®
Technology
SiI 1160
PanelLink Transmitter
Data Sheet
Document # SiI-DS-0126-B
SiI 1160 PanelLink Transmitter
Data Sheet
Silicon Image, Inc.
SiI-DS-0126-B
March 2005
Application Information
To obtain the most updated Application Notes and other useful information for your design, please visit the Silicon
Image web site at www.siliconimage.com or contact your local Silicon Image sales office.
Copyright Notice
This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or
send/transmit any part of this documentation without the expressed written permission of Silicon Image, Inc.
T rademark Acknowledgment
Silicon Image, the Silicon Image logo, PanelLink® and the PanelLink® Digital logo are registered trademarks of
Silicon Image, Inc. TMDSTM is a trademark of Silicon Image, Inc. I2C is a trademark of Philips Semiconductor. All
other trademarks are the property of their respective holders.
Disclaimer
This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the
information in this document as necessary. The customer should make sure that they have the most recent data
sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document.
Customers should take appropriate action to ensure their use of the products does not infringe upon any patents.
Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to
infringe upon such rights.
All information cont ained herein is subject to change without notice.
Revision History
Revision Date Comment
A 07/07/04 Data Sheet – 1st release
B 03/01/05 Data Sheet – 2nd release – added I2C registers and pins, added
dual zone PLL information, corrected recommended REXT_SWING
value from 380 to 510, corrected package JEDEC code, added
reset description.
© 2005 Silicon Image. Inc.
SiI-DS-0126-B ii
SiI 1160 PanelLink Transmitter
Data Sheet
TABLE OF CONTENTS
General Description........................................................................................................................................ 1
Features ...................................................................................................................................................... 1
Functional Description .................................................................................................................................... 3
Electrical Specifications.................................................................................................................................. 4
Absolute Maximum Conditions ................................................................................................................... 4
Normal Operating Conditions ..................................................................................................................... 4
Digital I/O Specifications ............................................................................................................................. 4
DC Specifications........................................................................................................................................ 5
AC Specifications ........................................................................................................................................ 5
Input Timing Diagrams ................................................................................................................................6
Pin Descriptions.............................................................................................................................................. 8
Input Pins .................................................................................................................................................... 8
Control and Configuration Pins................................................................................................................... 8
Power Management Pins............................................................................................................................ 9
Differential Signal Data Pins ....................................................................................................................... 9
Local Control (I2C) Interface ....................................................................................................................... 9
Reserved Pins........................................................................................................................................... 10
Power and Ground Pins............................................................................................................................ 10
Feature Information ...................................................................................................................................... 11
I2C Interface .............................................................................................................................................. 11
I2C Register Mapping................................................................................................................................12
Dual Zone PLL .......................................................................................................................................... 13
Manual Zone Control............................................................................................................................. 13
Automatic Zone Control......................................................................................................................... 14
Reset Description...................................................................................................................................... 14
TFT Panel Data Mapping.......................................................................................................................... 15
Design Recommendations ........................................................................................................................... 20
Differences Between SiI 160 and SiI 1160 ............................................................................................... 20
EXT_SWING Selection ............................................................................................................................. 20
PCB Ground Planes.................................................................................................................................. 20
Voltage Ripple Regulation......................................................................................................................... 20
Spread Spectrum Support......................................................................................................................... 21
Reset Circuit for I2C Application................................................................................................................ 22
Power Control ........................................................................................................................................... 22
Decoupling Capacitors.............................................................................................................................. 23
Series Damping Resistors on Outputs...................................................................................................... 24
Source Termination Resistors on Differential Outputs.............................................................................. 24
Differential Trace Routing ......................................................................................................................... 25
Package Dimensions.................................................................................................................................... 28
Package .................................................................................................................................................... 28
Ordering Information ................................................................................................................................. 28
iii SiI-DS-0126-B
SiI 1160 PanelLink Transmitter
Data Sheet
LIST OF TABLES
Table 1. General I2C Register Bits................................................................................................................ 13
Table 2. Dual Zone PLL I2C Control Register Bits........................................................................................ 14
Table 3. One Pixel/Clock Input/Output TFT Mode........................................................................................ 15
Table 4. Two Pixels/Clock Input/Output TFT Mode ...................................................................................... 16
Table 5. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode................................ 17
Table 6. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode................................ 18
Table 7. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode .................................................... 19
Table 8. New Pin Functions for SiI 1160 Tx.................................................................................................. 20
Table 9. Power Consumption Characteristics .............................................................................................. 22
Table 10. Recommended Components for Bypass and Decoupling Circuits............................................... 23
Table 11. Routing Guidelines for DVI Traces................................................................................................ 27
LIST OF FIGURES
Figure 1. System Block Diagram – Typical Application .................................................................................. 1
Figure 2. Pin Diagram for SiI 1160 ................................................................................................................. 2
Figure 3. Functional Block Diagram ............................................................................................................... 3
Figure 4. Clock Cycle High/Low Times........................................................................................................... 6
Figure 5. Input Data Setup/Hold Time to IDCK .............................................................................................. 6
Figure 6. VSYNC, HSYNC and CTL[3:1] Delay Time from DE ...................................................................... 6
Figure 7. DE High and Low Times.................................................................................................................. 6
Figure 8. Reset Timing at Power-Up or Prior to First I2C Access................................................................... 7
Figure 9. I2C Byte Read................................................................................................................................11
Figure 10. I2C Byte Write .............................................................................................................................. 11
Figure 11. Voltage Regulation using LM317EMP......................................................................................... 20
Figure 12. Planned Spread Spectrum Support Circuit ................................................................................. 21
Figure 13. Typical Reset Circuit.................................................................................................................... 22
Figure 14. Decoupling and Bypass Capacitor Placement............................................................................ 23
Figure 15. Decoupling and Bypass Schematic............................................................................................. 23
Figure 16. Series Input Damping Resistors for Driving Source ................................................................... 24
Figure 17. Differential Output Source Terminations .................................................................................... 24
Figure 18. Source Termination Layout Illustration........................................................................................ 25
Figure 19. Example of Incorrect Differential Signal Routing ........................................................................ 26
Figure 20. Example of Correct Differential Signal Routing........................................................................... 26
Figure 21. Differential Trace Routing to DVI Connector (Top Side View) .................................................... 26
Figure 22. 100-pin TQFP Package Dimensions (JEDEC code MS-026-AED) ............................................ 28
SiI-DS-0126-B iv
SiI 1160 PanelLink Transmitter
Data Sheet
General Description
The SiI 1160 transmitter uses PanelLink Digital
technology to support displays up to UXGA resolution.
It supports up to true-color panels (24 bits per pixel,
16.7M colors) in 1 or 2 pixels-per-clock mode.
All PanelLink products are designed on scaleable
CMOS architecture to support future performance
requirements while maintaining the same logical
interface. The SiI 1160 transmitter follows this strategy
by offering a pin-compatible upgrade to the SiI 160
transmitter that also brings longer cable support.
PanelLink Digital technology simplifies the PC &
display interface by resolving many of the system
level issues associated with high-speed digital design,
providing the system designer with a digital solution
that is quicker to market and lower in cost.
