IRF1404PbF
HEXFET® Power MOSFET
Seventh Generation HEXFET® Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET power MOSFETs are well known for, provides
the designer with an extremely efficient and reliable
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the industry.
S
D
G
Absolute Maximum Ratings
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
VDSS = 40V
RDS(on) = 0.004Ω
ID = 202A
lAdvanced Process Technology
lUltra Low On-Resistance
lDynamic dv/dt Rating
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
lLead-Free
Description
04/11/12
www.irf.com 1
TO-220AB
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 202
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 143A
IDM Pulsed Drain Current 808
PD @TC = 25°C Power Dissipation 333 W
Linear Derating Factor 2.2 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy620 mJ
IAR Avalanche Current See Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergymJ
dv/dt Peak Diode Recovery dv/dt 1.5 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range -55 to + 175
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
PD-94968B
IRF1404PbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250μA
ΔV(BR)DSS/ΔTJBreakdown Voltage Temp. Coefficient ––– 0.039 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 0.0035 0.004 ΩVGS = 10V, ID = 121A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250μA
gfs Forward Transconductance 76 ––– ––– S VDS = 25V, ID = 121A
––– ––– 20 μAVDS = 40V, VGS = 0V
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge –– 131 196 ID = 121A
Qgs Gate-to-Source Charge ––– 36 ––– nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– 37 56 VGS = 10V
td(on) Turn-On Delay Time ––– 17 ––– VDD = 20V
trRise Time ––– 190 –– ID = 121A
td(off) Turn-Off Delay Time –– 46 –– RG = 2.5Ω
tfFall Time ––– 33 ––– RD = 0.2Ω
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5669 ––– VGS = 0V
Coss Output Capacitance ––– 1659 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 223 –– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 6205 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 1467 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 2249 ––– VGS = 0V, VDS = 0V to 32V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
ISD 121A, di/dt 130A/μs, VDD V(BR)DSS,
TJ 175°C
Notes:
Starting TJ = 25°C, L = 85μH
RG = 25Ω, IAS = 121A. (See Figure 12)
Pulse width 400μs; duty cycle 2%.
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 121A, VGS = 0V
trr Reverse Recovery Time ––– 78 117 ns TJ = 25°C, IF = 121A
Qrr Reverse RecoveryCharge ––– 163 245 nC di/dt = 100A/μs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
202
808
A
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
IRF1404PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20μs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1 1 10 100
20μs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
10
100
1000
4 5 6 7 8 9 10 11 12
V = 25V
20μs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
202A
IRF1404PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
050 100 150 200
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
121A
V = 20V
DS
V = 32V
DS
0.1
1
10
100
1000
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
1
10
100
1000
10000
1 10 100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pulse
T
T
= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs
+ C
gd, C
ds
SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
IRF1404PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
25 50 75 100 125 150 175
0
20
40
60
80
100
120
140
160
180
200
220
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF1404PbF
6www.irf.com
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3μF
50KΩ
.2μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
-VGS(th) Gate threshold Voltage (V)
ID = -250μA
25 50 75 100 125 150 175
0
300
600
900
1200
1500
Starting T , Junction Temperature( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
49A
101A
121A
IRF1404PbF
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax
is not exceeded.
3. Equation below based on circuit and waveforms shown
in Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
400
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 121A
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ΔTj = 25°C due to
avalanche losses
0.01
IRF1404PbF
8www.irf.com
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 17. For N-channel HEXFET® Power MOSFETs
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRF1404PbF
www.irf.com 9
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2012
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220 package is not recommended for Surface Mount Application.
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
INT ERNATIONAL PART NUMBER
RECTIF IER
LOT CODE
AS S E MB L Y
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE : T HIS IS AN IRF 1010
Note: "P" in as sembly line pos ition
indi cates "L ead - F r ee"
IN T HE ASS EMBLY LINE "C"
AS S EMBL ED ON WW 19, 2000
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/