- 1 -
Rev. 1.2, Feb. 2018
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or other-
wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
© 2018 Samsung Electronics Co., Ltd. All rights reserved.
datasheet
M386A8K40CM2
288pin Load Reduced DIMM
based on 8Gb C-die
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
- 2 -
datasheet DDR4 SDRAM
Rev. 1.2
Load Reduced DIMM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First SPEC Release 7th Apr. 2017 - J.Y.Lee
1.1 - Update Physical Dimension. 13th Jun, 2017 Final J.Y.Bae
1. Add PCB hole.
2. Change Module height information.
1.2 - Add 2933Mbps. 6th Feb, 2018 Final J.H.Han
- Correct typo. J.Y.Bae
- 3 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
Table Of Contents
288pin Load Reduced DIMM based on 8Gb C-die
1. DDR4 Load Reduced DIMM ORDERING INFORMATION ..................................................................................................................4
2. KEY FEATURES ..................................................................................................................................................................................4
3. ADDRESS CONFIGURATION .............................................................................................................................................................4
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE) ......................................................................................5
5. PIN DESCRIPTION .............................................................................................................................................................................6
6. ON DIMM THERMAL SENSOR ...........................................................................................................................................................7
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION .................................................................................................................................8
8. REGISTERING CLOCK DRIVER SPECIFICATION ............................................................................................................................10
8.1 Timing & Capacitance Values.........................................................................................................................................................10
8.2 Clock Driver Characteristics ...........................................................................................................................................................10
9. FUNCTION BLOCK DIAGRAM: ...........................................................................................................................................................11
9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs).............................................................................................11
10. ABSOLUTE MAXIMUM RATINGS .....................................................................................................................................................14
10.1 Absolute Maximum DC Ratings....................................................................................................................................................14
11. AC & DC OPERATING CONDITIONS ...............................................................................................................................................14
12. AC & DC INPUT MEASUREMENT LEVELS......................................................................................................................................15
12.1 AC & DC Logic Input Levels for Single-Ended Signals.................................................................................................................15
12.2 AC and DC Input Measurement Levels: VREF Tolerances..........................................................................................................15
12.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................16
12.3.1. Differential Signals Definition ................................................................................................................................................16
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................17
12.3.3. Single-ended Requirements for Differential Signals .............................................................................................................18
12.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................19
12.3.5. Clock Overshoot and Undershoot Specifications..................................................................................................................20
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ......................................................................................21
12.4 Slew Rate Definitions....................................................................................................................................................................22
12.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................22
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................23
12.5 Differential Input Cross Point Voltage...........................................................................................................................................24
12.6 CMOS rail to rail Input Levels .......................................................................................................................................................25
12.6.1. CMOS rail to rail Input Levels for RESET_n ......................................................................................................................... 25
12.7 AC and DC Logic Input Levels for DQS Signals...........................................................................................................................26
12.7.1. Differential signal definition ...................................................................................................................................................26
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)..................................................................................................26
12.7.3. Peak voltage calculation method ..........................................................................................................................................27
12.7.4. Differential Input Cross Point Voltage ...................................................................................................................................28
12.7.5. Differential Input Slew Rate Definition ..................................................................................................................................29
13. AC and DC output Measurement levels .............................................................................................................................................30
13.1 Output Driver DC Electrical Characteristics..................................................................................................................................30
13.1.1. Alert_n output Drive Characteristic .......................................................................................................................................32
13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode............................................................................................... 33
13.2 Single-ended AC & DC Output Levels..........................................................................................................................................34
13.3 Differential AC & DC Output Levels..............................................................................................................................................34
13.4 Single-ended Output Slew Rate ...................................................................................................................................................35
13.5 Differential Output Slew Rate .......................................................................................................................................................36
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................37
13.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................38
14. IDD SPEC TABLE ..............................................................................................................................................................................39
15. INPUT/OUTPUT CAPACITANCE ......................................................................................................................................................41
16. SPEED BIN ........................................................................................................................................................................................42
16.1 Speed Bin Table Note...................................................................................................................................................................48
17. IDD and IDDQ Specification Parameters and Test conditions ...........................................................................................................49
17.1 IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................49
18. DIMM IDD SPECIFICATION DEFINITION .........................................................................................................................................52
19. TIMING PARAMETERS BY SPEED GRADE ....................................................................................................................................64
19.1 Rounding Algorithms ...................................................................................................................................................................70
19.2 The DQ input receiver compliance mask for voltage and timing ..................................................................................................71
19.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................74
19.4 DDR4 Function Matrix ..................................................................................................................................................................76
20. PHYSICAL DIMENSIONS ..................................................................................................................................................................78
20.1 4Gbx4(DDP) based 8Gx72 Module (4 Ranks) - M386A8K40CM2...............................................................................................78
20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs ..................................................................................78
- 4 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
1. DDR4 Load Reduced DIMM ORDERING INFORMATION
NOTE :
1) "##" - RC/TD/VF
2) RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)/VF(2933Mbps 21-21-21).
- Backward compatible to lower frequency.
2. KEY FEATURES
JEDEC standard 1.2V ± 0.06V Power Supply
•V
DDQ
= 1.2V ± 0.06V
800 MHz f
CK
for 1600Mb/sec/pin,933 MHz f
CK
for 1866Mb/sec/pin, 1067MHz f
CK
for 2133Mb/sec/pin,1200MHz f
CK
for 2400Mb/sec/pin, 1333MHz
f
CK
for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
16 Banks (4 Bank Groups)
Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21
Programmable Additive Latency (Posted CAS): 0, CL - 2, or CL - 1 clock
Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666)
and 16, 20 (DDR4-2933).
Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
Bi-directional Differential Data Strobe
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower then T
CASE
85C, 3.9us at 85C < T
CASE
95C
Asynchronous Reset
3. ADDRESS CONFIGURATION
[Table 1] Ordering Information Table
Part Number
2)
Density Organization Component Composition
1)
Number of
Rank Height
M386A8K40CM2-CRC/TD/VF 64GB 8Gx72 DDP 4Gx4(K4AAG045WC-MC##)*36 4 31.25mm
[Table 2] Speed Bins
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 Unit
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 21-21-21
tCK(min) 1.25 1.071 0.937 0.833 0.75 0.682 ns
CAS Latency 11 13 15 17 19 21 nCK
tRCD(min) 13.75 13.92 14.06 14.16 14.25 14.32 ns
tRP(min) 13.75 13.92 14.06 14.16 14.25 14.32 ns
tRAS(min) 35 34 33 32 32 32 ns
tRC(min) 48.75 47.92 47.06 46.16 46.25 46.32 ns
Organization Row Address Column Address Bank Group Address Bank Address Auto Precharge
4Gx4(16Gb DDP) based Module A0-A16 A0-A9 BG0-BG1 BA0-BA1 A10/AP
- 5 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
4. Load Reduced DIMM PIN COFIGURATIONS
(FRONT SIDE / BACK SIDE)
NOTE:
1) VPP is 2.5V DC
2) Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.
3) Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM
4) The 5th VPP is required on all modules. DIMMs.
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
112V
3
,NC 145 12V
3
,NC 40
TDQS12_t,
DQS12_t
184 VSS 78 EVENT
_n
222 PARITY 117 DQ52 261 VSS
2 VSS 146 VREFCA 41
TDQS12_c,
DQS12_c
185 DQS3
_c
79 A0 223 VDD 118 VSS 262 DQ53
3 DQ4 147 VSS 42 VSS 186 DQS3
_t
80 VDD 224 BA1 119 DQ48 263 VSS
4 VSS 148 DQ5 43 DQ30 187 VSS 81 BA0 225 A10/AP 120 VSS 264 DQ49
5 DQ0 149 VSS 44 VSS 188 DQ31 82 RAS
_n
/A16 226 VDD 121
TDQS15_t,
DQS15_t
265 VSS
6 VSS 150 DQ1 45 DQ26 189 VSS 83 VDD 227 RFU 122
TDQS15_c,
DQS15_c
266 DQS6
_c
7
TDQS9_t,
DQS9_t
151 VSS 46 VSS 190 DQ27 84 S0
_n
228 WE
_n
/A14 123 VSS 267 DQS6
_t
8
TDQS9_c,
DQS9_c
152 DQS0
_c
47 CB4 191 VSS 85 VDD 229 VDD 124 DQ54 268 VSS
9 VSS 153 DQS0
_t
48 VSS 192 CB5 86 CAS
_n
/A15 230 NC 125 VSS 269 DQ55
10 DQ6 154 VSS 49 CB0 193 VSS 87 ODT0 231 VDD 126 DQ50 270 VSS
11 VSS 155 DQ7 50 VSS 194 CB1 88 VDD 232 A13 127 VSS 271 DQ51
12 DQ2 156 VSS 51
TDQS17_t,
DQS17_t
195 VSS 89 S1
_n
233 VDD 128 DQ60 272 VSS
13 VSS 157 DQ3 52
TDQS17_c,
DQS17_c
196 DQS8
_c
90 VDD 234 A17 129 VSS 273 DQ61
14 DQ12 158 VSS 53 VSS 197 DQS8
_t
91 ODT1 235 NC,C2 130 DQ56 274 VSS
15 VSS 159 DQ13 54 CB6 198 VSS 92 VDD 236 VDD 131 VSS 275 DQ57
16 DQ8 160 VSS 55 VSS 199 CB7 93 C0,CS2
_n
,NC 237 NC,CS3
_c
,C1 132
TDQS16_t,
DQS16_t
276 VSS
17 VSS 161 DQ9 56 CB2 200 VSS 94 VSS 238 SA2 133
TDQS16_c,
DQS16_c
277 DQS7
_c
18
TDQS10_t,
DQS10_t
162 VSS 57 VSS 201 CB3 95 DQ36 239 VSS 134 VSS 278 DQS7
_t
19
TDQS10_c,
DQS10_c
163 DQS1
_c
58 RESET
_n
202 VSS 96 VSS 240 DQ37 135 DQ62 279 VSS
20 VSS 164 DQS1
_t
59 VDD 203 CKE1 97 DQ32 241 VSS 136 VSS 280 DQ63
21 DQ14 165 VSS 60 CKE0 204 VDD 98 VSS 242 DQ33 137 DQ58 281 VSS
22 VSS 166 DQ15 61 VDD 205 RFU 99
TDQS13_t,
DQS13_t
243 VSS 138 VSS 282 DQ59
23 DQ10 167 VSS 62 ACT
_n
206 VDD 100
TDQS13_c,
DQS13_c
244 DQS4
_c
139 SA0 283 VSS
24 VSS 168 DQ11 63 BG0 207 BG1 101 VSS 245 DQS4
_t
140 SA1 284 VDDSPD
25 DQ20 169 VSS 64 VDD 208 ALERT
_n
102 DQ38 246 VSS 141 SCL 285 SDA
26 VSS 170 DQ21 65 A12/BC
_n
209 VDD 103 VSS 247 DQ39 142 VPP 286 VPP
27 DQ16 171 VSS 66 A9 210 A11 104 DQ34 248 VSS 143 VPP 287 VPP
28 VSS 172 DQ17 67 VDD 211 A7 105 VSS 249 DQ35 144 RFU 288 VPP
4
29
TDQS11_t,
DQS11_t
173 VSS 68 A8 212 VDD 106 DQ44 250 VSS
30
TDQS11_c,
DQS11_c
174 DQS2
_c
69 A6 213 A5 107 VSS 251 DQ45
31 VSS 175 DQS2
_t
70 VDD 214 A4 108 DQ40 252 VSS
32 DQ22 176 VSS 71 A3 215 VDD 109 VSS 253 DQ41
33 VSS 177 DQ23 72 A1 216 A2 110
TDQS14_t,
DQS14_t
254 VSS
34 DQ18 178 VSS 73 VDD 217 VDD 111
TDQS14_c,
DQS14_c
255 DQS5
_c
35 VSS 179 DQ19 74 CK0
_t
218 CK1
_t
112 VSS 256 DQS5
_t
36 DQ28 180 VSS 75 CK0
_c
219 CK1
_c
113 DQ46 257 VSS
37 VSS 181 DQ29 76 VDD 220 VDD 114 VSS 258 DQ47
38 DQ24 182 VSS 77 VTT 221 VTT 115 DQ42 259 VSS
39 VSS 183 DQ25 KEY 116 VSS 260 DQ43
- 6 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
5. PIN DESCRIPTION
NOTE :
1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
Pin Name Description Pin Name Description
A0–A17
1)
Register address input SCL I
2
C serial bus clock for SPD/TS and register
BA0, BA1 Register bank select input SDA I
2
C serial bus data line for SPD/TS and register
BG0, BG1 Register bank group select input SA0–SA2 I
2
C slave address select for SPD/TS and register
RAS_n
2)
Register row address strobe input PAR Register parity input
CAS_n
3)
Register column address strobe input VDD SDRAM core power supply
WE_n
4)
Register write enable input VPP SDRAM activating power supply
CS0_n, CS1_n,
CS2_n, CS3_n DIMM Rank Select Lines input VREFCA SDRAM command/address reference supply
CKE0, CKE1 Register clock enable lines input VSS Power supply return (ground)
ODT0, ODT1 Register on-die termination control lines input VDDSPD Serial SPD/TS positive power supply
ACT_n Register input for activate input ALERT_n Register ALERT_n output
DQ0–DQ63 DIMM memory data bus RESET_n Set Register and SDRAMs to a Known State
CB0–CB7 DIMM ECC check bits EVENT_n SPD signals a thermal event has occurred
DQS0_t–
DQS17_t
Data Buffer data strobes
(positive line of differential pair) VTT SDRAM I/O termination supply
DQS0_c–
DQS17_c
Data Buffer data strobes
(negative line of differential pair) RFU Reserved for future use
CK0_t, CK1_t Register clock input
(positive line of differential pair)
CK0_c, CK1_c Register clocks input
(negative line of differential pair)
- 7 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
6. ON DIMM THERMAL SENSOR
NOTE :
1) All Samsung RDIMM support Thermal sensor on DIMM.
[Table 3] Temperature Sensor Characteristics
Grade Range Temperature Sensor Accuracy Units NOTE
Min. Typ. Max.
B
75 < Ta < 95 - +/- 0.5 +/- 1.0
C
-
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 C /LSB -
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL VSS
1K
BFUNC VSS
- 8 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION
[Table 4] Input/Output Function Description
Symbol Type Function
CK_t, CK_c Input Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing
of the positive edge of CK_t and negative edge of CK_c.
CKE, (CKE1) Input
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and
output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or
Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal
DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all
operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers,
excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE are disabled
during Self-Refresh.
CS_n, (CS1_n) Input Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on
systems with multiple Ranks. CS_n is considered part of the command code.