Features
Scaleable Bandwidth: 25-165 MHz (VGA to
UXGA)
Backwards compatible replacement for the SiI 160
transmitter
High Skew Inter pair Tolerance: 1 full input clock
cycle (6ns at 165 MHz)
Flexible interface: single or dual pixel input at up
to 48 bits
Cable Distance Support: over 20m DVI cable
Fully DVI 1.0 compliant
Advanced on-chip input clock jitter filter to ensure
clean output to receiver
Available in Universal package for both standard
and Pb-Free (environmentally-friendly)
applications.
SiI 1160
TMDS Tx
even pixel data
odd pixel data
control
clock
TMDS over
DVI cable or
flat cable
Video
Processor
SiI 1161
TMDS Rx
Panel
Controller
24
/
24
/
even pixel data
odd pixel data
control
clock
24
/
24
/
Figure 1. System Block Diagram – Typical Application
1 SiI-DS-0126-B
SiI 1160 PanelLink Transmitter
Data Sheet
Figure 2. Pin Diagram for SiI 1160
DIE13
1
SiI 1160
100-Pin TQ FP
(Top View )
DIE12
2
DIE11
3
DIE10
4
DIE9
5
DIE8
6
GND
7
VCC
8
DIE7
9
DIE6
10
DIE5
11
DIE4
12
DIE3
13
DIE2
14
DIE1
15
DIE0
16
IVCC
17
PVCC1
18
PGND1
19
SCL
20
MSEN
21
RSVD
22
SDA
23
EDGE
24
PIXS
25
PD
26
RSVD
27
RSVD
28
RSVD
29
VCC
30
GND
31
EXT_SWING
32
AGND
33
TXC-
34
TXC+
35
AVCC
36
AGND
37
RSVD
38
TX0-
39
TX0+
40
AGND
41
TX1-
42
TX1+
43
AVCC
44
TX2-
45
TX2+
46
AGND
47
DIO23
48
DIO22
49
DIO21
50
75
DIO1 74
DIO2 73
DIO3 72
DIO4 71
DIO5 70
DIO6 69
DIO7 68
GND 67
IVCC 66
DIO8 65
DIO9 64
DIO10 63
DIO11 62
DIO12 61
DIO13 60
DIO14 59
DIO15 58
GND 57
VCC 56
DIO16 55
DIO17 54
DIO18 53
DIO19 52
DIO20 51
DIO0
DIE14 100
DIE15 99
IVC C 98
DIE16 97
DIE17 96
DIE18 95
DIE19 94
DIE20 93
DIE21 92
DIE22 91
DIE23 90
GND 89
VCC 88
ISEL/RST 87
PGND2 86
PVCC2 85
CTL1 84
CTL2 83
CTL3 82
IVC C 81
IDCK 80
GND 79
DE 78
VSYNC 77
HSYNC 76
DIFFERENTIAL SIGNALS
ODD 8-bits RED
EVEN 8-bits RED
ODD 8-bits GREEN
EVEN 8-bits GREEN
ODD 8-bits BLUE
EVEN 8-bits BLUE CONFIGURATION PINS
PLL
PLL
CONTROLS
INPUT
CLOCK
GPI
CONTROL
SiI-DS-0126-B 2
SiI 1160 PanelLink Transmitter
Data Sheet
3 SiI-DS-0126-B
Functional Description
The SiI 1160 Tx is a DVI 1.0 compliant PanelLink transmitter in a compact package. It provides 48 bits for data
input to allow for panel support up to UXGA. Figure 3 shows the functional blocks of the chip.
Data
Capture
Logic
DE
HSYNC
VSYNC
CTL3
CTL2
CTL1
IDCK
EXT_SWING
Tx0
DATA
DATA
24
DIE[23:0]
DIO[23:0] Encoder
0
HSYNC
VSYNC
Encoder
1
Encoder
2
CTL1
DATA
CTL2
CTL3
24
Jitter
Filter
Main
PLL
Swing
Control
Tx1
Tx2
TxC
Tx0+
Tx0-
Tx1+
Tx1-
Tx2+
Tx2-
TxC+
TxC-
SDA
SCL
EDGE
PIXS
I2C Registers
-----------
Configuration
Logic
-----------
Message
Encoder Logic
CTL0
config
info
Figure 3. Functional Block Diagram
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 4
Electrical Specifications
Absolute Maximum Conditions
Symbol Parameter Min Typ Max Units
VCC
1Supply Voltage 3.3V -0.3 4.0 V
VIInput Voltage -0.3 VCC+ 0.3 V
VO
2Input Voltage -0.3 VCC+ 0.3 V
TjJunction Temperature (with power applied) 125 °C
TSTG Storage Temperature -65 150 °C
Note
1. Permanent device damage may occur if absolute maximum conditions are exceeded.
2. Functional operation should be restricted to the conditions described under normal operating conditions.
Normal Operating Conditions
Symbol Parameter Min Typ Max Units
VCC Supply Voltage 3.0 3.3 3.6 V
VCCN Supply Voltage Noise 100 mVP-P
TAAmbient Temperature (with power applied) 0 25 70 °C
θJA Thermal Resistance (junction to ambient)1 53
°C/W
Note
1. Airflow at 0m/s.
Digital I/O Specifications
Under normal operating conditions unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
VIH High-level Input Voltage 2 V
VIL Low-level Input Voltage 0.8 V
VOH High-level Input Voltage 2.4 V
VOL Low-level Input Voltage 0.4 V
VCINL Input Clamp Voltage1ICL = -18mA GND -0.8 V
VCIPL Input Clamp Voltage1ICL = 18mA IVCC + 0.8 V
VCONL Input Clamp Voltage1ICL = -18mA GND -0.8 V
VCOPL Input Clamp Voltage1ICL = 18mA OVCC + 0.8 V
IOL Input Leakage Current High Impedance -10 10 µA
Note
1. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of
greater than 3 ns or one third of the clock cycle.
SiI 1160 PanelLink Transmitter
Data Sheet
5 SiI-DS-0126-B
DC Specifications
Under normal operating conditions, with REXT_SWING = 510 and using source termination, unless otherwise
specified.
Symbol Parameter Conditions Min Typ Max Units
VOD Differential Voltage
Single ended peak to peak
amplitude
RLOAD = 50
510
550
590
mV
VDOH Differential High-level Output
Voltage1 AVCC V
IDOS Differential Output Short
Circuit Current1VOUT = 0 V 5 µA
IPD Power-down Current2
5 mA
ICCT Transmitter Supply Current IDCK= 165 MHz, two pixel per
clock mode
IVCC = VCC, Worst Case Pattern3
140
200
mA
Notes
1. Guaranteed by design.
2. Assumes all inputs to the transmitter are not toggling.
3. The Worst Case Pattern consists of a black and white checkerboard pattern, each checker one pixel wide.
AC Specifications
Under normal operating conditions with source termination and the recommended REXT_SWING value unless
otherwise specified.
