invalid input data.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 19 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 11 – SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDRAS#
SDWE#
SDCAS#
ADDR RAa CAa RBb CBb RAc CAc
BA0, 1
[A12,A13]
CL=2 QAa1
QAa0 QAa2 QAa3 DBb2
DBb0 DBb1 DBb3
Note 1
QAc0 QAc1 QAc2
QAa0 QAa3
QAa1 QAa2 DBb2
DBb0 DBb1 DBb3 QAc0 QAc1
tCDL
CL=3
DQ
Row Active
(A-Bank) Read
(A-Bank)
Row Active
(A-Bank)
Precharge
(A-Bank) Write
(B-Bank)
Row Active
(A-Bank)
Read
(A-Bank) DON’T CARE
SDCE#
BWE#
SDA10 RAa RBb RAc
NOTES:
1. tCDL should be met to complete write.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 20 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 12 – SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH = 4
01234567 8 9 10 11 12 13 14 15 16 17 18 19
Qa1
Qa0 Qa2 Qa3 Db2
Db0 Db1 Db3
Qa0 Qa3
Qa1 Qa2 Db2
Db0 Db1 Db3
Ra Rb Ca Cb
Ra Rb
SDCLK
CL=2
CL=3
DQ
Row Active
(A-Bank)
Row Active
(B-Bank)
Read with
Auto Precharge
(A-Bank)
Auto Precharge
Start Point
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Auto Precharge
Start Point
(B-Bank)
DON’T CARE
SDCE#
SDRAS#
SDCAS#
ADDR
BA0, 1
[A12,A13]
SDWE#
SDA10
BWE#
NOTES:
1. tCDL should be controlled to meet minimum tRAS before internal precharge start.
(In the case of Burst Length = 1 & 2 and BRSW mode)
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 21 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 13 – SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST STOP @
BURST LENGTH = FULL PAGE
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDRAS#
SDCAS#
ADDR RAa CAa CAb
BA0, 1
[A12,A13]
SDA10 RAa
CL=2 QAa0 QAa1 QAa2 QAa3
Note 2 1
QAa4 QAb1
QAb0 QAb2 QAb3 QAb4 QAb5
CL=3
DQ
QAa0 QAa1 QAa2 QAa3 QAa4 QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
Row Active
(A-Bank) Read
(A-Bank) Burst Stop Read
(A-Bank) Precharge
(A-Bank) DON’T CARE
SDCE#
SDWE#
BWE#
1
2
2
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. About the valid DQs after burst stop, it is the same as the case of SDRAS# interrupt. Both cases are illustrated in the above timing diagram. See the label 1, 2 on
each of them. But at burst write, burst stop and SDRAS# interrupt should be compared carefully. Refer to the timing diagram of “Full page write burst stop cycle”.
3. Burst stop is valid at every burst length.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 22 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 14 – SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST STOP @
BURST LENGTH = FULL PAGE
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
Row Active
(A-Bank) Write
(A-Bank) Burst Stop Write
(A-Bank) Precharge
(A-Bank) DON’T CARE
SDCE#
SDWE#
SDRAS#
SDCAS#
ADDR RAa CAa CAb
BA0, 1
[A12,A13]
SDA10 RAa
DQ DAa2DAa1DAa0 DAa3 DAa4
tBDL
DAb3
DAb0 DAb1 DAb2 DAB4 DAb5
BWE#
tRDL
Note 2
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is de ned by AC parameter of tRDL. BWE# at write interrupt by
precharge command is needed to prevent invalid write.
BWE# should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row recharge cycle will be masked
internally.
3. Burst stop is valid at every burst length.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 23 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 15 – SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2
01234567 8 9 10 11 12 13 14 15 16 17 18 19
SDCK
SDCE#
SDRAS#
SDCAS#
ADDR RAa CAa RBbRBb CAb CAd
CBc
BA0, 1
[A12,A13]
CL=2 QAb0
DAa0
DAa0
QAb1 QAd0
DBc0 QAd1
QAa1 QAb1 DBc0 QAd1QAd0
CL=3
DQ
Row Active
(A-Bank) Row Active
(B-Bank)
Write
(A-Bank) Read with
Auto Precharge
(A-Bank)
Row Active
(A-Bank) Read
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Precharge
(Both Banks)
SDA10 RAa RBb
SDWE#
DON’T CARE
RAc
RAc
BWE#
NOTES:
1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set).
At the BRSW Mode, the burst length at Write is xed to “1” regardless of programmed burst length.
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle, so in
the case of BRSW write command, the next cycle starts the precharge.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 24 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Figure 16 –
SDRAM MODE REGISTER SET CYCLE SDRAM AUTO REFRESH CYCLE
SDRAS#
SDCAS#
ADDR
BWE#
SDCK
SDCE#
Ra
Key
DQ
New CommandNew
Command Auto RefreshMRS
SDWE#
DON'T CARE
tRFC
HI-Z HI-Z
Note 2
Note 1
Note 3
HIGH
012345678012345678910
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.
NOTES:
MODE REGISTER SET CYCLE
1. SDCE#, SDRAS#, SDCAS# & SDWE# activation at the same clock cycle with address key will set internal mode register.
2. Minimum 2 clock cycles should be met before new SDRAS# activation.
3. Please refer to Mode Register Set Table.
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 25 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
PACKAGE DESCRIPTION: 153 LEAD BGA (17 X 9 BALL ARRAY) JEDEC MP-163
1.97 (0.078)
MAX
0.61 (0.024)
NOM
1.27 (0.050) TYP
10.16 (0.400) NOM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
14.1 (0.555) MAX
22.1 (0.870) MAX
19.05 (0.750) NOM
9
153x Ø 0.762 (0.030) NOM 87654321
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE:
Ball attach pad for above BGA package is 480 microns in diameter. Pad is solder mask de ned.
Ordering Information
Commercial (0°C TA 70°C)
Part Number SSRAM Access SDRAM Access
WED9LC6816V2012BC 200MHz 125MHz
WED9LC6816V2010BC 200MHz 100MHz
WED9LC6816V1612BC 166MHz 125MHz
WED9LC6816V1610BC 166MHz 100MHz
WED9LC6816V1512BC 150MHz 125MHz
WED9LC6816V1510BC 150MHz 100MHz
WED9LC6816V1312BC 133MHz 125MHz
WED9LC6816V1310BC 133MHz 100MHz
Industrial (-40°C TA 85°C)
Part Number SSRAM Access SDRAM Access
WED9LC6816V2012BI 200MHz 125MHz
WED9LC6816V2010BI 200MHz 100MHz
WED9LC6816V1612BI 166MHz 125MHz
WED9LC6816V1610BI 166MHz 100MHz
WED9LC6816V1512BI 150MHz 125MHz
WED9LC6816V1510BI 150MHz 100MHz
WED9LC6816V1312BI 133MHz 125MHz
WED9LC6816V1310BI 133MHz 100MHz
WED9LC6816V
July 2010 © 2010 Microsemi Corporation. All rights reserved. 26 Microsemi Corporation • (602) 437-1520 • www.whiteedc.com
Rev. 2
Microsemi Corporation reserves the right to change products or speci cations without notice.
Document Title
256Kx32 SSRAM/4Mx32 SDRAM – External Memory Solution for Texas Instruments TMS320C6000 DSP
Revision History
Rev # History Release Date Status
Rev 2 Changes (Pg. 1, 26)
2.1 Corrected pinout – Row C missing - added, B4 - VSS, B5 - SDCE#
2.2 Corrected MO drawing
July 2010 FINAL