C0, C1, C2 Input Chip ID : Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID
is considered part of the command code.
ODT, (ODT1) Input
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM.
When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When
TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied
to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is
programmed to disable RTT_NOM.
ACT_n Input Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into
RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
RAS_n/A16.
CAS_n/A15.
WE_n/A14
Input
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered.
Those pins have multi function. For example, for activation with ACT_n Low, these are Addressing like A16, A15 and
A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command
defined in command truth table
DM_n/DBI_n/
TDQS_t, (DMU_n/
DBIU_n), (DML_n/
DBIL_n)
Input/Output
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when
DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of
DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of
DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/
output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4
SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8
BG0 - BG1 Input
Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being
applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1
but X16 has only BG0.
BA0 - BA1 Input Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied.
Bank address also determines which mode register is to be accessed during a MRS cycle.
A0 - A17 Input
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write
commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16,
CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code
during Mode Register Set commands. A17 is only defined for the x4 configurations.
A10 / AP Input
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be
performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC_n Input Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be
performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH.
RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80%
and 20% of VDD.
DQ Input/
Output
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of
Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4
A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which
DQ is used.
- 9 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input/
Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe
DQS_t , DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to
provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data
strobe only and does not support single-ended.
TDQS_t, TDQS_c Output
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 =
1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/TDQS_c that is applied to
DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function
or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS
function via mode register A11 = 0 in MR1.
PAR Input
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled
via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-
BA1, A17-A0 and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when
commands are latched via the rising edge of CK_t and when CS_n is low.
ALERT_n Input/
Output
Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there
is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in
Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal
recovery transaction is complete. During Connectivity Test mode, this pin works as input.
Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded
to VDD on board.
TEN Input
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or
greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail
to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin
may be DRAM internally pulled low through a weak pull-down resistor to VSS.
NC No Connect: No internal electrical connection is present.
VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ Supply DQ Ground
VDD Supply Power Supply: 1.2 V ± 0.06 V
VSS Supply Ground
VPP Supply DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
VREFCA Supply Reference voltage for CA
ZQ Supply Reference Pin for ZQ calibration.
[Table 4] Input/Output Function Description
Symbol Type Function
- 10 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
8. REGISTERING CLOCK DRIVER SPECIFICATION
8.1 Timing & Capacitance Values
NOTE :
1) This parameter does not include package capacitance.
2) Data inputs are DCKE0/1,DODT0/1,DA0,DA17, DBA0,DBA1,DBG0,DBG1,DACT_n, DC0,DC2, DPAR, DCS0/1_n
8.2 Clock Driver Characteristics
Symbol Parameter Conditions DDR4-1600/1866/2133 DDR4-2400/2666 DDR4-2933 Units
Min Max Min Max Min Max
fclock Input Clock Frequency application frequency 625 1080 625 1350 TBD TBD MHz
t
CH
/t
CL
Pulse duration, CK_t, CK_c
HIGH or LOW 0.4 - 0.4 - TBD - t
CK
t
ACT
Inputs active time4 before
DRST_n is taken HIGH
DCKE0/1 = LOW and
DCS0/1_n = HIGH 16 - 16 - TBD - t
CK
t
PDM
Propagation delay, single-bit
switching, CK_t/ CK_c to output 1.2V Operation 1 1.3 1 1.3 TBD TBD ns
t
DIS
output disable time Rising edge of Yn_t to
output float
0.5*tCK +
tQSK1(min
)
-
0.5*tCK +
tQSK1(min
)
-TBD-ps
t
EN
output enable time Output valid to rising
edge of Yn_t
0.5*tCK -
tQSK1(ma
x)
-
0.5*tCK -
tQSK1(ma
x)
-TBD-ps
C
I
Input capacitance, Data inputs NOTE
1,2
0.8 1.1 0.8 1.0 TBD TBD
pF
C
CK
Input capacitance, CK_t, CK_c NOTE
1,2
0.8 1.1 0.8 1.0 TBD TBD
C
IR
Input capacitance, DRST_n V
I
=V
DD
or V
SS
;
V
DD
=1.2V 0.5 2.0 0.5 2.0 TBD TBD
Symbol Parameter Conditions
DDR4-1600/1866/
2133 DDR4-2400 DDR4-2666 DDR4-2933 Units
Min Max Min Max Min Max Min Max
t
jit
(cc) Cycle-to-cycle period jit-
ter
CK_t/CK_c sta-
ble 00.025 x
tCK 0 0.025 x tCK 0 0.025 x
tCK TBD TBD ps
t
STAB
Stabilization time - 5 - 5 - 5 - TBD us
t
CKsk
Clock Output skew - 10 - 10 - 10 - TBD ps
t
jit
(per) Yn Clock Period jitter -0.025 *
tCK
0.025 *
tCK
-0.025 *
tCK 0.025 * tCK -0.025 *
tCK
0.025 *
tCK TBD TBD ps
t
jit
(hper) Half period jitter -0.032 *
tCK
0.032 *
tCK
-0.032 *
tCK 0.032 * tCK -0.032 *
tCK
0.032 *
tCK TBD TBD ps
t
Qsk1
Qn Output to clock toler-
ance
-0.125 *
tCK
0.125 *
tCK
-0.125 *
tCK 0.125 * tCK -0.1 * tCK 0.1 * tCK TBD TBD ps
t
dynoff
Maximum re-driven
dynamic clock off-set -50-45-45-TBDps
- 11 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
9. FUNCTION BLOCK DIAGRAM:
9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)
NOTE :
1) CK0
_t
, CK0
_c
terminated with 120 ± 5% resistor.
2) CK1
_t
, CK1
_c
terminated with 120 ± 5% resistor but not used.
3) Unless otherwise noted resistors are 22 ± 5%.
CK0_t
CK0_c
BA[1:0] BG[1:0]A -> BA[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
A[17:0] A[17:0]A -> A[17:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
CS[3:0]_n
ODT0, ODT1
RESET_n
BG[1:0]B -> BA[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
A[17:0]B -> A[17:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
QRESET_n -> RESET_n: All SDRAMs
PARITY, ACT_n
CK1_t
CK1_c
Y0(_t,_c) -> CK(_t,_c): SDRAMs D[16:13],D[16B:13B]
BG[1:0] BG[1:0]A -> BG[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
BG[1:0]B -> BG[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
CKE1A -> CKE: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CKE1B -> CKE: SDRAMs D[7B:4B],D[16B:13B]
ODT0A -> ODT: SDRAMs D[3:0],D8,D[12:9],D17
ODT0B -> ODT: SDRAMs D[7:4],D[16:13]
CS0A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17
CS0B_n -> CS_n: SDRAMs D[7:4],D[16:13]
PARA -> PAR,ACT_n: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
PARB -> PAR,ACT_n: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
CKE0, CKE1 CKE0A -> CKE: SDRAMs D[3:0],D8,D[12:9],D17
CKE0B -> CKE: SDRAMs D[7:4],D[16:13]
R
e
g
i
s
t
e
r.
ODT1A -> ODT: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
ODT1B -> ODT: SDRAMs D[7B:4B],D[16B:13B]
CS1A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CS1B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]
Y1(_t,_c) -> CK(_t,_c): SDRAMs D[12:9],D17,D[12B:9B],D17B
Y2(_t,_c) -> CK(_t,_c): SDRAMs D[7:4],D[7B:4B]
Y3(_t,_c) -> CK(_t,_c): SDRAMs D[3:0],D8,D[7B:4B],D8B
ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
CS2A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17
CS2B_n -> CS_n: SDRAMs D[7:4],D[16:13]
CS3A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CS3B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]
Address, Command and Control lines
Back
Front
D13D14D15D16
D4 D5 D6 D7
D9 D10 D11 D12 D17
D0 D1 D2 D3 D8
D9B D10B D11B D12B D17B
D0B D1B D2B D3B D8B
D13B D14B D15B D16B
D4B D5B D6B D7B
- 12 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) DQ stub resistors are 15 ±5%. For all other resistor values refer to the appropriate wiring diagram.
CKE1A
VSS
CS3A_n
CKE1A
ODT1A
CS1A_n
DQ[3:0]
DQS0_t
DQS0_c
DQ[7:4]
DQS9_t
DQS9_c
CKE0A
VSS
CS2A_n
D0
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
CKE0A
ODT0A
CS0A_n
D9
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D9B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D0B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[11:8]
DQS1_t
DQS1_c
DQ[15:12]
DQS10_t
DQS10_c
D1
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D10
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D10B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D1B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[19:16]
DQS2_t
DQS2_c
DQ[23:20]
DQS11_t
DQS11_c
D2
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D11
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D11B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D2B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[27:24]
DQS3_t
DQS3_c
DQ[31:28]
DQS12_t
DQS12_c
D3
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D12
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D12B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D3B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
CB[3:0]
DQS8_t
DQS8_c
CB[7:4]
DQS17_t
DQS17_c
D8
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D17
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D17B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D8B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
- 13 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE:
1) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) VDDSPD is also applied to the register. VDD is also applied to the register and the data buffers.
5) DQ stub resistors are 15 ±5%. For all other resistor values refer to the appropriate wiring diagram.
V
SS
D0-D35
D0-D35
V
DD
4
V
DDSPD
4
Serial PD
VREFCA
V
TT
D0-D35
V
PP
D0-D35
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL VSS
1K
BFUNC VSS
CKE1B
VSS
CS3B_n
CKE1B
ODT1B
CS1B_n
DQ[35:32]
DQS4_t
DQS4_c
DQ[39:36]
DQS13_t
DQS13_c
CKE0B
VSS
CS2B_n
D4
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
CKE0B
ODT0B
CS0B_n
D13
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D13B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D4B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[43:40]
DQS5_t
DQS5_c
DQ[47:44]
DQS14_t
DQS14_c
D5
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D14
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D14B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D5B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[51:48]
DQS6_t
DQS6_c
DQ[55:52]
DQS15_t
DQS15_c
D6
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D15
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D15B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D6B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
DQ[59:56]
DQS7_t
DQS7_c
DQ[63:60]
DQS16_t
DQS16_c
D7
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
CKE1
CS1_n
ODT1
D16
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D16B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
D7B
DQS_c
DQS_t
CKE0
CS0_n
DQ [3:0]
ODT0
ZQ
VSS
CKE1
CS1_n
ODT1
- 14 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
10. ABSOLUTE MAXIMUM RATINGS
10.1 Absolute Maximum DC Ratings
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA
may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in section Address, Command and Control Overshoot and Undershoot specifications, Clock Overshoot and Undershoot
Specifications and section Data, Strobe and Mask Overshoot and Undershoot Specifications.
11. AC & DC OPERATING CONDITIONS
NOTE :
1) Under all conditions V
DDQ
must be less than or equal to V
DD
.
2) V
DDQ
tracks with V
DD
. AC parameters are measured with V
DD
and V
DDQ
tied together.
3) DC bandwidth is limited to 20MHz.
[Table 5] Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3
VPP Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4
V
IN,
V
OUT
Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5
T
STG
Storage Temperature -55 to +100 °C 1,2
[Table 6] Recommended DC Operating Conditions
Symbol Parameter Rating Unit NOTE
Min. Typ. Max.
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3
- 15 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12. AC & DC INPUT MEASUREMENT LEVELS
12.1 AC & DC Logic Input Levels for Single-Ended Signals
NOTE :
1) See “Overshoot and Undershoot Specifications” on section.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
12.2 AC and DC Input Measurement Levels: V
REF
Tolerances.
The DC-tolerance limits and ac-noise limits for the reference voltages V
REFCA
is illustrated in Figure 1. It shows a valid reference voltage V
REF
(t) as a
function of time. (V
REF
stands for V
REFCA
).
V
REF
(DC) is the linear average of V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
Furthermore V
REF
(t) may temporarily deviate from V
REF
(DC) by no more than ± 1% V
DD
.
Figure 1. Illustration of V
REF
(DC) tolerance and V
REF
AC-noise limits
The voltage levels for setup and hold time measurements V
IH
(AC), V
IH
(DC), V
IL
(AC) and V
IL
(DC) are dependent on V
REF
.
"V
REF
" shall be understood as V
REF
(DC), as defined in Figure 1.
This clarifies, that DC-variations of V
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for V
REF
(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
REF
AC-noise. Timing
and voltage effects due to AC-noise on V
REF
up to the specified limit (+/-1% of V
DD
) are included in DRAM timings and their associated deratings.
[Table 7] Single-ended AC & DC Input Levels for Command and Address
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666/2933 Unit NOTE
Min. Max. Min. Max.
VIH.CA(DC75)
DC input logic high
V
REFCA
+ 0.075 VDD - -
V
VIH.CA(DC65) - - V
REFCA
+ 0.065 VDD
VIL.CA(DC75)
DC input logic low
VSS V
REFCA
-0.075 --
V
VIL.CA(DC65) - - VSS
V
REFCA
-0.065
VIH.CA(AC100)
AC input logic high
V
REF
+ 0.1 Note 2 - -
V
1
VIH.CA(AC90) - - V
REF
+ 0.09 Note 2
VIL.CA(AC100)
AC input logic low
Note 2 V
REF
- 0.1 --
V
1
VIL.CA(AC90) - - Note 2 V
REF
- 0.09
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD - - V 2,3
voltage
V
DD
V
SS
time
- 16 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3 AC and DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
V
IH
.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)
Figure 2. Definition of differential ac-swing and “time above ac-level” t
DVAC
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
- 17 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
IH.CA
/V
IL.CA
(AC) of ADD/CMD and V
REFCA
;
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
IH.CA
(DC) max, V
IL.CA
(DC)min) for single-ended signals
as well as the limitations for overshoot and undershoot.
[Table 8] Differential AC and DC Input Levels
Symbol Parameter DDR4 -1600/1866/2133 DDR4 -2400/2666/2933 unit NOTE
min max min max
V
IHdiff
differential input high +0.150 NOTE 3 TBD NOTE 3 V 1
V
ILdiff
differential input low NOTE 3 -0.150 NOTE 3 TBD V 1
V
IHdiff
(AC) differential input high ac 2 x (V
IH
(AC) - V
REF
)NOTE 3 2 x (V
IH
(AC) - V
REF
)NOTE 3 V 2
V
ILdiff
(AC) differential input low ac NOTE 3 2 x (V
IL
(AC) - V
REF
)NOTE 3 2 x (V
IL
(AC) - V
REF
)V2
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 200mV
min max
> 4.0 120 -
4.0 115 -
3.0 110 -
2.0 105 -
1.8 100 -
1.6 95 -
1.4 90 -
1.2 85 -
1.0 80 -
< 1.0 80 -
- 18 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD
signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used
for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
Figure 3. Single-ended requirement for differential signals.