Symbol Parameter Conditions Min Max Units
TCIP IDCK Period, 1 Pixel/Clock 6 40 ns
FCIP IDCK Frequency, 1 Pixel/Clock 25 165 MHz
TCIP IDCK Period, 2 Pixels/Clock 12 80 ns
FCIP IDCK Frequency, 2 Pixels/Clock 12 81 MHz
TCIH IDCK High Time at 165MHz 2 ns
TCIL IDCK Low Time at 165MHz 2 ns
TSIDF Data, DE, VSYNC, HSYNC, and CTL[3:1]
Setup Time to IDCK falling edge
EDGE = 0 1.5 ns
THIDF Data, DE, VSYNC, HSYNC, and CTL[3:1]
Hold Time from IDCK falling edge
EDGE = 0 1.5 ns
TSIDR Data, DE, VSYNC, HSYNC, and CTL[3:1]
Setup Time to IDCK rising edge
EDGE = 1 1.5 ns
THIDR Data, DE, VSYNC, HSYNC, and CTL[3:1]
Hold Time from IDCK rising edge
EDGE = 1 1.5 ns
TDDF VSYNC, HSYNC, and CTL[3:1] Delay from DE falling
edge1 T
CIP ns
TDDR VSYNC, HSYNC, and CTL[3:1] Delay to DE rising edge1 T
CIP ns
THDE DE high time1 8191TCIP ns
TLDE DE low time1 128TCIP ns
TI2CDVD SDA Data Valid Delay from SCL high to low transition CL = 400pf 1000 ns
TRESET ISEL/RST Signal High Time required for valid I2C reset 50 µs
Notes
1. Guaranteed by design.
2. All TMDS signaling is guaranteed to meet the DVI 1.0 specifications.
3. All Standard mode I2C (100kHz and 400kHz) timing requirements are guaranteed by design.
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 6
Input Timing Diagrams
T
CIH
T
CIL
T
CIP
80% VCC
20% VCC
20% VCC
80% VCC 80% VCC
Figure 4. Clock Cycle High/Low Times
D[23:0], DE,
HSYNC,VSYNC
IDCK
T
SIDF
T
HIDF
T
SIDR
T
HIDR
50 %
50 % 50 %
50 %
Figure 5. Input Data Setup/Hold Time to IDCK
TDDR
TDDF
DE
VSYNC, HSYNC,
CTL[3:1]
20% VCC
20% VCC 20% VCC
20% VCC
DE
VSYNC, HSYNC,
CTL[3:1]
Figure 6. VSYNC, HSYNC and CTL[3:1] Delay Time from DE
DE
T
LDE
T
HDE
20% VCC
80% VCC
20% VCC
80% VCC
Figure 7. DE High and Low Times
SiI 1160 PanelLink Transmitter
Data Sheet
7 SiI-DS-0126-B
V
CC
max
T
RESET
V
CC
min
V
CC
ISEL/RST TRESET
Figure 8. Reset Timing at Power-Up or Prior to First I2C Access
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 8
Pin Descriptions
Input Pins
Pin Name Pin # Type Description
DIE23-
DIE0
See
SiI 1160
Pin
Diagram
In Input Even Data[23:0] corresponds to 24-bit pixel data for 1-pixel/clock input mode and to
the first 24-bit pixel data for 2-pixels/clock mode.
Input data is synchronized with Input data clock (IDCK).
Data can be latched on the rising of the falling edge of IDCK depending on whether
EDGE is high or low, respectively.
Refer to TFT Panel Data Mapping in this document and DSTN Panel Data Mapping
application note (SiI-AN-0007-A), which tabulates the relationship between the input data
to the transmitter and output data from the Receiver
DIO23-
DIO0
See
SiI 1160
Pin
Diagram
In Input Odd Data[23:0] corresponds to the second 24-bit pixel data for 2-pixels/clock mode.
Tie all pins to low when not in use.
Input data is synchronized with Input data clock (IDCK).
Data can be latched on the rising of the falling edge of IDCK depending on whether
EDGE is high or low, respectively.
Dual Link is not supported.
IDCK 80 In Input Data Clock. Input data and control signals can be valid either on the falling or the
rising edge of IDCK as selected by the EDGE pin.
DE 78 In Input Data Enable. This signal qualifies the active data area. DE is always required by the
transmitter and must be high during active display time and low during blanking time.
HSYNC
VSYNC
76
77
In
In
Horizontal Sync input control signal.
Vertical Sync input control signal.
Control and Configuration Pins
Pin Name Pin # Type Description
EDGE 24 In Data/Control Latching Edge. A LOW level indicates that all input signals(DIE/DIO[23:0],
HSYNC, VSYNC, DE and CTL[3:1] are latched on the falling edge of IDCK, while a HIGH
level(3.3V) indicates that all input signals are latched on the rising edge of IDCK. When
the I2C interface is enabled (ISEL/RST=LOW), this pin is ignored and the EDGE register
bit is used instead.
PIXS 25 In Pixel Select. A LOW level indicates one pixel (up to 24-bits) per clock mode using
DIE[23:0]. A HIGH level (3.3V) indicates two pixels (up to 48-bits) per clock mode using
DIE[23:0] for the first pixel and DIO[23:0] for the second pixel.
CTL1 84 In General Input control signal 1.
SS_CLK_IN Spread Spectrum Clock Input (future). A planned future variation of this device will allow
a spread spectrum version of SS_CLK_OUT to be driven into this pin, at which time pin
29 will become CTL1.
CTL2 83 In General Input control signal 2.
SS_CLK_OUT Out Spread Spectrum Clock Output (future). A planned future variation of this device will
allow a clock to be driven out of this pin for conditioning by a spread spectrum device, at
which time pin 28 will become CTL2.
CTL3 82 In General Input control signal 3.
RSVD 27 In
Reserved. Must be tied HIGH for normal operation.
SS_EN# Spread Spectrum Enable. A planned future variation of this device will use this pin to
enable pins 83 and 84 to handle spread spectrum clock.
Low = Spread Spectrum feature enabled on pins 83 and 84
High = Pins 83 and 84 are CTL2 and CTL1 outputs (default)
SiI 1160 PanelLink Transmitter
Data Sheet
9 SiI-DS-0126-B
Power Management Pins
Pin Name Pin # Type Description
PD 26 In Power Down (active LOW). A HIGH level indicates normal operation. A LOW level
indicates power down mode. During power down mode, all data (DIE/DIO[23:0]), data
enable (DE), clock (IDCK) and control signals (HSYNC, VSYNC, CTL[3:1]), input buffers
are disabled, all output buffers are tri-stated and all internal circuitry is powered down.
When the I2C interface is enabled (ISEL/RST=LOW), this pin is ignored and the PD
register bit is used instead. Tie this pin low if not used.
Differential Signal Data Pins
Pin Name Pin # Type Description
TX0+
TX0-
TX1+
TX1-
TX2+
TX2-
40
39
43
42
46
45
Analog
Analog
Analog
Analog
Analog
Analog
TMDS Low Voltage Differential Signal input data pairs.
These pins are tri-stated when PD is asserted.
TXC+
TXC-
35
34
Analog
Analog
TMDS Low Voltage Differential Signal input clock pair.
These pins are tri-stated when PD is asserted.
EXT_SWING 32 Analog Voltage Swing Adjust. A resistor should tie this pin to AVCC. This resistor determines
the amplitude of the voltage swing. A smaller resistor value sets a larger voltage swing
and vice versa. For remote display applications with source termination, a 510 resistor
is recommended (see page 24). Without the source termination, use a 560 resistor.
Local Control (I2C) Interface
The transmitter can operate with or without an I2C interface connection. Refer to the Feature Information section
for details on using the I2C registers.
Pin Name Pin # Type Description
ISEL/RST 87 In I2C Interface Select. If LOW, then the I2C interface is active. If HIGH, the interface is
inactive and chip configuration is taken from strap and default settings. This pin also acts
as an asynchronous reset to the I2C interface controller. Switching this input from HIGH to
LOW after a minimum TRESET high time resets the I2C logic.
MSEN 21 Out Monitor Sense. The behavior of this output depends on whether the I2C interface is
enabled or disabled.
No I2C (ISEL = HIGH)
MSEN=HIGH: a powered on receiver is detected at the TMDS outputs.
MSEN=LOW: a powered on receiver is not detected.
This Receiver Sense function can only be used in DC-coupled systems.
I2C enabled (ISEL = LOW)
The output is programmable through the I2C interface and can indicate the Hot
Plug or Receiver Sense signal state, or can instead generate a status change interrupt for
those signals.
This pin is an open collector output. An external pull-up resistor (5K recommended) is
required on this pin if the MSEN signal will be used. Otherwise the signal should be tied
low.
SCL 20 In I2C Clock. When the I2C interface is enabled (ISEL=LOW), this pin acts as the I2C clock
input. This pin is an open collector output. It must be pulled high to VCC through a
resistor; a value of 2.2K is recommended for I2C applications, 2-5K otherwise. This pin
is not 5V-tolerant.
SDA 23 In/Out I2C Data. When the I2C interface is enabled (ISEL=LOW), this pin acts as the I2C data
input and output. This pin is an open collector output. It must be pulled high to VCC
through a resistor; a value of 2.2K is recommended for I2C applications, 2-5K
otherwise. This pin is not 5V-tolerant.
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 10
Reserved Pins
It is preferable to tie indicated pins HIGH through a 2-5K resistor; direct connection to VCC is not
recommended.
Pin Name Pin # Type Description
RSVD 22 In
Reserved. Must be tied HIGH for normal operation.
RSVD 28 In
Reserved. Must be tied HIGH for normal operation.
RSVD 29 In
Reserved. Must be tied HIGH for normal operation.
RSVD 38 -- Reserved. Should be left unconnected (but can be tied to AVCC for existing
SiI 160 designs).
Power and Ground Pins
Pin Name Pin # Type Description
VCC 8,30,56,88 Power Digital Core VCC, must be set to 3.3V.
GND 7,31,57,67,79,89 Ground Digital Core GND.
IVCC 17,66,81,98 Power Input VCC, must be set to 3.3V.
AVCC 36,44 Power Analog VCC must be set to 3.3V.
AGND 33,37,41,47 Ground Analog GND.
PVCC1 18 Power Primary PLL Analog VCC must be set to 3.3V.
PVCC2 85 Power Filter PLL Analog VCC must be set to 3.3V.
PGND1 19 Ground PLL Analog GND. PGND1 should not be directly
connected to PGND2 before being connected to the
GROUND plane. They should be connected individually
to the GROUND plane.
PGND2 86 Ground PLL Analog GND. PGND2 should not be directly
connected to PGND1 before being connected to the
GROUND plane. They should be connected individually
to the GROUND plane.
SiI 1160 PanelLink Transmitter
Data Sheet
11 SiI-DS-0126-B
Feature Information
I2C Interface
The SiI 1160 Tx provides an I2C slave interface for more precise control of the chip features. Use of this interface
is optional and is selected by the ISEL/RST pin. If not used, the chip register settings return to a default state; the
EDGE and PD features then come under the control of the respective strap pins instead.
The I2C slave state machine operates from an internal clock derived from the incoming SCL signal. No video
clock and input is required to read and write to the I2C registers from address 0x00 to 0x0F. These accesses can
also take place using only the SCL clock in power down mode.
The transmitter responds to the seven-bit binary I2C address of 0x70. A read or write transaction is determined by
bit 0 of the I2C address. Setting this bit to 0 will enable a write transaction and setting this bit to 1 will enable a
read transaction.
The I2C read operation is shown in Figure 9, and the write operation in Figure 10. Page mode is not supported.
S
A
C
K
S
A
C
K
A
C
K
P
Slave Address Register Address Slave Address
Data
Stop
Start
Start
Bus Activity :
Master
SDA
No
A
C
K
Figure 9. I2C Byte Read
S
A
C
K
A
C
K
P
Slave Address Register Address Data
Stop
Start
Bus Activity :
Master
SDA
A
C
K
Figure 10. I2C Byte Write
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 12
I2C Register Mapping
Addr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default
Value Notes
0x0 VND_IDL 0x01
0x1 VND_IDH 0x00
0x2 DEV_IDL 0x06
0x3 DEV_IDH 0x00
0x4 DEV_REV 0x00
0x5 RSVD 4
0x6 FRQ_LOW 0x19
0x7 FRQ_HIGH 0x64
0x8 RSVD
write to 00
VEN HEN RSVD
write to 01
EDGE PD 00110100 3, 5,
6
0x9 RSVD
RSEN RSVD
read only
0xA RSVD
write to 1000000
CTL0 10000001 5, 6
0xB-
0xD RSVD 4
0xE RSVD
write to 00
EZONE ZONEF ZONEO RSVD
write to 001
00000001
0xF RSVD 4
Notes:
1. Hexadecimal values use a prefix of ‘0x’. All values use bit 7 as most significant, bit 0 as least significant.
2. Read-only or read/write capabilities are noted on the next page.
3. On any reset assertion event, registers that have default values lose their previously programmed value and are set back
to the default values listed.
4. Registers listed as RSVD and shaded gray are reserved for factory use and should not be accessed.
5. Write RSVD bits to the values indicated when writing other bits in the register.
6. Write PD to 1 for normal operation; write CTL0 to 0 for HDMI applications.
SiI 1160 PanelLink Transmitter
Data Sheet
13 SiI-DS-0126-B
Table 1. General I2C Register Bits
Register Name Access Description
VND_IDL RO Vendor ID Low byte (0x01)
VND_IDH RO Vendor ID High byte (0x00)
DEV_IDL RO Device ID Low byte (0x06)
DEV_IDH RO Device ID High byte (0x00)
DEV_REV RO Device Revision (0x00)
FRQ_LOW RO IDCK. Low frequency limit is 25MHz. (0x19)
FRQ_HIGH RO IDCK High frequency limit is 165MHz. Value is offset over 65MHz. (0x64)
HEN RW Horizontal Sync Enable
0 – HSYNC input is transmitted as fixed LOW
1 – HSYNC input is transmitted as input. Default
VEN RW Vertical Sync Enable
0 – VSYNC input is transmitted as fixed LOW
1 – VSYNC input is transmitted as input. Default
EDGE RW Edge Select (same function as EDGE pin)
0 – Input data low order bits latched first Default
1 – Input data high order bits latched first
PD RW Power Down mode (same function as PD# pin)
0 – Power Down. Default after RESET
1 – Normal operation
RSEN RO Receiver Sense. This bit is HIGH if a powered on receiver is connected to the transmitter
outputs, LOW otherwise. This function is only available for use in DC-coupled systems.
CTL0 RW Control 0. CTL0, CTL1, CTL2, CTL3 are sent over TMDS interface when DE is LOW.