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with
respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
NOTE :
1) For CK_t - CK_c use V
IH.CA
/V
IL.CA
(AC) of ADD/CMD;
2) V
IH
(AC)/V
IL
(AC) for ADD/CMD is based on V
REFCA
;
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
IH.CA
(DC) max, V
IL.CA
(DC)min) for single-ended
signals as well as the limitations for overshoot and undershoot.
[Table 10] Single-ended Levels for CK_t, CK_c
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400/2666/2933 Unit NOTE
Min Max Min Max
V
SEH
Single-ended high-level for
CK_t, CK_c
(VDD/2)+0.100 NOTE3 TBD NOTE3 V 1, 2
V
SEL
Single-ended low-level for
CK_t, CK_c
NOTE3 (VDD/2)-0.100 NOTE3 TBD V 1, 2
- 19 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3.4 Address, Command and Control Overshoot and Undershoot specifications
NOTE :
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Parameter Sym-
bol
Specification
Unit NOTE
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Maximum peak amplitude above VAOS VAOSP 0.06 TBD TBD V
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 TBD TBD V 1
Maximum peak amplitude allowed for undershoot
VAUS 0.30 TBD TBD V
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 TBD TBD V-ns
Maximum overshoot area per 1 tCK between VDD and
VAOS AAOS1 0.2550 0.2185 0.1914 0.1699 TBD TBD V-ns
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.2265 0.1984 0.1762 TBD TBD V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
A
AOS1
V
DD
A
AUS
V
SS
Volts
(V)
1 tCK
V
AOSP
A
AOS2
V
AOS
V
AUS
- 20 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3.5 Clock Overshoot and Undershoot Specifications
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
Figure 5. Clock Overshoot and Undershoot Definition
[Table 12] AC overshoot/undershoot specification for Clock
Parameter Symbol
Specification
Unit NOTE
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Maximum peak amplitude above VCOS VCOSP 0.06 TBD TBD V
Upper boundary of overshoot area ADOS1 VCOS VDD +0.24 TBD TBD V 1
Maximum peak amplitude allowed for undershoot VCUS 0.30 TBD TBD V
Maximum overshoot area per 1 UI above VCOS
ACOS2 0.0038 0.0032 0.0028 0.0025 TBD TBD V-ns
Maximum overshoot area per 1 UI between VDD and
VDOS ACOS1 0.1125 0.0964 0.0844 0.0750 TBD TBD V-ns
Maximum undershoot area per 1 UI below VSS ACUS 0.1144 0.0980 0.0858 0.0762 TBD TBD V-ns
(CK_t, CK_c)
A
COS1
V
DD
A
CUS
V
SS
Volts
(V)
1 UI
V
COSP
A
COS2
V
COS
V
CUS
- 21 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Parameter Symbol
Specification
Unit NOT
E
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Maximum peak amplitude above VDOS VDOSP 0.16 0.16 0.16 0.16 TBD TBD V
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 TBD TBD V 1
Lower boundary of undershoot area ADUS1 VDUS 0.30 0.30 0.30 0.30 TBD TBD V 2
Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 TBD TBD V
Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 TBD TBD V-ns
Maximum overshoot area per 1 UI between
VDDQ and VDOS ADOS1 0.1050 0.0900 0.0788 0.0700 TBD TBD V-ns
Maximum undershoot area per 1 UI between
VSSQ and VDUS1 ADUS1 0.1050 0.0900 0.0788 0.0700 TBD TBD V-ns
Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 TBD TBD V-ns
A
DOS1
V
DDQ
A
DUS2
V
SSQ
Volts
(V)
1 UI
V
DOSP
A
DOS2
V
DOS
V
DUSP
A
DUS1
- 22 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.4 Slew Rate Definitions
12.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
NOTE :
1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c
[Table 14] Differential Input Slew Rate Definition
Description Measured Defined by
from to
Differential input slew rate for rising edge (CK_t - CK_c) V
ILdiffmax
V
IHdiffmin
[V
IHdiffmin
- V
ILdiffmax
] / DeltaTRdiff
Differential input slew rate for falling edge (CK_t - CK_c) V
IHdiffmin
V
ILdiffmax
[V
IHdiffmin
- V
ILdiffmax
] / DeltaTFdiff
Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
- 23 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1) Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.
2) Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
Delta TRsingle
Delta TFsingle
VIHCA(AC) Min
VIHCA(DC) Min
VREFCA(DC)
VILCA(DC) Max
VILCA(AC) Max
- 24 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.5 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals
(CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signals to the midlevel between of VDD and VSS.
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
Symbol Parameter DDR4-1600/1866/2133
min max
- Area of VSEH, VSEL VSEL =< VDD/2 -
145mV
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
VDD/2 + 145mV =<
VSEH
VlX(CK) Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c -120mV -(VDD/2 - VSEL) +
25mV
(VSEH - VDD/2) -
25mV 120mV
Symbol Parameter DDR4-2400/2666/2933
min max
- Area of VSEH, VSEL TBD TBD TBD TBD
VlX(CK) Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c TBD TBD TBD TBD
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
- 25 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.6 CMOS rail to rail Input Levels
12.6.1 CMOS rail to rail Input Levels for RESET_n
NOTE :
1) After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2) Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset
asserting RESET_n signal LOW.
3) RESET is destructive to data contents.
4) No slope reversal(ringback) requirement during its level transition from Low to High.
5) This definition is applied only “Reset Procedure at Power Stable”.
6) Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7) Undershoot might occur. It should be limited by Absolute Maximum DC Ratings.
Figure 10. RESET_n Input Slew Rate Definition
[Table 16] CMOS rail to rail Input Levels for RESET_n
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD
- 26 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.7 AC and DC Logic Input Levels for DQS Signals
12.7.1 Differential signal definition
Figure 11. Definition of differential DQS Signal AC-swing Level
12.7.2 Differential swing requirements for DQS (DQS_t - DQS_c)
NOTE :
1) Used to define a differential signal slew-rate.
2) These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended
signals.
[Table 17] Differential AC and DC Input Levels for DQS
Symbol Parameter DDR4-1600, 1866, 2133 DDR4-2400 DDR4-2666, 2933 Unit Note
Min Max Min Max Min Max
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 TBD TBD mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 TBD TBD mV 1
- 27 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.7.3 Peak voltage calculation method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the small-
est peak voltage observed in all ui’s.
Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
DQS_t
DQS_c
Single Ended Input Voltage : DQS_t and DQS_c
Min(f(t))
+35%
+35%
+50%
+50%
Time
Max(f(t))
- 28 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.7.4 Differential Input Cross Point Voltage
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals
(DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is
measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals.
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of
the transitioning DQS signals.
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35%
of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tan-
gent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived
from its negative slope to zero slope transition (point A in Figure 13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope tran-
sition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope tran-
sition (point C in Figure 13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid
horizontal tangent
Figure 13. Vix Definition (DQS)
NOTE :
1) Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above
VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals.
2) VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched.
3) The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV.
4) VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions.
5) The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system.
[Table 18] Cross point voltage for DQS differential input signals
Symbol Parameter DDR4-1600/1866/2133/ DDR4-2666, 2933 Unit Note
Min Max Min Max
Vix_DQS_ratio DQS_t and DQS_c crossing relative to the midpoint of
the DQS_t and DQS_c signal swings - 25 - 25 % 1, 2
VDQSmid_to_Vcent VDQSmid offset relative to Vcent_DQ(midpoint) - min
(VIHdiff,50) -min
(VIHdiff,50) mV 3, 4, 5
C
D
B
A
VIX_DQS,RF
VIX_DQS,FR
VIX_DQS,FR
VIX_DQS,RF
DQS_t
VDQSmid
DQS_c
Lowest horizontal tangent above VDQSmid of the transitioning signals
DQS_t,DQS_c : Single-ended Input Voltages
V
SSQ
Highest horizontal tanget below VDQSmid of the transitioning signals
VDQS_trans/2
VDQS_trans
- 29 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
12.7.5 Differential Input Slew Rate Definition
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure 13 and Figure 14.
Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c
NOTE :
1) Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2) Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
[Table 19] Differential Input Slew Rate Definition for DQS_t, DQS_c
Description Measured Defined by
From To
Differential input slew rate for rising edge (DQS_t - DQS_c) VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
Differential input slew rate for falling edge (DQS_t - DQS_c) VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
[Table 20] Differential Input Level for DQS_t, DQS_c
Symbol Parameter DDR4-1600/1866/2133 DDR4-2400 DDR4-2666, 2933 Unit NOTE
Min Max Min Max Min Max
VIHDiff_DQS Differential Input High 136 - 130 - TBD TBD mV
VILDiff_DQS Differential Input Low - -136 - -130 TBD TBD mV
[Table 21] Differential Input Slew Rate for DQS_t, DQS_c
Symbol Parameter DDR4-1600/1866/2133/2400 DDR4-2666, 2933 Unit NOTE
Min Max Min Max
SRIdiff Differential Input Slew Rate 3 18 TBD TBD V/ns
- 30 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13. AC and DC output Measurement levels
13.1 Output Driver DC Electrical Characteristics
The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional
representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
The individual pull-up and pull-down resistors (RON
Pu
and RON
Pd
) are defined as follows:
Figure 15. Output driver
RON
Pu
= VDDQ -Vout
I out
under the condition that RON
Pd
is off
RON
Pd
= Vout
I out
under the condition that RON
Pu
is off
To
other
circuity
like
RCV, ...
Output Drive
DQ
RONPu
VSSQ
VDDQ
I
out
V
out
Chip In Drive Mode
RONPd
I
Pu
I
Pd
- 31 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-
tion, see following section on voltage and temperature sensitivity (TBD).
2) Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec shown
above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ.
3) Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron
value
4) RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c.
5) This parameter of x16 device is specified for Uper byte and Lower byte.
[Table 22] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ calibration
RON
NOM
Resistor Vout Min Nom Max Unit NOTE
34
RON34Pd
VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/7 1,2
RON34Pu
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/7 1,2
48
RON48Pd
VOLdc= 0.5*VDDQ 0.8 1 1.1 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.9 1 1.25 RZQ/5 1,2
RON48Pu
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/5 1,2
Mismatch between pull-up and
pull-down, MMPuPd VOMdc= 0.8* VDDQ -10 - 10 % 1,2,3,4
Mismatch DQ-DQ within byte vari-
ation pull-up, MMPudd VOMdc= 0.8* VDDQ - - 10 % 1,2,4
Mismatch DQ-DQ within byte vari-
ation pull-dn, MMPddd VOMdc= 0.8* VDDQ - - 10 % 1,2,4
MMPuPd =
RONPu -RONPd
RONNOM *100
MMPudd =
RONPuMax -RONPuMin
RONNOM *100
MMPddd =
RONPdMax -RONPdMin
RONNOM *100
- 32 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.1.1 Alert_n output Drive Characteristic
A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
NOTE:
1) VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD.
Resistor Vout Min Max Unit NOTE
RON
Pd
VOLdc= 0.1* VDDQ 0.3 1.2 341
V
OMdc
= 0.8* VDDQ 0.4 1.2 341
V
OHdc
= 1.1* VDDQ 0.4 1.4 341
RON
Pd
=
Vout
l Iout l
under the condition that RON
Pu
is off
DRAM
Alert
VSSQ
I
out
V
out
RON
Pd
I
Pd
Alert Driver
- 33 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.1.2 Output Driver Characteristic of Connectivity Test (CT) Mode
Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test (CT) Mode.
The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:
Figure 16. Output Driver
NOTE :
1) Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined.
RON
NOM_CT
Resistor Vout Max Units NOTE
34
RON
Pd_CT
VOB
dc
= 0.2 x V
DDQ
1.9 341
VOL
dc
= 0.5 x V
DDQ
2.0 341
VOM
dc
= 0.8 x V
DDQ
2.2 341
VOH
dc
= 1.1 x V
DDQ
2.5 341
RON
Pu_CT
VOB
dc
= 0.2 x V
DDQ
2.5 341
VOL
dc
= 0.5 x V
DDQ
2.2 341
VOM
dc
= 0.8 x V
DDQ
2.0 341
VOH
dc
= 1.1 x V
DDQ
1.9 341
RON
Pu_CT
=
V
DDQ
-V
OUT
l Iout l
RON
Pd_CT
=
V
OUT
l Iout l
V
DDQ
DQ
V
SSQ
RON
Pu_CT
I
Pd_CT
RON
Pd_CT
To
other
circuity
like
RCV,...
Output Driver
I
Pu_CT
Iout
Vout
Chip In Driver Mode
- 34 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.2 Single-ended AC & DC Output Levels
NOTE :
1) The swing of ± 0.15 × V
DDQ
is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7
and an effective test
load of 50
to V
TT
= V
DDQ
.
13.3 Differential AC & DC Output Levels
NOTE :
1) The swing of ± 0.3 × V
DDQ
is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7
and an effective test load
of 50
to V
TT
= V
DDQ
at each of the differential outputs.
[Table 23] Single-ended AC & DC Output Levels
Symbol Parameter DDR4-1600/1866/2133/2400/2666/2933 Units NOTE
V
OH
(DC) DC output high measurement level (for IV curve linearity) 1.1 x V
DDQ
V
V
OM
(DC) DC output mid measurement level (for IV curve linearity) 0.8 x V
DDQ
V
V
OL
(DC) DC output low measurement level (for IV curve linearity) 0.5 x V
DDQ
V
V
OH
(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x V
DDQ
V1
V
OL
(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x V
DDQ
V1
[Table 24] Differential AC & DC Output Levels
Symbol Parameter DDR4-1600/1866/2133/2400/2666/2933 Units NOTE
V
OHdiff
(AC) AC differential output high measurement level (for output SR) +0.3 x V
DDQ
V1
V
OLdiff
(AC) AC differential output low measurement level (for output SR) -0.3 x V
DDQ
V1
- 35 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.4 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OL(AC)
and V
OH(AC)
for
single ended signals as shown in Table 25 and Figure 17.
NOTE :
1) Output slew rate is verified by design and characterization, and may not be subject to production test.
Figure 17. Single-ended Output Slew Rate Definition
Description: SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
NOTE :
1) In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the
regular maximum limit of 9 V/ns applies
[Table 25] Single-ended Output Slew Rate Definition
Description Measured Defined by
From To
Single ended output slew rate for rising edge V
OL
(AC) V
OH
(AC) [V
OH
(AC)-V
OL
(AC)] / Delta TRse
Single ended output slew rate for falling edge V
OH
(AC) V
OL
(AC) [V
OH
(AC)-V
OL
(AC)] / Delta TFse
[Table 26] Single-ended Output Slew Rate
Parameter Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 Units
Min Max Min Max Min Max Min Max Min Max Min Max
Single ended output slew rate SRQse 4 9 4 9 4 9 4 9 4 9 4 9 V/ns
V
OH(AC)
V
OL(AC)
delta
TRse
delta
TFse
V
TT
- 36 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.5 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and
VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18.
NOTE:
1) Output slew rate is verified by design and characterization, and may not be subject to production test.
Figure 18. Differential Output Slew Rate Definition
Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting
[Table 27] Differential Output Slew Rate Definition
Description Measured Defined by
From To
Differential output slew rate for rising edge V
OLdiff
(AC) V
OHdiff
(AC) [V
OHdiff
(AC)-V
OLdiff
(AC)] / Delta TRdiff
Differential output slew rate for falling edge V
OHdiff
(AC) V
OLdiff
(AC) [V
OHdiff
(AC)-V
OLdiff
(AC)] / Delta TFdiff
[Table 28] Differential Output Slew Rate
Parameter Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 Units
Min Max Min Max Min Max Min Max Min Max Min Max
Differential output slew rate SRQdiff 8 18 8 18 8 18 8 18 8 18 8 18 V/ns
V
OHdiff
(AC)
V
OLdiff
(AC)
delta
TRdiff
delta
TFdiff
V
TT
- 37 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
NOTE :
1) The effective test load is 50 terminated by VTT = 0.5 * VDDQ.
Figure 19. Output Slew Rate Definition of Connectivity Test Mode
[Table 29] Single-ended AC & DC Output Levels of Connectivity Test Mode
Symbol Parameter DDR4-1600/1866/2133/2400/2666/2933 Unit Notes
V
OH(DC)
DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V
V
OM(DC)
DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V
V
OL(DC)
DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V
V
OB(DC)
DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V
V
OH(AC)
AC output high measurement level (for output SR) VTT + (0.1 x VDDQ) V 1
V
OL(AC)
AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1
[Table 30] Single-ended Output Slew Rate of Connectivity Test Mode
Parameter Symbol DDR4-1600/1866/2133/2400/2666/2933 Unit Notes
Min Max
Output signal Falling time TF_output_CT - 10 ns/V
Output signal Rising time TR_output_CT - 10 ns/V
VOH(AC)
TR_output_CT
VTT
VOL(AC)
TF_output_CT
0.5 * VDDQ
- 38 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
13.7 Test Load for Connectivity Test Mode Timing
The reference load for ODT timings is defined in Figure 20.
Figure 20. Connectivity Test Mode Timing Reference Load
V
DDQ
CT_INPUTS
DUT
DQ, DM
DQSU_t, DQSU_c
DQS_t, DQS_c
Rterm = 50 ohm
Timing Reference Points
V
SSQ
DQSL_t, DQSL_c
0.5*VDDQ
- 39 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
14. IDD SPEC TABLE
IDD and IPP values are for typical operating range of voltage and temperature unless otherwise noted.
NOTE :
1) DIMM IDD SPEC is based on the condition that de-actived rank(IDLE) is IDD2N. Please refer to Table20.
2) IDD current measure method and detail patterns are described on DDR4 component datasheet.
3) VDD and VDDQ are merged on module PCB (IDDQ values are not considered by Qoff condition)
4) DIMM IDD Values are calculated based on the component IDD spec and Register power.
[Table 31] I
DD
and I
DDQ
Specification for M386A8K40CM2
Symbol
M386A8K40CM2 :
64GB(8Gx72) Module
Unit
DDR4-2400 DDR4-2666 DDR-2933
17-17-17 19-19-19 21-21-21
VDD 1.2V VPP2.5V VDD 1.2V VPP2.5V VDD 1.2V VPP2.5V
IDD Max. IPP Max. IDD Max. IPP Max. IDD Max. IPP Max.
I
DD0
2751 234 2881 234 TBD TBD mA
I
DD0A
2804 234 2951 234 TBD TBD mA
I
DD1
3200 234 3349 234 TBD TBD mA
I
DD1A
3302 234 3468 234 TBD TBD mA
I
DD2N
2685 216 2804 216 TBD TBD mA
I
DD2NA
2823 216 2982 216 TBD TBD mA
I
DD2NT
2821 216 2951 216 TBD TBD mA
I
DD2NL
2200 216 2295 216 TBD TBD mA
I
DD2NG
2611 216 2720 216 TBD TBD mA
I
DD2ND
2472 216 2571 216 TBD TBD mA
I
DD2N_par
2676 216 2787 216 TBD TBD mA
I
DD2P
1625 216 1680 216 TBD TBD mA
I
DD2Q
2535 216 2637 216 TBD TBD mA
I
DD3N
3082 288 3218 288 TBD TBD mA
I
DD3NA
3222 288 3392 288 TBD TBD mA
I
DD3P
2107 288 2181 288 TBD TBD mA
I
DD4R
4727 234 5032 234 TBD TBD mA
I
DD4RA
4833 234 5156 234 TBD TBD mA
I
DD4RB
4728 234 5037 234 TBD TBD mA
I
DD4W
4799 216 5111 216 TBD TBD mA
I
DD4WA
4890 216 5212 216 TBD TBD mA
I
DD4WB
4815 216 5126 216 TBD TBD mA
I
DD4WC
4697 216 4989 216 TBD TBD mA
I
DD4W_par
5010 216 5323 216 TBD TBD mA
I
DD5B
6226 540 6301 540 TBD TBD mA
I
DD5F2
5094 432 5171 432 TBD TBD mA
I
DD5F4
4731 414 4779 414 TBD TBD mA
I
DD6N
1592 288 1596 288 TBD TBD mA
I
DD6E
2329 288 2333 288 TBD TBD mA
I
DD6R
1108 288 1113 288 TBD TBD mA
I
DD6A
1512 288 1517 288 TBD TBD mA
I
DD7
6255 378 6750 378 TBD TBD mA
I
DD8
755 216 760 216 TBD TBD mA
- 40 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 32] DIMM Rank Status
SEC DIMM Operating Rank The other Rank
I
DD0
I
DD0
I
DD2N
I
DD1
I
DD1
I
DD2N
I
DD2P
I
DD2P
I
DD2P
I
DD2N
I
DD2N
I
DD2N
I
DD2Q
I
DD2Q
I
DD2Q
I
DD3P
I
DD3P
I
DD3P
I
DD3N
I
DD3N
I
DD3N
I
DD4R
I
DD4R
I
DD2N
I
DD4W
I
DD4W
I
DD2N
I
DD5B
I
DD5B
I
DD2N
I
DD6
I
DD6
I
DD6
I
DD7
I
DD7
I
DD2N
I
DD8
I
DD8
I
DD8
- 41 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
15. INPUT/OUTPUT CAPACITANCE
NOTE :
1) This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C
parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd.
2) DQ, DM_n, DQS_T, DQS_c, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS
3) This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4) Absolute value CK_T-CK_C
5) Absolute value of CIO(DQS_T)-CIO (DQS_c)
6) CI applies to ODT, CS_n, CKE, A0-A17, BA0-BA1, BG0-BG1, RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.
7) CDI CTRL applies to ODT, CS_n and CKE
8) CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))
9) CDI_ADD_ CMD applies to, A0-A17, BA0-BA1, BG0-BG1,RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.
10) CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))
11) CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_c))
12) Maximum external load capacitance on ZQ pin: tbd pF.
13) TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case C
TEN
might not be valid and system shall verify TEN signal with Vendor
specific information.
[Table 33] Silicon Pad I/O Capacitance
Symbol Parameter
DDR4-1600/1866/
2133 DDR4-2400/2666 DDR4-2933 Unit NOTE
min max min max min max
C
IO
Input/output capacitance 0.55 1.4 0.55 1.15 0.55 1.0 pF 1,2,3
C
DIO
Input/output capacitance delta -0.1 0.1 -0.1 0.1 -0.1 0.1 pF 1,2,3,11
C
DDQS
Input/output capacitance delta
DQS_t and DQS_c - 0.05 - 0.05 - 0.05 pF 1,2,3,5
C
CK
Input capacitance, CK_t and CK_c 0.2 0.8 0.2 0.7 0.2 0.7 pF 1,3
C
DCK
Input capacitance delta CK_t and CK_c - 0.05 - 0.05 - 0.05 pF 1,3,4
C
I
Input capacitance
(CTRL, ADD, CMD pins only) 0.2 0.8 0.2 0.7 0.2 0.6 pF 1,3,6
C
DI_ CTRL
Input capacitance delta (All CTRL pins only) -0.1 0.1 -0.1 0.1 -0.1 0.1 pF 1,3,7,8
C
DI_ ADD_CMD
Input capacitance delta
(All ADD/CMD pins only) -0.1 0.1 -0.1 0.1 -0.1 0.1 pF 1,2,9,10
C
ALERT
Input/output capacitance of ALERT 0.5 1.5 0.5 1.5 0.5 1.5 pF 1,3
C
ZQ
Input/output capacitance of ZQ - 2.3 - 2.3 - 2.3 pF 1,3,12
C
TEN
Input capacitance of TEN 0.2 2.3 0.2 2.3 0.2 2.3 pF 1,3,13
- 42 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
16. SPEED BIN
[Table 34] DDR4-1600 Speed Bins and Operations
Speed Bin DDR4-1600
Unit NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Internal read command to first data tAA 13.75
13)
(13.50)
5),11)
18.00 ns 11
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD 13.75
(13.50)
5),11)
- ns 11
PRE command period tRP 13.75
(13.50)
5),11)
- ns 11
ACT to PRE command period tRAS 35 9 x tREFI ns 11
ACT to ACT or REF command period tRC 48.75
(48.50)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11
(Optional)
5)
tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,13
(Optional)
5),11)
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3
Supported CL Settings (9),11,12 nCK 12,13
Supported CL Settings with read DBI (11),13,14 nCK 12
Supported CWL Settings 9,11 nCK
- 43 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 35] DDR4-1866 Speed Bins and Operations
Speed Bin DDR4-1866
Unit NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first data tAA 13.92
13)
(13.50)
5),11)
18.00 ns 11
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD 13.92
(13.50)
5),11)
- ns 11
PRE command period tRP 13.92
(13.50)
5),11)
- ns 11
ACT to PRE command period tRAS 34 9 x tREFI ns 11
ACT to ACT or REF command period tRC 47.92
(47.50)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11
(Optional)
5)
tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,13
(Optional)
5),11)
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,6
(Optional)
5),11)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,6
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3
Supported CL Settings 9,11,12,13,14 nCK 12,13
Supported CL Settings with read DBI 11,13,14,15,16 nCK 12
Supported CWL Settings 9,10,11,12 nCK
- 44 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 36] DDR4-2133 Speed Bins and Operations
Speed Bin DDR4-2133
Unit NOTECL-nRCD-nRP 15-15-15
Parameter Symbol min max
Internal read command to first data tAA 14.06
13)
(13.50)
5),11)
18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.06
(13.50)
5),11)
- ns 11
PRE command period tRP 14.06
(13.50)
5),11)
- ns 11
ACT to PRE command period tRAS 33 9 x tREFI ns 11
ACT to ACT or REF command period tRC 47.06
(46.50)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11
(Optional)
5)
tCK(AVG)
1.5
1.6 ns 1,2,3,4,10,13
(Optional)
5),11)
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,10
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,7
(Optional)
5),11)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,7
CWL = 10,12 CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,7
(Optional)
5),11)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,7
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3
Supported CL Settings (9),(11), 12,(13),14,15,16 nCK 12,13
Supported CL Settings with read DBI (11),(13),14,(15),16,18,19 nCK
Supported CWL Settings 9,10,11,12,14 nCK
- 45 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 37] DDR4-2400 Speed Bins and Operations
Speed Bin DDR4-2400
Unit NOTECL-nRCD-nRP 17-17-17
Parameter Symbol min max
Internal read command to first data tAA 14.16
(13.75)
5),11)
18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.16
(13.75)
5),11)
- ns 11
PRE command period tRP 14.16
(13.75)
5),11)
- ns 11
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC 46.16
(45.75)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11
(Optional)
5)
tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,4,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,8
(Optional)
5),11)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,8
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,8
(Optional)
5),11)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,8
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
0.937 <1.071
ns 1,2,3,4,8
(Optional)
5),11)
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,8
CWL = 12,16
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 13
Supported CL Settings with read DBI 12,13,14,15,16,18,19,20,21 nCK
Supported CWL Settings 9,10,11,12,14,16 nCK
- 46 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 38] DDR4-2666 Speed Bins and Operations
Speed Bin DDR4-2666
Unit NOTECL-nRCD-nRP 19-19-19
Parameter Symbol min max
Internal read command to first data tAA 14.25
13)
(13.75)
5),11)
18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
ACT to internal read or write delay time tRCD 14.25
(13.75)
5),11)
- ns 11
PRE command period tRP 14.25
13)
(13.75)
5),11)
- ns 11
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC 46.25
(45.75)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,9
(Optional)
5),11)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,9
(Optional)
5),11)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,9
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
0.937 <1.071
ns 1,2,3,4,9
(Optional)
5),11)
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,9
CWL = 12,16
CL = 15 CL = 18 tCK(AVG) Reserved ns 4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,9
CL = 17 CL = 20 tCK(AVG)
0.833 <0.937
ns
1,2,3,4,9
(Optional)
5),11)
1,2,3,4,9
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CWL = 14.18
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3
Supported CL Settings 10,(11),12,(13),14,(15),16,(17),18,19,20 nCK 12
Supported CL Settings with read DBI 12,(13),14,(15),17,(18),19,(20),21,22,23 nCK
Supported CWL Settings 9,10,11,12,14,16,18 nCK
- 47 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 39] DDR4-2933 Speed Bins and Operations
Speed Bin DDR4-2933
Unit NOTECL-nRCD-nRP 21-21-21
Parameter Symbol min max
Internal read command to first data tAA 14.32
13)
(13.75)
5),11)
18.00 ns 11
Internal read command to first data with read DBI
enabled tAA_DBI tAA(min) + 4nCK tAA(max) + 4nCK ns 11
ACT to internal read or write delay time tRCD 14.32
(13.75)
5),11)
- ns 11
PRE command period tRP 14.32
(13.75)
5),11)
- ns 11
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC 46.32
(45.75)
5),11)
- ns 11
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,10
CWL = 9,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CL = 13 tCK(AVG)
1.25 <1.5
ns 1,2,3,4,12
(Optional)
5),11)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,14
CWL = 10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG)
1.071 <1.25
ns 1,2,3,4,14
(Optional)
5),11)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,14
CWL = 11,14
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG)
0.937 <1.071
ns 1,2,3,4,14
(Optional)
5),11)
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,14
CWL = 12,16
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,14
CL = 17 CL = 20 tCK(AVG)
0.833 0.937
ns
1,2,3,4,14
(Optional)
5),11)
1,2,3,4,14
CL = 18 CL = 21 tCK(AVG) 0.833 0.937 ns 1,2,3,14
CWL = 14.18
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4,14
CL = 19 CL = 22 tCK(AVG)
0.75 <0.833 ns 1,2,3,4,14
(Optional)
5),11)
ns
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3,14
CWL = 16, 20
CL = 19 CL = 23 tCK(AVG) Reserved ns 1,2,3,4
CL = 20 CL = 24 tCK(AVG) Reserved ns 1,2,3,4
CL = 21 CL = 25 tCK(AVG) 0.682 <0.75 ns 1,2,3,4
CL = 22 CL = 26 tCK(AVG) 0.682 <0.75 ns 1,2,3
Supported CL Settings 10,(11),12,(13),14,(15),16,(17),18,(19),20,21,22 nCK 12
Supported CL Settings with read DBI 12,(13),14,(15),16,(18),19,(20),21,(22),23,25,26 nCK 12
Supported CWL Settings 9,10,11,12,14,15,16,18,20 nCK
- 48 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
16.1 Speed Bin Table Note
Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133,2400, 2666 and 2933 Speed Bin Tables are valid only when Geardown Mode is disabled.