CTL1-3 are driven in from external pins, but CTL0 is not available externally and therefore
must be set through this register. Set to 0 for HDMI applications.
0 – Transmit CTL0 as LOW
1 – Transmit CTL0 as HIGH
Note that when not in I2C mode, CTL0 is always transmitted as HIGH.
Notes:
1. RO = Read Only Registers
2. RW = Read/Write Registers
3. ‘Default’ indicates value set after a reset event. Not all bits default to a defined state after reset.
Dual Zone PLL
The SiI 1160 Tx offers a dual-zone PLL that changes its operational parameters depending on the frequency zone
selected. In the low zone, operation is ideal in the low frequency range, from 20MHz to around 120MHz. High
zone operation is optimized in the high frequency range, above 100MHz. In the overlapping range, either low
zone or high zone operation can be used.
Operating zone optimization contributes to robust operation over long cables. For example, optimized PLL
characteristics account for the ability of the transmitter to send video at UXGA over 20m cables.
PLL zone selection is controlled either manually or automatically. Manual zone control is the preferred mode of
operation.
Manual Zone Control
Whenever the application allows it, PLL zone selection should be made manually. The I2C register bits ZONEF
and EZONE allow the host graphics controller to set the optimal zone for the current video resolution being
transmitted. For frequencies over 100MHz, the controller should select high zone PLL operation. Table 2
describes the relevant register bits.
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 14
Automatic Zone Control
For applications that are not able to program the I2C registers, the chip incorporates an automatic zone control
circuit. This circuit determines whether the input pixel clock is operating in the low frequency range or the high
frequency range, and sets the PLL zone selection accordingly. The chip defaults to the automatic mode of zone
selection after reset.
The zone determination depends primarily on input frequency, but is also affected by operating voltage and chip
temperature. Therefore, it is possible for an automatic zone switch to occur while video input is stable, causing
momentary (~1µs) unevenness in the video output clock and data streams. This could occur, for example, while
the chip is still warming up to its normal operating temperature. However, the automatic selection circuit provides
wide hysteresis to ensure that there will not be any oscillation around the zone switch point.
Table 2. Dual Zone PLL I2C Control Register Bits
Register Name Access Description
ZONEF RW Zone Force. Enable external selection of main PLL operating zone. When ZONEF=1, the
main PLL zone is selected by EZONE.
0 – Automatic zone selection – EZONE bit disabled (default)
1 – Manual zone selection – EZONE bit enabled
EZONE RW External Zone Select. Selects operating zone of main PLL, but only when ZONEF=1
(disabled by default).
0 – Low zone (recommended for 20-120MHz)
1 – High zone (recommended for > 100MHz)
ZONEO RO Zone Output – indicates current operating zone.
When ZONEF=0 (automatic), ZONEO indicates that PLL is operating in zone optimized for:
0 = Lower frequencies
1 = Higher frequencies.
When ZONEF=1 (manual), ZONEO information is not used.
Reset Description
The input pin ISEL/RST serves as an asynchronous reset for the I2C slave controller in I2C mode. The
programming registers, which are accessible over the I2C bus, lose their previously programmed values as soon
as ISEL/RST is switched from HIGH to LOW. I2C registers whose default values are not correct for normal
operation must then be manually set to their appropriate value.
ISEL/RST serves only to set the registers to their default values, and to restore the interface to a known initial
state. Without an initial reset, the I2C interface may not respond properly. The minimum ISEL/RST high time for
proper reset, after nominal VCC values have been reached, is TRESET.
Register bit function PD is disabled after reset to eliminate any unexpected chip output before initialization. The
state of this bit is set during the reset period according to the following rule: After a reset, the chip is turned off; the
power down control bit, PD, is forced to 0. When the chip comes out of reset (ISEL/RST goes LOW), the TMDS
outputs will be disabled and the transmitter will be turned off. To turn the transmitter back on, the PD bit must be
set to 1 over the I2C bus.
SiI 1160 PanelLink Transmitter
Data Sheet
15 SiI-DS-0126-B
TFT Panel Data Mapping
The following TFT data mapping tables are strictly listed for single link TFT applications only. For DSTN mapping
please refer to Application Note SiI-AN-0007-A. SiI 1151 and SiI 1161 have the same pinout.
Table 3. One Pixel/Clock Input/Output TFT Mode
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 18-bpp 1160 164 1161 141B 24-bpp 18-bpp
B0 DIE0 D0 QE0 Q0 B0
B1 DIE1 D1 QE1 Q1 B1
B2 B0 DIE2 D2 QE2 Q2 B2 B0
B3 B1 DIE3 D3 QE3 Q3 B3 B1
B4 B2 DIE4 D4 QE4 Q4 B4 B2
B5 B3 DIE5 D5 QE5 Q5 B5 B3
B6 B4 DIE6 D6 QE6 Q6 B6 B4
B7 B5 DIE7 D7 QE7 Q7 B7 B5
G0 DIE8 D8 QE8 Q8 G0
G1 DIE9 D9 QE9 Q9 G1
G2 G0 DIE10 D10 QE10 Q10 G2 G0
G3 G1 DIE11 D11 QE11 Q11 G3 G1
G4 G2 DIE12 D12 QE12 Q12 G4 G2
G5 G3 DIE13 D13 QE13 Q13 G5 G3
G6 G4 DIE14 D14 QE14 Q14 G6 G4
G7 G5 DIE15 D15 QE15 Q15 G7 G5
R0 DIE16 D16 QE16 Q16 R0
R1 DIE17 D17 QE17 Q17 R1
R2 R0 DIE18 D18 QE18 Q18 R2 R0
R3 R1 DIE19 D19 QE19 Q19 R3 R1
R4 R2 DIE20 D20 QE20 Q20 R4 R2
R5 R3 DIE21 D21 QE21 Q21 R5 R3
R6 R4 DIE22 D22 QE22 Q22 R6 R4
R7 R5 DIE23 D23 QE23 Q23 R7 R5
Shift
CLK
Shift
CLK
IDCK IDCK ODCK ODCK Shift CLK Shift CLK
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE DE DE
For 18-bit mode, the Flat Panel Graphics Controller interfaces to the transmitter exactly the same as in the 24-bit
mode; however, 6 bits per channel (color) are used instead of 8. It is recommended that unused data bits be tied
low. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB
justified. The data is sent during active display time while the control signals are sent during blank time. Note that
the three data channels (CH0, CH1, CH2) are mapped to Blue, Green and Red data respectively.