1) The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from
CL setting as well as requirements from CWL setting.
2) tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-
anteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in Section 13.5.
3) tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071ns or
0.937ns or 0.833ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
4) ‘Reserved’ settings are not allowed. User must program a different value.
5) 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD
information if and how this setting is supported.
6) Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7) Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8) Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9) Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
10) Any DDR4-2933 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
11) DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
12) Parameters apply from tCK(avg) min to tCK(avg) max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
13) CL number in parentheses, it means that these numbers are optional.
14) DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
15) Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for
all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
- 49 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
17. IDD and IDDQ Specification Parameters and Test conditions
17.1 IDD, IPP and IDDQ Measurement Conditions
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD,
IPP and IDDQ measurements.
• IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA,
IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD
balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
• IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
• IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are
using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
• “0” and “LOW” is defined as VIN <= VILAC(max).
• “1” and “HIGH” is defined as VIN >= VIHAC(min).
• “MID-LEVEL” is defined as inputs are VREF = VDD / 2.
• Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 40.
• Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 42.
• Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 43 through Table 50.
• IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
RTT_NOM = RZQ/6 (40 Ohm in MR1);
RTT_WR = RZQ/2 (120 Ohm in MR2);
RTT_PARK = Disable;
Qoff = 0
B
(Output Buffer enabled) in MR1;
TDQS_t disabled in MR1;
CRC disabled in MR2;
CA parity feature disabled in MR5;
Gear down mode disabled in MR3
Read/Write DBI disabled in MR5;
DM disabled in MR5
• Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is
started.
• Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
• Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} ;apply invert of BG/BA changes when directed above.
- 50 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
NOTE :
1) DIMM level Output test load condition may be different from above.
Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
RESET
CK_t/CK_c
CKE
CS
ACT,RAS,CAS,WE
A,BG,BA
C
ODT
ZQ
DQS_t/DQS_c
DQ
DM
DDR4 SDRAM
V
SS
V
SSQ
V
DD
V
PP
V
DDQ
I
DD
I
PP
I
DDQ
X
Application specific
memory channel
environment
Channel
IO Power
Simulation
X
Channel IO Power
Number
IDDQ
Test Load
IDDQ
Simulation
IDDQ
Measurement
Correlation
- 51 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 40] Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 Unit
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 21-21-21
tCK 1.25 1.071 0.937 0.833 0.75 0.682 ns
CL 11 13 15 17 19 21 nCK
CWL 11 1214161820nCK
nRCD 11 13 15 17 19 21 nCK
nRC 39 4551566268nCK
nRAS 28 32 36 39 43 47 nCK
nRP 11 1315171921nCK
nFAW
x4 16 16 16 16 16 16 nCK
x8 20 22 23 26 28 31 nCK
x1628 2832364044nCK
nRRDS
x44 44444nCK
x84 44444nCK
x165 56788nCK
nRRDL
x45 56678nCK
x85 56678nCK
x16 6 6 7 8 9 10 nCK
tCCD_S 4 4 4 4 4 4 nCK
tCCD_L 5 5 6 6 7 8 nCK
tWTR_S 2 3 3 3 4 4 nCK
tWTR_L 6 7 8 9 10 11 nCK
nRFC 2Gb 128 150 171 193 214 235 nCK
nRFC 4Gb 208 243 278 313 347 382 nCK
nRFC 8Gb 280 327 374 421 467 514 nCK
nRFC 16Gb 440 514 587 661 734 807 nCK
- 52 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
18. DIMM IDD SPECIFICATION DEFINITION
[Table 41] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
IDD0
Operating One Bank Active-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 40; BL: 8
1)
; AL: 0; CS_n: High between ACT and PRE; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 42; Data IO: VDDQ; DM_n: stable at 1;
Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 42); Output Buffer and RTT: Enabled in Mode Regis-
ters
2)
; ODT Signal: stable at 0; Pattern Details: see Table 42
IDD0A Operating One Bank Active-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD0
IPP0 Operating One Bank Active-Precharge IPP Current
Same condition with IDD0
IDD1
Operating One Bank Active-Read-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 40; BL: 8
1)
; AL: 0; CS_n: High between ACT, RD and PRE;
Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 43; DM_n: stable at 1;
Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 43); Output Buffer and RTT: Enabled in Mode Regis-
ters
2)
; ODT Signal: stable at 0; Pattern Details: see Table 43
IDD1A Operating One Bank Active-Read-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD1
IPP1 Operating One Bank Active-Read-Precharge IPP Current
Same condition with IDD1
IDD2N
Precharge Standby Current (AL=0)
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
Bank Address Inputs: partially toggling according to Table 44; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Out-
put Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: see Table 44
IDD2NA Precharge Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD2N
IPP2N Precharge Standby IPP Current
Same condition with IDD2N
IDD2NT
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
Bank Address Inputs: partially toggling according to Table 45; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Out-
put Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: toggling according to Table 45; Pattern Details: see Table 45
IDDQ2NT
(Optional)
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
IDD2NL Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled
3)
IDD2NG Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled
3),5)
IDD2ND Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled
3)
IDD2N_par Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled
3)
IDD2P
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed;
Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0
IPP2P Precharge Power-Down IPP Current
Same condition with IDD2P
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled
in Mode Registers
2)
; ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
Bank Address Inputs: partially toggling according to Table 44; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output
Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: see Table 44
- 53 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
IDD3NA Active Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD3N
IPP3N Active Standby IPP Current
Same condition with IDD3N
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled
in Mode Registers
2)
; ODT Signal: stable at 0
IPP3P Active Power-Down IPP Current
Same condition with IDD3P
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
2)
; AL: 0; CS_n: High between RD; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 46; Data IO: seamless read data burst with different data between
one burst and the next one according to Table 46; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks:
0,0,1,1,2,2,... (see Table 46); Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: see
Table 46
IDD4RA Operating Burst Read Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4R
IDD4RB Operating Burst Read Current with Read DBI
Read DBI enabled
3)
, Other conditions: see IDD4R
IPP4R Operating Burst Read IPP Current
Same condition with IDD4R
IDDQ4R
(Optional)
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
IDDQ4RB
(Optional)
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 41; BL: 8
1)
; AL: 0; CS_n: High between WR; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 47; Data IO: seamless write data burst with different data between
one burst and the next one according to Table 47; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through banks:
0,0,1,1,2,2,... (see Table 47); Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at HIGH; Pattern Details: see
Table 47
IDD4WA Operating Burst Write Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4W
IDD4WB Operating Burst Write Current with Write DBI
Write DBI enabled
3)
, Other conditions: see IDD4W
IDD4WC Operating Burst Write Current with Write CRC
Write CRC enabled
3)
, Other conditions: see IDD4W
IDD4W_par Operating Burst Write Current with CA Parity
CA Parity enabled
3)
, Other conditions: see IDD4W
IPP4W Operating Burst Write IPP Current
Same condition with IDD4W
IDD5B
Burst Refresh Current (1X REF)
CKE: High; External clock: On; tCK, CL, nRFC: see Table 41; BL: 8
1)
; AL: 0; CS_n: High between REF; Command, Address, Bank
Group Address, Bank Address Inputs: partially toggling according to Table 49; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF
command every nRFC (see Table 49); Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details:
see Table 49
IPP5B Burst Refresh Write IPP Current (1X REF)
Same condition with IDD5B
IDD5F2 Burst Refresh Current (2X REF)
tRFC=tRFC_x2, Other conditions: see IDD5B
IPP5F2 Burst Refresh Write IPP Current (2X REF)
Same condition with IDD5F2
IDD5F4 Burst Refresh Current (4X REF)
tRFC=tRFC_x4, Other conditions: see IDD5B
IPP5F4 Burst Refresh Write IPP Current (4X REF)
Same condition with IDD5F4
[Table 41] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
- 54 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE:
1) Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2) Output Buffer Enable
- set MR1 [A12 = 0]: Qoff = Output buffer enabled
- set MR1 [A2:1 = 00]: Output Driver Impedance Control = RZQ/7
RTT_Nom enable
- set MR1 [A10:8 = 011]: RTT_NOM = RZQ/6
RTT_WR enable
- set MR2 [A10:9 = 01]: RTT_WR = RZQ/2
RTT_PARK disable
- set MR5 [A8:6 = 000]
3) CAL enabled: set MR4 [A8:6 = 001]: 1600MT/s
010]: 1866MT/s, 2133MT/s
011]: 2400MT/s, 2666MT/s
100]: 2933MT/s
Gear Down mode enabled: set MR3 [A3 = 1]: 1/4 Rate
DLL disabled: set MR1 [A0 = 0]
CA parity enabled: set MR5 [A2:0 = 001]: 1600MT/s,1866MT/s, 2133MT/s
010]: 2400MT/s, 2666MT/s
011]: 2933MT/s
Read DBI enabled: set MR5 [A12 = 1]
Write DBI enabled: set MR5 [A11 = 1]
4) Low Power Array Self Refresh (LP ASR): set MR2 [A7:6 = 00]: Normal
01]: Reduced Temperature range
10]: Extended Temperature range
11]: Auto Self Refresh
5) IDD2NG should be measured after sync pules (NOP) input.
IDD6N
Self Refresh Current: Normal Temperature Range
T
CASE
: 0 - 85°C; Low Power Auto Self Refresh (LP ASR) : Normal
4)
; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 40; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank
Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
IPP6N Self Refresh IPP Current: Normal Temperature Range
Same condition with IDD6N
IDD6E
Self-Refresh Current: Extended Temperature Range)
TCASE: 0 - 95°C; Low Power Auto Self Refresh (LP ASR) : Extended
4)
; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see
Table 40; BL: 81); AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank
Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
IPP6E Self Refresh IPP Current: Extended Temperature Range
Same condition with IDD6E
IDD6R
Self-Refresh Current: Reduced Temperature Range
TCASE: 0 - 45°C; Low Power Auto Self Refresh (LP ASR) : Reduced4); CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 40; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank
Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
IPP6R Self Refresh IPP Current: Reduced Temperature Range
Same condition with IDD6R
IDD6A
Auto Self-Refresh Current
TCASE: 0 - 95°C; Low Power Auto Self Refresh (LP ASR) : Auto4);CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 40; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank
Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
IPP6A Auto Self-Refresh IPP Current
Same condition with IDD6A
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 41; BL: 81); AL: CL-1; CS_n: High between ACT
and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 50; Data IO: read data
bursts with different data between one burst and the next one according to Table 50; DM_n: stable at 1; Bank Activity: two times interleaved
cycling through banks (0, 1, ...7) with different addressing, see Table 50; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0; Pattern Details: see Table 50
IPP7 Operating Bank Interleave Read IPP Current
Same condition with IDD7
IDD8 Maximum Power Down Current
TBD
IPP8 Maximum Power Down IPP Current
Same condition with IDD8
[Table 41] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
- 55 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device
3) C[2:0] are used only for 3DS device
4) DQ signals are VDDQ.
[Table 42] IDD0, IDD0A and IPP0 Measurement-Loop Pattern
1)
CK_t /CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/ A15
WE_n/ A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0ACT 000000000000000 -
1,2 D, D 100000000000000 -
3,4 D_#, D_#1111100
3
2)
30007F0 -
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 010100000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
11*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 1 instead
22*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
33*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
44*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
55*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
66*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
77*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
88*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and
x8 only
99*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 10*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 11*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 12*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 13*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 14*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 15*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 56 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
[Table 43] IDD1, IDD1A and IPP1 Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0ACT 000000000000000 -
1, 2 D, D 100000000000000 -
3, 4 D#, D# 1111100
3
b)
30007F0 -
... repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary
nRCD -AL RD 011010000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 010100000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1
1*nRC + 0 ACT 000110011000000 -
1*nRC + 1, 2 D, D 100000000000000 -
1*nRC + 3, 4 D#, D# 11111003
b)
30007F0 -
... repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary
1*nRC + nRCD - AL RD 011010011000000
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
1*nRC + nRAS PRE 010100110000000 -
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary
22*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
33*nRC
repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
44*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
55*nRC
repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
66*nRC
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
87*nRC
repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
99*nRC
repeat Sub-Loop 1, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
10 10*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
11 11*nRC repeat Sub-Loop 1, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
12 12*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
13 13*nRC repeat Sub-Loop 1, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
14 14*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
15 15*nRC repeat Sub-Loop 1, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
16 16*nRC repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 57 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
[Table 44] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0 D, D 1000000000000000
1 D, D 1000000000000000
2 D#, D# 1 1 1 1 1 0 0 3
2)
30007F00
3 D#, D# 1 1 1 1 1 0 0 3
2)
30007F00
14-7 repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 1 instead
28-11 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]
2
) = 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
9 36-39 repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 0, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 58 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
[Table 45] IDD2NT and IDDQ2NT Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0D, D100000000000000-
1D, D100000000000000-
2 D#, D# 1111 100
3
2
30007F0-
3 D#, D# 1111 100
3
2
30007F0-
14-7 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 1, BA[1:0] = 1 instead
28-11 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4
and x8
only
9 36-39 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 59 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command.
[Table 46] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0RD 011010000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1 D 100000000000000-
2,3 D#, D# 1 1 1 1 1 0 0 3
2)
30007F0-
1
4RD 0110100110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5 D 100000000000000-
6,7 D#, D# 1 1 1 1 1 0 0 3
2)
30007F0-
28-11 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
9 36-39 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 60 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Write Command.