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 16
Table 4. Two Pixels/Clock Input/Output TFT Mode
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 18-bpp 1160 1161 24-bpp 18-bpp
B0 - 0 DIE0 QE0 B0 - 0
B1 - 0 DIE1 QE1 B1 - 0
B2 - 0 B0 - 0 DIE2 QE2 B2 - 0 B0 - 0
B3 - 0 B1 - 0 DIE3 QE3 B3 - 0 B1 - 0
B4 - 0 B2 - 0 DIE4 QE4 B4 - 0 B2 - 0
B5 - 0 B3 - 0 DIE5 QE5 B5 - 0 B3 - 0
B6 - 0 B4 - 0 DIE6 QE6 B6 - 0 B4 - 0
B7 - 0 B5 - 0 DIE7 QE7 B7 - 0 B5 - 0
G0 - 0 DIE8 QE8 G0 - 0
G1 - 0 DIE9 QE9 G1 - 0
G2 - 0 G0 - 0 DIE10 QE10 G2 - 0 G0 - 0
G3 - 0 G1 - 0 DIE11 QE11 G3 - 0 G1 - 0
G4 - 0 G2 - 0 DIE12 QE12 G4 - 0 G2 - 0
G5 - 0 G3 - 0 DIE13 QE13 G5 - 0 G3 - 0
G6 - 0 G4 - 0 DIE14 QE14 G6 - 0 G4 - 0
G7 - 0 G5 - 0 DIE15 QE15 G7 - 0 G5 - 0
R0 - 0 DIE16 QE16 R0 - 0
R1 - 0 DIE17 QE17 R1 - 0
R2 - 0 R0 - 0 DIE18 QE18 R2 - 0 R0 - 0
R3 - 0 R1 - 0 DIE19 QE19 R3 - 0 R1 - 0
R4 - 0 R2 - 0 DIE20 QE20 R4 - 0 R2 - 0
R5 - 0 R3 - 0 DIE21 QE21 R5 - 0 R3 - 0
R6 - 0 R4 - 0 DIE22 QE22 R6 - 0 R4 - 0
R7 - 0 R5 - 0 DIE23 QE23 R7 - 0 R5 - 0
B0 - 1 DIO0 QO0 B0 - 1
B1 - 1 DIO1 QO1 B1 - 1
B2 - 1 B0 - 1 DIO2 QO2 B2 - 1 B0 - 1
B3 - 1 B1 - 1 DIO3 QO3 B3 - 1 B1 - 1
B4 - 1 B2 - 1 DIO4 QO4 B4 - 1 B2 - 1
B5 - 1 B3 - 1 DIO5 QO5 B5 - 1 B3 - 1
B6 - 1 B4 - 1 DIO6 QO6 B6 - 1 B4 - 1
B7 - 1 B5 - 1 DIO7 QO7 B7 - 1 B5 - 1
G0 - 1 DIO8 QO8 G0 - 1
G1 - 1 DIO9 QO9 G1 - 1
G2 - 1 G0 - 1 DIO10 QO10 G2 - 1 G0 - 1
G3 - 1 G1 - 1 DIO11 QO11 G3 - 1 G1 - 1
G4 - 1 G2 - 1 DIO12 QO12 G4 - 1 G2 - 1
G5 - 1 G3 - 1 DIO13 QO13 G5 - 1 G3 - 1
G6 - 1 G4 - 1 DIO14 QO14 G6 - 1 G4 - 1
G7 - 1 G5 - 1 DIO15 QO15 G7 - 1 G5 - 1
R0 - 1 DIO16 QO16 R0 - 1
R1 - 1 DIO17 QO17 R1 - 1
R2 - 1 R0 - 1 DIO18 QO18 R2 - 1 R0 - 1
R3 - 1 R1 - 1 DIO19 QO19 R3 - 1 R1 - 1
R4 - 1 R2 - 1 DIO20 QO20 R4 - 1 R2 - 1
R5 - 1 R3 - 1 DIO21 QO21 R5 - 1 R3 - 1
R6 - 1 R4 - 1 DIO22 QO22 R6 - 1 R4 - 1
R7 - 1 R5 - 1 DIO23 QO23 R7 - 1 R5 - 1
ShiftClk/2 ShiftClk/2 IDCK ODCK Shift CLK Shift CLK
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE
SiI 1160 PanelLink Transmitter
Data Sheet
17 SiI-DS-0126-B
Table 5. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 1160 164 1161 24-bpp
B0 DIE0 D0 QE0 B0 - 0
B1 DIE1 D1 QE1 B1 - 0
B2 DIE2 D2 QE2 B2 - 0
B3 DIE3 D3 QE3 B3 - 0
B4 DIE4 D4 QE4 B4 - 0
B5 DIE5 D5 QE5 B5 - 0
B6 DIE6 D6 QE6 B6 - 0
B7 DIE7 D7 QE7 B7 - 0
G0 DIE8 D8 QE8 G0 - 0
G1 DIE9 D9 QE9 G1 - 0
G2 DIE10 D10 QE10 G2 - 0
G3 DIE11 D11 QE11 G3 - 0
G4 DIE12 D12 QE12 G4 - 0
G5 DIE13 D13 QE13 G5 - 0
G6 DIE14 D14 QE14 G6 - 0
G7 DIE15 D15 QE15 G7 - 0
R0 DIE16 D16 QE16 R0 - 0
R1 DIE17 D17 QE17 R1 - 0
R2 DIE18 D18 QE18 R2 - 0
R3 DIE19 D19 QE19 R3 - 0
R4 DIE20 D20 QE20 R4 - 0
R5 DIE21 D21 QE21 R5 - 0
R6 DIE22 D22 QE22 R6 - 0
R7 DIE23 D23 QE23 R7 - 0
QO0 B0 - 1
QO1 B1 - 1
QO2 B2 - 1
QO3 B3 - 1
QO4 B4 - 1
QO5 B5 - 1
QO6 B6 - 1
QO7 B7 - 1
QO8 G0 - 1
QO9 G1 - 1
QO10 G2 - 1
QO11 G3 - 1
QO12 G4 - 1
QO13 G5 - 1
QO14 G6 - 1
QO15 G7 - 1
QO16 R0 - 1
QO17 R1 - 1
QO18 R2 - 1
QO19 R3 - 1
QO20 R4 - 1
QO21 R5 - 1
QO22 R6 - 1
QO23 R7 - 1
Shift CLK IDCK IDCK ODCK Shift CLK/2
VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 18
Table 6. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode
TFT VGA Output Tx Input Data Tx Output Data TFT Panel Input
18-bpp 1160 164 1161 141B 18-bpp
DIE0 D0 QE0
DIE1 D1 QE1
B0 DIE2 D2 QE2 Q0 B0 - 0
B1 DIE3 D3 QE3 Q1 B1 - 0
B2 DIE4 D4 QE4 Q2 B2 - 0
B3 DIE5 D5 QE5 Q3 B3 - 0
B4 DIE6 D6 QE6 Q4 B4 - 0
B5 DIE7 D7 QE7 Q5 B5 - 0
DIE8 D8 QE8
DIE9 D9 QE9
G0 DIE10 D10 QE10 Q6 G0 - 0
G1 DIE11 D11 QE11 Q7 G1 - 0
G2 DIE12 D12 QE12 Q8 G2 - 0
G3 DIE13 D13 QE13 Q9 G3 - 0
G4 DIE14 D14 QE14 Q10 G4 - 0
G5 DIE15 D15 QE15 Q11 G5 - 0
DIE16 D16 QE16
DIE17 D17 QE17
R0 DIE18 D18 QE18 Q12 R0 - 0
R1 DIE19 D19 QE19 Q13 R1 - 0
R2 DIE20 D20 QE20 Q14 R2 - 0
R3 DIE21 D21 QE21 Q15 R3 - 0
R4 DIE22 D22 QE22 Q16 R4 - 0
R5 DIE23 D23 QE23 Q17 R5 - 0
QO0
QO1
QO2 Q18 B0 - 1
QO3 Q19 B1 - 1
QO4 Q20 B2 - 1
QO5 Q21 B3 - 1
QO6 Q22 B4 - 1
QO7 Q23 B5 - 1
QO8
QO9
QO10 Q24 G0 - 1
QO11 Q25 G1 - 1
QO12 Q26 G2 - 1
QO13 Q27 G3 - 1
QO14 Q28 G4 - 1
QO15 Q29 G5 - 1
QO16
QO17
QO18 Q30 R0 - 1
QO19 Q31 R1 - 1
QO20 Q32 R2 - 1
QO21 Q33 R3 - 1
QO22 Q34 R4 - 1
QO23 Q35 R5 - 1
Shift CLK IDCK IDCK ODCK Shift CLK/2 Shift CLK/2
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE
SiI 1160 PanelLink Transmitter
Data Sheet
19 SiI-DS-0126-B
Table 7. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 18-bpp 1160 1161 141B 24-bpp 18-bpp
B0 - 0 DIE0 QE0 Q0 B0
B1 - 0 DIE1 QE1 Q1 B1
B2 - 0 B0 - 0 DIE2 QE2 Q2 B2 B0
B3 - 0 B1 - 0 DIE3 QE3 Q3 B3 B1
B4 - 0 B2 - 0 DIE4 QE4 Q4 B4 B2
B5 - 0 B3 - 0 DIE5 QE5 Q5 B5 B3
B6 - 0 B4 - 0 DIE6 QE6 Q6 B6 B4
B7 - 0 B5 - 0 DIE7 QE7 Q7 B7 B5
G0 - 0 DIE8 QE8 Q8 G0
G1 - 0 DIE9 QE9 Q9 G1
G2 - 0 G0 - 0 DIE10 QE10 Q10 G2 G0
G3 - 0 G1 - 0 DIE11 QE11 Q11 G3 G1
G4 - 0 G2 - 0 DIE12 QE12 Q12 G4 G2
G5 - 0 G3 - 0 DIE13 QE13 Q13 G5 G3
G6 - 0 G4 - 0 DIE14 QE14 Q14 G6 G4
G7 - 0 G5 - 0 DIE15 QE15 Q15 G7 G5
R0 - 0 DIE16 QE16 Q16 R0
R1 - 0 DIE17 QE17 Q17 R1
R2 - 0 R0 - 0 DIE18 QE18 Q18 R2 R0
R3 - 0 R1 - 0 DIE19 QE19 Q19 R3 R1
R4 - 0 R2 - 0 DIE20 QE20 Q20 R4 R2
R5 - 0 R3 - 0 DIE21 QE21 Q21 R5 R3
R6 - 0 R4 - 0 DIE22 QE22 Q22 R6 R4
R7 - 0 R5 - 0 DIE23 QE23 Q23 R7 R5
B0 - 1 DIO0
B1 - 1 DIO1
B2 - 1 B0 - 1 DIO2
B3 - 1 B1 - 1 DIO3
B4 - 1 B2 - 1 DIO4
B5 - 1 B3 - 1 DIO5
B6 - 1 B4 - 1 DIO6
B7 - 1 B5 - 1 DIO7
G0 - 1 DIO8
G1 - 1 DIO9
G2 - 1 G0 - 1 DIO10
G3 - 1 G1 - 1 DIO11
G4 - 1 G2 - 1 DIO12
G5 - 1 G3 - 1 DIO13
G6 - 1 G4 - 1 DIO14
G7 - 1 G5 - 1 DIO15
R0 - 1 DIO16
R1 - 1 DIO17
R2 - 1 R0 - 1 DIO18
R3 - 1 R1 - 1 DIO19
R4 - 1 R2 - 1 DIO20
R5 - 1 R3 - 1 DIO21
R6 - 1 R4 - 1 DIO22
R7 - 1 R5 - 1 DIO23
ShiftClk/2 ShiftClk/2 IDCK ODCK ODCK ShiftClk ShiftClk
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE DE
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 20
Design Recommendations
Differences Between SiI 160 and SiI 1160
The SiI 1160 Tx is a pin-compatible upgrade to the SiI 160 Tx. It provides improved cable length support without
any changes to the pinout. Interrupt capability is also a new option using the optional MSEN pin. The SiI 1160 Tx
can also act as to repeat HDMI signals when its internal registers are programmed appropriately; this application
requires the use of an I2C interface, optionally available on the SDA and SCL pins.
Table 8. New Pin Functions for SiI 1160 Tx
Pin SiI 160 SiI 1160
20 RSVD – Tied HIGH Optional I2C interface pin SCL
21 RSVD – Tied LOW Optional interrupt output MSEN
23 RSVD – Tied HIGH Optional I2C interface pin SDA
87 RSVD – Tied HIGH ISEL/RST
EXT_SWING Selection
The recommended REXT_SWING resistor value for the EXT_SWING pin is provided in the Pin Descriptions section.
This value can be adjusted as needed to optimize the DVI signal swing levels according to the needs of the
application. This adjustment might become necessary, for example, when deviating from the recommended
source termination values (described in the Source Termination Resistors on Differential Outputs section) to
optimize for a specific cabling environment.
PCB Ground Planes
All ground pins on the device should be connected to the same, contiguous ground plane in the PCB. This helps
to avoid ground loops and inductances from one ground plane segment to another. Such low-inductance ground
paths are critical for return currents, which affect EMI performance. The entire ground plane surrounding the
PanelLink transmitter should be one piece, and include the ground vias for the DVI connector.
Voltage Ripple Regulation
The power supply to PVCC is very important to the proper operation of the Transmitter chips. PVCC does not
draw much current so any voltage regulator that can supply 50mA or more is sufficient. A suggested regulator
circuit using a low-dropout regulator is shown in Figure 11. Note that alternative voltage regulator circuits should
be considered only if they meet the LM317 standards of line/load regulation.
Decoupling and bypass capacitors are also involved with power supply connections, as described in detail in
Figure 14 and Figure 15.
240 1%
390 1%
Vin
12V
Vout
3.3V
ADJ
Vin Vout
LM317EMP
Figure 11. Voltage Regulation using LM317EMP
SiI 1160 PanelLink Transmitter
Data Sheet
21 SiI-DS-0126-B
Spread Spectrum Support
TMDS architecture is inherently jitter-tolerant. Spread spectrum clocking can be applied to the clock and parallel
data inputs of the SiI 1160 to allow for reduced EMI. The spread will be propagated throughout the system due to
TMDS clock architecture, which passes nearly all low-frequency components of the incoming clock without
attenuation. The amount of spread that can be applied without affecting the DVI eye is limited to ±0.5% with the
current part, depending on the spreading algorithm employed by the external spread spectrum device.
A planned future variation of this chip will allow its internal clock to be coupled directly to a spread spectrum
device. The expected result will be the ability to accommodate larger amounts of spread, and it will also work in
48-bit mode as well as 24-bit mode. Designs should make accommodations using pins 27, 83, and 84 as noted
in the Pin Descriptions section so that the planned part can become a drop-in replacement for the SiI 1160.
Figure 12 illustrates how a design can anticipate the expected future chip version. Contact PhaseLink
Corporation for additional information on their spread spectrum device.