[Table 47] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0WR 011001000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1 D 100001000000000-
2,3 D#, D# 1111110
3
2)
30007F0-
1
4WR 0110010110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5 D 100001000000000-
6,7 D#, D# 1111110
3
2)
30007F0-
28-11 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 12-15 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 16-19 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
5 20-23 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
6 24-27 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
7 28-31 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
8 32-35 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
9 36-39 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 40-43 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 44-47 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 48-51 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 52-55 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 56-59 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 60-63 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 61 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Write Command.
[Table 48] IDD4WC Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0WR 011001000000000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
D8=CRC
1,2 D, D 100001000000000-
3,4 D#, D# 1111110
3
2)
30007F0-
5WR 0110010110007F0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
D8=CRC
6,7 D, D 100001000000000-
8,9 D#, D# 1111110
3
2)
30007F0-
2 10-14 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 15-19 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 20-24 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
5 25-29 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
6 30-34 repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
7 35-39 repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
8 40-44 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
9 45-49 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
10 50-54 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
11 55-59 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
12 60-64 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
13 65-69 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
14 70-74 repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
15 75-79 repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
- 62 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
[Table 49] IDD5B Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
00 REF 100000000000000-
1
1 D 100000000000000-
2 D 100000000000000-
3 D#, D# 1111100
3
2)
30007F0-
4 D#, D# 1111100
3
2)
30007F0-
4-7 repeat pattern 1...4, use BG[1:0]
2)
= 1, BA[1:0] = 1 instead
8-11 repeat pattern 1...4, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
12-15 repeat pattern 1...4, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
16-19 repeat pattern 1...4, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
20-23 repeat pattern 1...4, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
24-27 repeat pattern 1...4, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
28-31 repeat pattern 1...4, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
32-35 repeat pattern 1...4, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
36-39 repeat pattern 1...4, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
40-43 repeat pattern 1...4, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
44-47 repeat pattern 1...4, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
48-51 repeat pattern 1...4, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
52-55 repeat pattern 1...4, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
56-59 repeat pattern 1...4, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
60-63 repeat pattern 1...4, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary
- 63 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE:
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
[Table 50] IDD7 Measurement-Loop Pattern
1)
CK_t, CK_c
CKE
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
3)
BG[1:0]
2)
BA[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
Data
4)
toggling
Static High
0
0ACT 000000000000000-
1RDA 011010 00001000
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
2 D 100000000000000-
3 D# 1111100
3
2
30007F0-
... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
1
nRRD ACT 000000011000000-
nRRD + 1 RDA 011010 11001000
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2 2*nRRD repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
3 3*nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 3 instead
4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
5nFAW repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 1 instead
6 nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 2 instead
7 nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 3 instead
8 nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 1, BA[1:0] = 0 instead
9 nFAW + 4*nRRD repeat Sub-Loop 4
10 2*nFAW repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 0 instead
For x4 and x8 only
11 2*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 1 instead
12 2*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 2 instead
13 2*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD repeat Sub-Loop 4
15 3*nFAW repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
16 3*nFAW + nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 2 instead
17 3*nFAW + 2*nRRD repeat Sub-Loop 0, use BG[1:0]
2)
= 2, BA[1:0] = 3 instead
18 3*nFAW + 3*nRRD repeat Sub-Loop 1, use BG[1:0]
2)
= 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD repeat Sub-Loop 4
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
- 64 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
19. TIMING PARAMETERS BY SPEED GRADE
[Table 51] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2933
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time
(DLL off mode)
tCK
(DLL_OFF) 820820820820820820ns
Average Clock Period tCK(avg) 1.25 <1.5 1.071 <1.25 0.937 <1.071 0.833 <0.937 0.750 <0.833 0.682 <0.750 ns 35,36
Average high pulse width tCH(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Average low pulse width tCL(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Absolute Clock Period tCK(abs) MIN : tCK(avg)min + tJIT(per)min_tot
MAX : tCK(avg)max + tJIT(per)max_tot tCK(avg)
Absolute clock HIGH pulse width tCH(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 23
Absolute clock LOW pulse width tCL(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 24
Clock Period Jitter- total JIT(per)_tot -63 63 -54 54 -47 47 -42 42 -38 38 -34 34 ps 23
Clock Period Jitter- deterministic JIT(per)_dj -31 31 -27 27 -23 23 -21 21 -19 19 -17 17 ps 26
Clock Period Jitter during DLL locking
period tJIT(per, lck) -50 50 -43 43 -38 38 -33 33 -30 30 -27 27 ps
Cycle to Cycle Period Jitter tJIT(cc) - 125 - 107 - 94 - 83 - 75 - 68 ps
Cycle to Cycle Period Jitter during DLL
locking period tJIT(cc, lck) - 100 - 86 - 75 - 67 - 60 - 55 ps
Duty Cycle Jitter tJIT(duty) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD ps
Cumulative error across 2 cycles tERR(2per) -92 92 -79 79 -69 69 -61 61 -55 55 -50 50 ps
Cumulative error across 3 cycles tERR(3per) -109 109 -94 94 -82 82 -73 73 -66 66 -60 60 ps
Cumulative error across 4 cycles tERR(4per) -121 121 -104 104 -91 91 -81 81 -73 73 -66 66 ps
Cumulative error across 5 cycles tERR(5per) -131 131 -112 112 -98 98 -87 87 -78 78 -71 71 ps
Cumulative error across 6 cycles tERR(6per) -139 139 -119 119 -104 104 -92 92 -83 83 -75 75 ps
Cumulative error across 7 cycles tERR(7per) -145 145 -124 124 -109 109 -97 97 -87 87 -79 79 ps
Cumulative error across 8 cycles tERR(8per) -151 151 -129 129 -113 113 -101 101 -91 91 -83 83 ps
Cumulative error across 9 cycles tERR(9per) -156 156 -134 134 -117 117 -104 104 -94 94 -85 85 ps
Cumulative error across 10 cycles tERR(10per) -160 160 -137 137 -120 120 -107 107 -96 96 -88 88 ps
Cumulative error across 11 cycles tERR(11per) -164 164 -141 141 -123 123 -110 110 -99 99 -90 90 ps
Cumulative error across 12 cycles tERR(12per) -168 168 -144 144 -126 126 -112 112 -101 101 -92 92 ps
Cumulative error across 13 cycles tERR(13per) -172 172 -147 147 -129 129 -114 114 -103 103 -93 93 ps
Cumulative error across 14 cycles tERR(14per) -175 175 -150 150 -131 131 -116 116 -104 104 -95 95 ps
Cumulative error across 15 cycles tERR(15per) -178 178 -152 152 -133 133 -118 118 -106 106 -97 97 ps
Cumulative error across 16 cycles tERR(16per) -180 189 -155 155 -135 135 -120 120 -108 108 -98 98 ps
Cumulative error across 17 cycles tERR(17per) -183 183 -157 157 -137 137 -122 122 -110 110 -100 100 ps
Cumulative error across 18 cycles tERR(18per) -185 185 -159 159 -139 139 -124 124 -112 112 -101 101 ps
Cumulative error across n = 13, 14 . . .
49, 50 cycles tERR(nper) MIN : tERR(nper)min = ((1 + 0.68ln(n)) * tJIT(per)_total min)
MAX : tERR(nper)max = ((1 + 0.68ln(n)) *
t
JIT(per)_total max) ps
Command and Address setup time to
CK_t, CK_c referenced to Vih(ac) /
Vil(ac) levels
tIS(base) 115 - 100 - 80 - 62 - 55 - 48 - ps
Command and Address setup time to
CK_t, CK_c referenced to Vref levels tIS(Vref) 215 - 200 - 180 - 162 - 145 - 138 - ps
Command and Address hold time to
CK_t, CK_c referenced to Vih(dc) /
Vil(dc) levels
tIH(base) 140 - 125 - 105 - 87 - 80 - 73 - ps
Command and Address hold time to
CK_t, CK_c referenced to Vref levels tIH(Vref) 215 - 200 - 180 - 162 - 145 - 138 - ps
Control and Address Input pulse width
for each input tIPW 600 - 525 - 460 - 410 - 385 - 365 - ps
Command and Address Timing
CAS_n to CAS_n command delay for
same bank group tCCD_L
max(5
nCK,
6.250 ns)
-
max(5
nCK,
5.355 ns)
-
max(5
nCK,
5.355 ns)
-
max(5
nCK,
5 ns)
-
max(5
nCK,
5 ns)
-
max(5
nCK,
5 ns)
-nCK34
CAS_n to CAS_n command delay for
different bank group tCCD_S 4 - 4 - 4 - 4 - 4 - 4 - nCK 34
ACTIVATE to ACTIVATE Command
delay to different bank group for 2KB
page size
tRRD_S(2K) Max(4nCK
,6ns) -Max(4nCK
,5.3ns) -Max(4nCK
,5.3ns) -Max(4nCK
,5.3ns) -Max(4nCK
,5.3ns) -Max(4nCK
,5.3ns) -nCK34
ACTIVATE to ACTIVATE Command
delay to different bank group for 2KB
page size
tRRD_S(1K) Max(4nCK
,5ns)
Max(4nCK
,4.2ns)
Max(4nCK
,3.7ns)
Max(4nCK
,3.3ns) -Max(4nCK
,3ns) -Max(4nCK
,2.7ns) -nCK34
ACTIVATE to ACTIVATE Command
delay to different bank group for 1/2KB
page size
tRRD_S(1/2K) Max(4nCK
,5ns)
Max(4nCK
,4.2ns)
Max(4nCK
,3.7ns)
Max(4nCK
,3.3ns) -Max(4nCK
,3ns) -Max(4nCK
,2.7ns) -nCK34
- 65 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
ACTIVATE to ACTIVATE Command
delay to same bank group for 2KB
page size
tRRD_L(2K) Max(4nCK
,7.5ns)
Max(4nCK
,6.4ns)
Max(4nCK
,6.4ns)
Max(4nCK
,6.4ns) -Max(4nCK
,6.4ns) -Max(4nCK
,6.4ns) -nCK34
ACTIVATE to ACTIVATE Command
delay to same bank group for 1KB
page size
tRRD_L(1K) Max(4nCK
,6ns)
Max(4nCK
,5.3ns)
Max(4nCK
,5.3ns)
Max(4nCK
,4.9ns) -Max(4nCK
,4.9ns) -Max(4nCK
,4.9ns) -nCK34
ACTIVATE to ACTIVATE Command
delay to same bank group for 1/2KB
page size
tRRD_L(1/2K) Max(4nCK
,6ns)
Max(4nCK
,5.3ns)
Max(4nCK
,5.3ns)
Max(4nCK
,4.9ns) -Max(4nCK
,4.9ns) -Max(4nCK
,4.9ns) -nCK34
Four activate window for 2KB page
size tFAW_2K Max(28nC
K,35ns)
Max(28nC
K,30ns)
Max(28nC
K,30ns)
Max(28nC
K,30ns) -Max(28nC
K,30ns) -Max(28nC
K,30ns) -ns34
Four activate window for 1KB page
size tFAW_1K Max(20nC
K,25ns)
Max(20nC
K,23ns)
Max(20nC
K,21ns)
Max(20nC
K,21ns) -Max(20nC
K,21ns) -Max(20nC
K,21ns) -ns34
Four activate window for 1/2KB page
size tFAW_1/2K Max(16nC
K,20ns)
Max(16nC
K,17ns)
Max(16nC
K,15ns)
Max(16nC
K,13ns) -Max(16nC
K,12ns) -
Max
(16nCK,
10.875ns)
-ns34
Delay from start of internal write trans-
action to internal read command for dif-
ferent bank group
tWTR_S max(2nCK
,2.5ns) -max(2nCK
,2.5ns) -max(2nCK
,2.5ns) -
Max
(2nCK,
2.5ns)
-
Max
(2nCK,
2.5ns)
-
Max
(2nCK,
2.5ns)
-ns
1,2,e,3
4
Delay from start of internal write trans-
action to internal read command for
same bank group
tWTR_L max(4nCK
,7.5ns) -max(4nCK
,7.5ns) -max(4nCK
,7.5ns) -
max
(4nCK,7.5
ns)
-
max
(4nCK,7.5
ns)
-
max
(4nCK,7.5
ns)
-1,34
Internal READ Command to PRE-
CHARGE Command delay tRTP max(4nCK
,7.5ns) -max(4nCK
,7.5ns) -max(4nCK
,7.5ns) -
max
(4nCK,7.5
ns)
-
max
(4nCK,7.5
ns)
-
max
(4nCK,7.5
ns)
-
WRITE recovery time tWR 15 - 15 - 15 - 15 - 15 - 15 - ns 1
Write recovery time when CRC and DM
are enabled
tWR_CRC
_DM
tWR+max
(4nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-
tWR+max
(5nCK,3.7
5ns)
-ns1, 28
Delay from start of internal write trans-
action to internal read command for dif-
ferent bank group with both CRC and
DM enabled
tWTR_S_C
RC_DM
tWTR_S+
max
(4nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-
tWTR_S+
max
(5nCK,3.7
5ns)
-ns
2, 29,
34
Delay from start of internal write trans-
action to internal read command for
same bank group with both CRC and
DM enabled
tWTR_L_C
RC_DM
tWTR_L+
max
(4nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
-
tWTR_L+
max
(5nCK,3.7
5ns)
- ns 3,30, 34
DLL locking time tDLLK 597 - 597 - 768 - 768 - 854 - 940 - nCK
Mode Register Set command cycle
time tMRD8-8-8-8-8-8-nCK
Mode Register Set command update
delay tMOD max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -max(24nC
K,15ns) -nCK50
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - 1 - 1 - 1 - nCK 33
Multi Purpose Register Write Recovery
Time tWR_MPR
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
tMOD
(min)
+ AL + PL
-
Auto precharge write recovery + pre-
charge time tDAL(min) Programmed WR + roundup (tRP / tCK(avg)) nCK
DQ0 or DQL0 driven to 0 set-up time to
first DQS rising edge tPDA_S 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 45,47
DQ0 or DQL0 driven to 0 hold time
from last DQS falling edge tPDA_H 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 46,47
CS_n to Command Address Latency
CS_n to Command Address Latency tCAL
max(3
nCK, 3.748
ns)
-
max(3
nCK, 3.748
ns)
-
max(3
nCK, 3.748
ns)
-
max(3
nCK, 3.748
ns)
-
max(3
nCK, 3.748
ns)
-
max(3
nCK, 3.748
ns)
-nCK
Mode Register Set command cycle
time in CAL mode tMRD_tCAL tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -nCK
Mode Register Set update delay in
CAL mode tMOD_tCAL tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -tMOD+
tCAL -nCK
DRAM Data Timing
DQS_t, DQS_c to DQ skew, per group,
per access tDQSQ - 0.16 - 0.16 - 0.16 - 0.17 - 0.18 - 0.19 tCK(avg)/
2
13,18,3
9,49
DQ output hold time per group, per ac-
cess from DQS_t, DQS_c tQH 0.76 - 0.76 - 0.76 - 0.74 - 0.74 - 0.72 - tCK(avg)/
2
13,17,1
8,39,49
Data Valid Window per device, per UI:
(tQH - tDQSQ) of each UI on a given
DRAM
tDVWd 0.63 - 0.63 - 0.64 - 0.64 - TBD - TBD - UI 17,18,3
9,49
Data Valid Window, per pin, per UI:
(tQH - tDQSQ) each UI on a pin of a
given DRAM
tDVWp 0.66 - 0.66 - 0.69 - 0.72 - 0.72 - TBD - UI 17,18,3
9,49
DQ low impedance time from CK_t,
CK_c tLZ(DQ) -450 225 -390 195 -360 180 -330 175 -310 170 -280 165 ps 39
DQ high impedance time from CK_t,
CK_c tHZ(DQ) - 225 -195- 180 - 175 - 170 - 165 ps 39
Data Strobe Timing
DQS_t, DQS_c differential READ Pre-
amble (1 clock preamble) tRPRE 0.9 NOTE44 0.9 NOTE44 0.9 NOTE44 0.9 NOTE 44 0.9 NOTE 44 0.9 NOTE 44 tCK 40
[Table 51] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2933
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 66 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
DQS_t, DQS_c differential READ Pre-
amble (2 clock preamble) tRPRE2 NA NA NA NA NA NA 1.8 NOTE 44 1.8 NOTE 44 1.8 NOTE 44 tCK 41
DQS_t, DQS_c differential READ
Postamble tRPST 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 tCK
DQS_t, DQS_c differential output high
time tQSH 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 21
DQS_t, DQS_c differential output low
time tQSL 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 20
DQS_t, DQS_c differential WRITE Pre-
amble (1 clock preamble) tWPRE 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - tCK 42
DQS_t, DQS_c differential WRITE Pre-
amble (2 clock preamble) tWPRE2 NA NA NA 1.8 - 1.8 - 1.8 - tCK 43
DQS_t, DQS_c differential WRITE
Postamble tWPST 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - tCK
DQS_t and DQS_c low-impedance
time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 -360 180 -330 175 -310 170 -280 165 ps
DQS_t and DQS_c high-impedance
time (Referenced from RL+BL/2) tHZ(DQS) - 225 - 195 - 180 - 175 - 170 - 165 ps
DQS_t, DQS_c differential input low
pulse width tDQSL 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
DQS_t, DQS_c differential input high
pulse width tDQSH 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
DQS_t, DQS_c rising edge to CK_t,
CK_c rising edge (1 clock preamble) tDQSS -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 tCK 42
DQS_t, DQS_c rising edge to CK_t,
CK_c rising edge (2 clock preamble) tDQSS2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A tCK 43
DQS_t, DQS_c falling edge setup time
to CK_t, CK_c rising edge tDSS 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
DQS_t, DQS_c falling edge hold time
from CK_t, CK_c rising edge tDSH 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
DQS_t, DQS_c rising edge output tim-
ing location from rising CK_t, CK_c
with DLL On mode
tDQSCK
(DLL On) -225 225 -195 195 -180 180 -175 175 -170 170 -165 165 ps 37,38,3
9
DQS_t, DQS_c rising edge output vari-
ance window per DRAM
tDQSCKI
(DLL On) - 370 - 330 - 310 - 290 - 270 - 265 ps 37,38,3
9
MPSM Timing
Command path disable delay upon
MPSM entry tMPED
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
Valid clock requirement after MPSM
entry tCKMPE
tMOD(min)
+tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
tMOD(min)
+ tCP-
DED(min)
-
Valid clock requirement before MPSM
exit tCKMPX tCKSRX(m
in) -tCKSRX(m
in) -tCKSRX(m
in) -tCKSRX(m
in) -tCKSRX(m
in) -tCKSRX(m
in) -
Exit MPSM to commands not requiring
a locked DLL tXMP tXS(min) - tXS(min) - tXS(min) - tXS(min) - tXS(min) - tXS(min) -
Exit MPSM to commands requiring a
locked DLL tXMPDLL
tXMP(min)
+ tXS-
DLL(min)
-
tXMP(min)
+ tXS-
DLL(min)
-
tXMP(min)
+tXS-
DLL(min)
-
tXMP(min)
+ tXS-
DLL(min)
-
tXMP(min)
+ tXS-
DLL(min)
-
tXMP(min)
+ tXS-
DLL(min)
-
CS setup time to CKE tMPX_S tIS(min) +
tIH(min) -tIS(min) +
tIH(min) -tIS(min) +
tIH(min) -tIS(min) +
tIH(min) -tIS(min) +
tIH(min) -tIS(min) +
tIH(min) -
CS_n High hold time to CKE rising
edge tMPX_HH tXP(min) - tXP(min) - tXP(min) - tXP(min) - tXP(min) - tXP(min) -
CS_n Low hold time to CKE rising
edge tMPX_LH 12 tXMP-
10ns 12 tXMP-
10ns 12 tXMP-
10ns 12 tXMP-
10ns 12 tXMP-
10ns 12 tXMP-
10ns ns 51
Calibration Timing
Power-up and RESET calibration time tZQinit 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - nCK
Normal operation Full calibration time tZQoper 512 - 512 - 512 - 512 - 512 - 512 - nCK
Normal operation Short calibration time tZQCS 128 - 128 - 128 - 128 - 128 - 128 - nCK
Reset/Self Refresh Timing
Exit Reset from CKE HIGH to a valid
command tXPR
max
(5nCK,tRF
C(min)+
10ns)
-
max
(5nCK,tRF
C(min)+
10ns)
-
max
(5nCK,tRF
C(min)+
10ns)
-
max
(5nCK,tRF
C(min)+10
ns)
-
max
(5nCK,tRF
C(min)+10
ns)
-
max
(5nCK,tRF
C(min)+10
ns)
-nCK
Exit Self Refresh to commands not re-
quiring a locked DLL tXS tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -tRFC(min)
+10ns -nCK
SRX to commands not requiring a
locked DLL in Self Refresh ABORT
tX-
S_ABORT(mi
n)
tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -nCK
Exit Self Refresh to ZQCL,ZQCS and
MRS (CL,CWL,WR,RTP and Gear
Down)
tXS_FAST
(min)
tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -tRFC4(min
)+10ns -nCK
Exit Self Refresh to commands requir-
ing a locked DLL tXSDLL tDLLK(min
)-tDLLK(min
)-tDLLK(min
)-tDLLK(min
)-tDLLK(min
)-tDLLK(min
)-nCK
[Table 51] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2933
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 67 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
Minimum CKE low width for Self re-
fresh entry to exit timing tCKESR tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -tCKE(min)
+1nCK -nCK
Minimum CKE low width for Self re-
fresh entry to exit timing with CA Parity
enabled
tCKESR_ PAR
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-
tCKE(min)
+
1nCK+PL
-nCK
Valid Clock Requirement after Self Re-
fresh Entry (SRE) or Power-Down En-
try (PDE)
tCKSRE max(5nCK
,10ns) -max(5nCK
,10ns) -max(5nCK
,10ns) -
max
(5nCK,10n
s)
-
max
(5nCK,10n
s)
-
max
(5nCK,10n
s)
-nCK
Valid Clock Requirement after Self Re-
fresh Entry (SRE) or Power-Down
when CA Parity is enabled
tCKSRE_PAR
max
(5nCK,10n
s)+PL
-
max
(5nCK,10n
s)+PL
-
max
(5nCK,10n
s)+PL
-
max
(5nCK,10n
s)+PL
-
max
(5nCK,10n
s)+PL
-
max
(5nCK,10n
s)+PL
-nCK
Valid Clock Requirement before Self
Refresh Exit (SRX) or Power-Down
Exit (PDX) or Reset Exit
tCKSRX max(5nCK
,10ns) -max(5nCK
,10ns) -max(5nCK
,10ns) -
max
(5nCK,10n
s)
-
max
(5nCK,10n
s)
-
max
(5nCK,10n
s)
-nCK
Power Down Timing
Exit Power Down with DLL on to any
valid command; Exit Precharge Power
Down with DLL frozen to commands
not requiring a locked DLL
tXP
max
(4nCK,6ns
)
-
max
(4nCK,6ns
)
-
max
(4nCK,6ns
)
-
max
(4nCK,6ns
)
-
max
(4nCK,6ns
)
-
max
(4nCK,6ns
)
-nCK
CKE minimum pulse width tCKE
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
-
max
(3nCK,
5ns)
- nCK 31,32
Command pass disable delay tCPDED 4 - 4 - 4 - 4 - 4 - 4 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI nCK 6
Timing of ACT command to Power
Down entry tACTPDEN1-1-2-2-2-2-nCK7
Timing of PRE or PREA command to
Power Down entry tPRPDEN1-1-2-2-2-2-nCK7
Timing of RD/RDA command to Power
Down entry tRDPDEN RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - nCK
Timing of WR command to Power
Down entry (BL8OTF, BL8MRS,
BC4OTF)
tWRPDEN
WL+4+(tW
R/
tCK(avg))
-
WL+4+(tW
R/
tCK(avg))
-
WL+4+(tW
R/
tCK(avg))
-
WL+4+(tW
R/
tCK(avg))
-
WL+4+(tW
R/
tCK(avg))
-
WL+4+(tW
R/
tCK(avg))
-nCK4
Timing of WRA command to Power
Down entry (BL8OTF, BL8MRS,
BC4OTF)
tWRAPDEN WL+4+WR
+1 -WL+4+WR
+1 -WL+4+WR
+1 -WL+4+WR
+1 -WL+4+WR
+1 -WL+4+WR
+1 -nCK5
Timing of WR command to Power
Down entry (BC4MRS)
tWRP-
BC4DEN
WL+2+(tW
R/
tCK(avg))
-
WL+2+(tW
R/
tCK(avg))
-
WL+2+(tW
R/
tCK(avg))
-
WL+2+(tW
R/
tCK(avg))
-
WL+2+(tW
R/
tCK(avg))
-
WL+2+(tW
R/
tCK(avg))
-nCK4
Timing of WRA command to Power
Down entry (BC4MRS)
tWRAP-
BC4DEN
WL+2+WR
+1 -WL+2+WR
+1 -WL+2+WR
+1 -WL+2+WR
+1 -WL+2+WR
+1 -WL+2+WR
+1 -nCK5
Timing of REF command to Power
Down entry tREFPDEN1-1-2-2-2-2-nCK7
Timing of MRS command to Power
Down entry tMRSPDENtMOD(min)-tMOD(min)-tMOD(min)-tMOD(min)-tMOD(min)-tMOD(min)-
PDA Timing
Mode Register Set command cycle
time in PDA mode tMRD_PDA max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -max(16nC
K,10ns) -nCK
Mode Register Set command update
delay in PDA mode tMOD_PDA tMOD tMOD tMOD tMOD tMOD tMOD
ODT Timing
Asynchronous RTT turn-on delay
(Power-Down with DLL frozen) tAONAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
Asynchronous RTT turn-off delay
(Power-Down with DLL frozen) tAOFAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.28 0.72 0.26 0.74 tCK(avg)
Write Leveling Timing
First DQS_t/DQS_c rising edge after
write leveling mode is programmed tWLMRD 40 - 40 - 40 - 40 - 40 - 40 - nCK 12
DQS_t/DQS_c delay after write level-
ing mode is programmed tWLDQSEN 25 - 25 - 25 - 25 - 25 - 25 - nCK 12
Write leveling setup time from rising
CK_t, CK_c crossing to rising DQS_t/
DQS_c crossing
tWLS 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg)
Write leveling hold time from rising
DQS_t/DQS_c crossing to rising CK_t,
CK_c crossing
tWLH 0.13 -0.13 -0.13 -0.13 - 0.13 - 0.13 - tCK(avg)
Write leveling output delay tWLO 09.5 09.5 09.5 09.5 0 9.5 0 9.5 ns
Write leveling output error tWLOE 0 2 0 2 0 2 0 2 0 2 0 2 ns
CA Parity Timing
Commands not guaranteed to be exe-
cuted during this time
tPAR_UN-
KNOWN -PL -PL -PL -PL -PL-PL
Delay from errant command to
ALERT_n assertion
tPAR_ALERT
_ON - PL+6ns - PL+6ns - PL+6ns - PL+6ns - PL+6ns - PL+6ns
[Table 51] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2933
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 68 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
Pulse width of ALERT_n signal when
asserted
tPAR_ALERT
_PW 48 96 56 112 64 128 72 144 80 160 88 176 nCK
Time from when Alert is asserted till
controller must start providing DES
commands in Persistent CA parity
mode
tPAR_ALERT
_RSP -43 -50 -57 -64 -71 - 78 nCK
Parity Latency PL 444556nCK
CRC Error Reporting
CRC error to ALERT_n latency tCRC_ALERT 313 313 313 313313313ns
CRC ALERT_n pulse width CRC_ALERT
_PW 610 610 610 610610610nCK
Geardown timing
Exit RESET from CKE HIGH to a valid
MRS geardown (T2/Reset) tXPR_GEAR --------TBD TBD
CKE High Assert to Gear Down Enable
time(T2/CKE) tXS_GEAR --------TBD TBD
MRS command to Sync pulse time(T3) tSYNC_GEA
R --------TBD-TBD- 27
Sync pulse to First valid command(T4) tCMD_GEAR --------TBD TBD 27
Geardown setup time tGEAR_setup --------2-TBD-nCK
Geardown hold time tGEAR_hold --------2-TBD-nCK
tREFI
tRFC1 (min)
2Gb 160 - 160 - 160 - 160 - 160 -160- ns34
4Gb 260 - 260 - 260 - 260 - 260 -260- ns34
8Gb 350 - 350 - 350 - 350 - 350 -350- ns34
16Gb 550 - 550 - 550 - 550 - 550 -550- ns34
tRFC2 (min)
2Gb110-110-110-110-110-110- ns34
4Gb 160 - 160 - 160 - 160 - 160 -160- ns34
8Gb 260 - 260 - 260 - 260 - 260 -260- ns34
16Gb 350 - 350 - 350 - 350 - 350 -350- ns34
tRFC4 (min)
2Gb 90 - 90 - 90 - 90 - 90 -90-ns34
4Gb110-110-110-110-110-110- ns34
8Gb 160 - 160 - 160 - 160 - 160 -160- ns34
16Gb 260 - 260 - 260 - 260 - 260 - 260 - ns 34
[Table 51] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2933
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
- 69 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) Start of internal write transaction is defined as follows :
For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL.
2) A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled
3) Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
4) tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK following rounding algorithm defined in "13.5 Rounding Algorithms".
5) WR in clock cycles as programmed in MR0.
6) tREFI depends on TOPER.
7) CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be
applied until finishing those operations.
8) For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter
specifications are satisfied.
9) When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
10) When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
11) When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
12) The max values are system dependent.
13) DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are
tbd.
14) The deterministic component of the total timing. Measurement method tbd.
15) DQ to DQ static offset relative to strobe per group. Measurement method tbd.
16) This parameter will be characterized and guaranteed by design.
17) When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the
SDRAM input clock). Example tbd.
18) DRAM DBI mode is off.
19) DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.
20) tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
21) tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
22) There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI
23) tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge
24) tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge
25) Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd.
26) The deterministic jitter component out of the total jitter. This parameter is characterized and guaranteed by design.
27) This parameter has to be even number of clocks
28) When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
29) When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
30) When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
31) After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification (Low pulse width).
32) After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification (HIGH pulse width).
33) Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
34) Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
35) This parameter must keep consistency with Speed-Bin Tables shown in section 10.
36) DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
UI=tCK(avg).min/2.
37) applied when DRAM is in DLL ON mode.
38) Assume no jitter on input clock signals to the DRAM.
39) Value is only valid for RONNOM = 34 ohms.
40) 1tCK toggle mode with setting MR4:A11 to 0.
41) 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400/2666 and 2933 speed grade.
42) 1tCK mode with setting MR4:A12 to 0.
43) 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400/2666 and 2933 speed grade.
44) The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side. See Figure “Clock to Data Strobe Relationship” in Operation
datasheet. Boundary of DQS Low-Z occur one cycle earlier in 2tCK toggle mode which is illustrated in “Read Preamble” section.
45) DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point
46) last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High
47) VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode.
48) The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See Figure “Clock to Data Strobe
Relationship” in Operation datasheet.
49) Reference level of DQ output signal is specified with a midpoint as a widest part of Output signal eye which should be approximately 0.7 * VDDQ as a center level of the
static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ.
50) For MR7 commands, the minimum delay to a subsequent non-MRS command is 5nCK.
51) tMPX_LH(max) is defined with respect to actual tXMP in system as opposed to tXMP(min).
- 70 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
19.1 Rounding Algorithms
Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory
clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz
yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must
be done because the DDR4 SDRAM specification establishes a minimum granularity for timing parameters of 1 ps.
Rules for rounding must be defined to allow optimization of device performance without violating device parameters. These algorithms rely on results that
are within correction factors on device testing and specification to avoid losing performance due to rounding errors.
These rules are:
•Clock periods such as tCKAVGmin are defined to 1 ps of accuracy; for example, 0.9375... ns is defined as 937 ps and 1.0714... ns is defined as
1071 ps.
•Using real math, parameters like tAAmin, tRCDmin, etc. which are programmed in systems in numbers of clocks (nCK) but expressed in units of
time (in ns) are divided by the clock period (in ns) yielding a unitless ratio, a correction factor of 2.5% is subtracted, then the result is set to the next
higher integer number of clocks:
nCK = ceiling [(parameter_in_ns / application_tCK_in_ns) - 0.025]
•Alternatively, programmers may prefer to use integer math instead of real math by expressing timing in ps, scaling the desired parameter value by
1000, dividing by the application clock period, adding an inverse correction factor of 97.4%, dividing the result by 1000, then truncating down to the
next lower integer value:
nCK = truncate [{(parameter_in_ps x 1000) / (application_tCK_in_ps) + 974} / 1000]
•Either algorithm yields identical results
- 71 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
19.2 The DQ input receiver compliance mask for voltage and timing
The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal
must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input
signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid
data-eye.
Figure 23. DQ Receiver(Rx) compliance mask
Figure 24. Vcent_DQ Variation to Vcent_DQ(midpoint)
The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order
to have valid Rx Mask values.
Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given
DDR4 DRAM component. Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in Figure 24.
This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level Vref will be
set by the system to account for Ron and ODT settings.
DQx DQy DQz
Vcent_DQx Vcent_DQy Vcent_DQz
Vref variation
(Component)
(Smallest Vref_DQ Level) (Largest Vref_DQ Level)
Vcent_DQ(midpoint)
- 72 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
Figure 25. DQS to DQ and DQ to DQ Timings at DRAM Balls
All of the timing terms in Figure 25 are measured at the VdIVW voltage levels centered around Vcent_DQ and are referenced to the DQS_t/DQS_c center
aligned to the DQ per pin.
DQS_t
DQS_c
DQS_t
DQS_c
Rx Mask
0.5xTdiVW 0.5xTdiVW
TdiVW
DQS, DQs Data-in at DRAM Ball
Rx Mask
DQS, DQs Data-in at DRAM Ball
Rx Mask - Alternative View
DQx-z
DRAMa
VdiVW
Rx Mask
0.5xTdiVW 0.5xTdiVW
TdiVW
DQx-z
DRAMa
VdiVW
Rx Mask
t
DQS2DQ
t
DQ2DQ
DQy
DRAMb
VdiVW
Rx Mask
DQz
DRAMb
VdiVW
Rx Mask
t
DQS2DQ
t
DQ2DQ
DQz
DRAMc
VdiVW
Rx Mask
DQy
DRAMc
VdiVW
Rx Mask
t
DQS2DQ
+ 0.5 x TdiVW
t
DQ2DQ
DQy
DRAMb
VdiVW
DQz
DRAMb
VdiVW
t
DQS2DQ
+ 0.5 x TdiVW
t
DQ2DQ
DQz
DRAMc
VdiVW
DQy
DRAMc
VdiVW
TdiVW
t
DQ2DQ
Rx Mask
TdiVW
Rx Mask
TdiVW
Rx Mask
TdiVW
t
DQ2DQ
NOTE : DQx represents an optimally centered mask. NOTE : DRAMa represents a DRAM without any DQS/DQ skews.
DQy represents earliest valid mask. DRAMb represents a DRAM with early skews (negative t
DQS2DQ
).
DQz represents latest valid mask.
NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch.
TdiPW is not shown; composite data-eyes shown would violate TdiPW.
VCENT DQ(midpoint) is not shown but is assumed to be midpoint of VdiVW.
DRAMc represents a DRAM with delayed skews (positive t
DQS2DQ
).
- 73 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 26 below: A low to high
transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint)
while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
above Vcent_DQ(midpoint).
Rising edge slew rate equations:
srr1 = VdIVW(max) / tr1
srr2 = (VIHL_AC(min) – VdIVW(max)) / (2*tr2)
Figure 26. Slew Rate Conditions For Rising Transition
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 27 below: A high to low
transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint)
while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
below Vcent_DQ(pin mid).
Falling edge slew rate equations:
srf1 = VdIVW(max) / tf1
srf2 = (VIHL_AC(min) – VdIVW(max)) / (2*tf2)
Figure 27. Slew Rate Conditions For Falling Transition
- 74 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
19.3 Command, Control, and Address Setup, Hold, and Derating
The total tIS (setup time) and tIH (hold time) required is calculated to account for slew rate variation by adding the data sheet tIS (base) values, the
VIL(AC)/VIH(AC) points, and tIH (base) values, the VIL(DC)/VIH(DC) points; to the tIS and tIH derating values, respectively. The base values are
derived with single-end signals at 1V/ns and differential clock at 2V/ns. Example: tIS (total setup time) = tIS (base) + tIS.
For a valid transition, the input signal has to remain above/below VIH(AC)/VIL(AC) for the time defined by tVAC.
Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached VIH(AC)/ VIL(AC) at the time of
the rising clock transition), a valid input signal is still required to complete the transition and to reach VIH(AC)/ VIL(AC). For slew rates that fall between
the values listed in derating tables, the derating values may be obtained by linear interpolation.
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VIH(AC)min
that does not ring back below VIH(DC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of
VIH(DC)min and the first crossing of VIL(AC)max that does not ring back above VIL(DC)max. Hold (tIH) nominal slew rate for a rising signal is defined as
the slew rate between the last crossing of VIL(DC)max and the first crossing of VIH(AC)min that does not ring back below VIH(DC)min. Hold (tIH) nominal
slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VIL(AC)minthat does not ring
back above VIL(DC)max.
NOTE :
1) Base ac/dc referenced for 1V/ns slew rate and 2 V/ns clock slew rate.
2) Values listed are referenced only; applicable limits are defined elsewhere.
NOTE :
1) Command, Address, Control input levels relative to VREFCA.
2) Values listed are referenced only; applicable limits are defined elsewhere.
[Table 52] Command, Address, Control Setup and Hold Values
DDR4 1600 1866 2133 2400 2666 2933 Unit Reference
tIS(base, AC100) 115 100 80 62 - - ps VIH/L(ac)
tIH(base, DC75) 140 125 105 87 - - ps VIH/L(dc)
tIS(base, AC tbd) - - - - 55 48 ps VIH/L(ac)
tIH(base, DC tbd) - - - - 80 73 ps VIH/L(dc)
tIS/tIH @ VREF 215 200 180 162 145 138 ps
[Table 53] Command, Address, Control Input Voltage Values
DDR4 1600 1866 2133 2400 2666 2933 Unit Reference
VIH.CA(AC)min 100 100 100 100 90 90 mV VIH/L(ac)
VIH.CA(DC)min 75 75 75 75 65 65 mV VIH/L(dc)
VIL.CA(AC)max -75 -75 -75 -75 -65 -65 mV VIH/L(ac)
VIL.CA(DC)max -100 -100 -100 -100 -90 -90 mV VIH/L(dc)
- 75 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
NOTE :
1) VIH/L(ac) = +/-100mV, VIH/L(dc) = +/-75mV; relative to VREFCA.
NOTE :
1) VIH/L(ac) = +/-tbd mV, VIH/L(dc) = +/- tbd mV; relative to VREFCA
[Table 54] Derating values DDR4-1600/1866/2133/2400 tIS/tIH - ac/dc based
tIS, IH derating in [ps] AC/DC based
1)
CK_t, CK_c Differential Slew Rate
10V/ns 8V/ns 6V/ns 4V/ns 3.0V/ns 2.0V/ns 1.5V/ns 1V/ns
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CMD,
ADDR,
CNTL
Input
Slew
rate
V/ns
7 765476557756795882608664947311189
6 735374537554775679588363927110888
5 705071517252745476568060886810585
4 654666476748695071527556836510081
3 57405741584260446346675075589275
2 40284128422944314633503858467563
1.5 23 15 24 16 25 17 27 19 29 21 33 25 42 33 58 50
1-10-10-9-9-8-8-6-6-4-400882525
0.9 -17 -14 -16 -14 -15 -13 -13 -10 -11 -8 -7 -4 1 4 18 21
0.8 -26 -19 -25 -19 -24 -18 -22 -16 -20 -14 -16 -9 -7 -1 9 16
0.7 -37 -26 -36 -25 -35 -24 -33 -22 -31 -20 -27 -16 -18 -8 -2 9
0.6 -52 -35 -51 -34 -50 -33 -48 -31 -46 -29 -42 -25 -33 -17 -17 0
0.5 -73 -48 -72 -47 -71 -46 -69 -44 -67 -42 -63 -38 -54 -29 -38 -13
0.4 -104 -66 -103 -66 -102 -65 -100 -63 -98 -60 -94 -56 -85 -48 -69 -31
[Table 55] Derating values DDR4-2666/2933 tIS/tIH - ac/dc based
tIS, IH derating in [ps] AC/DC based
1)
CK_t, CK_c Differential Slew Rate
10V/ns 8V/ns 6V/ns 4V/ns 3.0V/ns 2.0V/ns 1.5V/ns 1V/ns
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH
CMD,
ADDR,
CNTL
Input
Slew
rate
V/ns
7 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
6 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
4 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
3 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
2 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
1.5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
1 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.9 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.8 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.7 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.6 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.4 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
- 76 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
19.4 DDR4 Function Matrix
DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.
[Table 56] Function Matrix (By ORG. V:Supported, Blank:Not supported)
Functions x4 x8 x16 NOTE
Write Leveling VVV
Temperature controlled Refresh VVV
Low Power Auto Self Refresh VVV
Fine Granularity Refresh VVV
Multi Purpose Register VVV
Data Mask VV
Data Bus Inversion VV
TDQS V
ZQ calibration VVV
DQ Vref Training VVV
Per DRAM Addressability VVV
Mode Register Readout VVV
CAL VVV
WRITE CRC VVV
CA Parity VVV
Control Gear Down Mode VVV
Programmable Preamble VVV
Maximum Power Down Mode VV
Boundary Scan Mode V
Additive Latency VV
3DS VV
- 77 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
[Table 57] Function Matrix (By Speed. V:Supported, Blank:Not supported)
Functions
DLL Off mode DLL On mode
NOTE
equal or slower
than 250Mbps
1600/1866/2133
Mbps 2400Mbps 2666/2933Mbps
Write Leveling VVVV
Temperature controlled Refresh VVVV
Low Power Auto Self Refresh VVVV
Fine Granularity Refresh VVVV
Multi Purpose Register VVVV
Data Mask VVVV
Data Bus Inversion VVVV
TDQS VVV
ZQ calibration VVVV
DQ Vref Training VVVV
Per DRAM Addressability VVV
Mode Register Readout VVVV
CAL VVV
WRITE CRC VVV
CA Parity VVV
Control Gear Down Mode V
Programmable Preamble (= 2tCK) VV
Maximum Power Down Mode VVV
Boundary Scan Mode VVVV
3DS VVVV
- 78 -
datasheet DDR4 SDRAM
Load Reduced DIMM
Rev. 1.2
20. PHYSICAL DIMENSIONS
20.1 4Gbx4(DDP) based 8Gx72 Module (4 Ranks) - M386A8K40CM2
133.35
Units: Millimeters
31.25
72.25
EDC
1.4 ± 0.10
Max 1.4
64.6 56.1
AB
0.85
0.25
E : 2.6
Detail B,E
0.6 ± 0.03
Detail C
B : 2.1
2.1
9.35
10.20
2.6
2.1
9.35
10.20
2.6
Detail D
Detail A
1.50 ±
0.05
3.85 ±
0.10
4.30
Max 1.4
20.1.1 x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs
The used device is 4G x4(DDP) DDR4 SDRAM, FBGA.
DDR4 SDRAM Part NO: K4AAG045WC-MC**
NOTE :
1) Tolerances on all dimensions ±0.15 unless otherwise specified.
Address, Command and Control lines