1-FIN
PhaseLink
PLL701-21
2-S2
3-S1
4-S0
VDD-8
S3-7
GND-5
FOUT-6
83-SS_CLK_OUT
SiI 1160 /
or future
SS version
84-SS_CLK_IN
27-SS_EN#
3.3V
3.3V
3.3V
1160: Stuff
SS: Stuff
1160: No Stuff
SS: Stuff 0
Figure 12. Planned Spread Spectrum Support Circuit
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 22
Reset Circuit for I2C Application
If the design uses the I2C interface to control the transmitter features, it must also provide a means of toggling the
ISEL/RST pin to achieve the correct TRESET timing. If a local microcontroller is hosting the I2C connection, the
easiest way to provide the reset is to connect a GPIO pin from the microcontroller to the transmitter chip as
shown in Figure 13. The reset pulse can then be commanded either at power-up time or just prior to initial use of
the I2C interface as shown in Figure 8.
SiI 1160
SCL
SDA
ISEL/RST
uC
Figure 13. Typical Reset Circuit
Power Control
The low-power standby state feature of the chip provides a design option of leaving the chip always powered, as
opposed to powering it on and off. Leaving the chip powered and using the PD pin to put it in a lower power state
may result in faster system response time, depending on the system Vcc supply ramp-up delay.
Table 9 provides information on chip functional mode current requirements. These values are not specifications,
but are representative of typical chip power consumption. PVCC1 and PVCC2 are the power planes that are
most sensitive to excessive noise. Noise on these planes can be more easily controlled when they are regulated
separately from digital VCC.
Table 9. Power Consumption Characteristics
Symbol Parameter Conditions Typ Units
ICCT Total Transmitter Operating Current see spec.
IAVCC Current on AVCC
165MHz
17-19 % of total ICCT
IPVCC1 Current on PVCC1 31-33 % of total ICCT
IPVCC2 Current on PVCC2 10-11 % of total ICCT
IVCC + IIVCC Current on digital core VCC and input plan IVCC 38-41 % of total ICCT
IVCCPD + IIVCCPD Standby mode current on VCC and IVCC PD pin driven low1
DVI clock stopped
>97 % of total IPD
Note
1. For I2C mode: bit PD=0.
SiI 1160 PanelLink Transmitter
Data Sheet
23 SiI-DS-0126-B
Decoupling Capacitors
Designers should include decoupling and bypass capacitors at each power pin in the layout. These are shown
schematically in Figure 15. Place these components as close as possible to the PanelLink device pins, and avoid
routing through vias if possible, as shown in Figure 14, which is representative of the various types of power pins
on the transmitter.
C1
VCC
Ferrite
Via to GND
VCC
GND
C2
C3
L1
Figure 14. Decoupling and Bypass Capacitor Placement
VCCPIN
C1 C2
L1
C3
VCC
Figure 15. Decoupling and Bypass Schematic
The values shown in Table 10 are recommendations that should be adjusted according to the noise
characteristics of the specific board-level design. Pins in one group (such as IVCC) may share C2, L1, and C3,
each pin having C1 placed as close to the pin as possible. PGND1 and PGND2 should be tied individually to
ground.
Table 10. Recommended Components for Bypass and Decoupling Circuits
C1 C2 C3 L1
100 – 300 pF 2.2 – 10 uF 10 uF 200+
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 24
Series Damping Resistors on Outputs
Series resistors are often effective in lowering data-related emissions and reducing reflections. Series resistors
with a value close to the impedance of the board traces are generally most effective in reducing reflections from
the inputs of the transmitter. If used, resistors should be placed close to the output pins of the VGA Source or
Graphics chip, as shown in Figure 16.
DIE[0..23]/
DIO[0..23]
VGA
Figure 16. Series Input Damping Resistors for Driving Source
Source Termination Resistors on Differential Outputs
Source termination, consisting of a 300 resistor and a 0.1µF capacitor, may be used on the differential outputs
of the SiI 1160 to improve signal swings. See Figure 17 for an illustration. Repeat the circuit for each of the four
differential output pairs: TX0+, TX1+, TX2+, TXC+.
Note that the specific value for the source termination resistor and capacitor will depend on the PCB layout and
construction. Different values may be needed to create optimum DVI-compliant output waveforms from the
transmitter.
300 ohm
0.1uF
TX0+
TX0-
300 ohm
0.1uF
TX1+
TX2-
300 ohm
0.1uF
TX3+
TX3-
300 ohm
0.1uF
TXC+
TXC-
Figure 17. Differential Output Source Terminations
Source termination suppresses signal reflection to prevent non-DVI compliant receivers from erroneously
sampling the TMDS signals at high frequencies (beyond 135MHz). The impact on DVI compliant receivers is
minimal. Therefore Silicon Image recommends source termination for most applications.
Note that the capacitor is required to meet DVI idle mode DC offset requirements and must not be omitted. Note
also that the signal suppression requires the REXT_SWING value to be changed.
Power consumption will be slightly higher when using source termination.
SiI 1160 PanelLink Transmitter
Data Sheet
25 SiI-DS-0126-B
R
C
Detail of Source termination (magnified)
R and C 0603 components installed.
Figure 18. Source Termination Layout Illustration
The layout in Figure 18 has been developed to minimize trace stubs on the differential TMDS lines, while
providing pads for the source termination components (left-hand magnified view). Source termination components
should be placed close to the transmitter pins. The resistor and capacitor are shown installed on the pads
provided (right-hand magnified view).
Differential Trace Routing
The routing for the SiI 1160 chip is relatively simple since no spiral skew compensation is needed. However, a few
small precautions are required to achieve the full performance and reliability of DVI.
The Transmitter can be placed fairly far from the output connector, but care should be taken to route each
differential signal pair together and achieve impedance of 100 between the differential signal pair. However,
note that the longer the differential traces are between the transmitter and the output connector, the higher the
chance that external signal noise will couple onto the low-voltage signals and affect image quality.
Do not split or have asymmetric trace routing between the differential signal pair. Vias are very inductive and can
cause phase delay problems if applied unevenly within a differential pair. Vias should be minimized or avoided if
possible by placing all differential traces on the top layer of the PCB.
Figure 19 illustrates an incorrect routing of the differential signal from the SiI 1160 to the DVI connector. Figure 20
illustrates the correct method to route the differential signal from the SiI 1160 to the DVI connector. Figure 21
illustrates recommended routing for differential traces at the DVI connector.
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 26
TX
Figure 19. Example of Incorrect Differential Signal Routing
TX
Figure 20. Example of Correct Differential Signal Routing
TxC-
TxC+
Tx0-
Tx0+
Tx1-
Tx1+
Tx2-
Tx2+
18
9
16
1724
Figure 21. Differential Trace Routing to DVI Connector (Top Side View)
SiI 1160 PanelLink Transmitter
Data Sheet
27 SiI-DS-0126-B
In addition to following the trace routing recommendations, length differences between intra-pair traces listed in
column 2 of Table 11 and inter-pair traces listed in column 3 of Table 11, should be controlled to minimize DVI
skew.
Spacing between inter-pair DVI traces should be observed to reduce trace-to-trace couplings. For example,
having wider gaps between inter-pair DVI traces will minimize noise coupling. It is also strongly advised that
ground not be placed adjacent to the DVI traces on the same layer. Table 11 lists the recommended limits for the
parameters listed above.
Table 11. Routing Guidelines for DVI Traces
Parameter Intra-pair
(length of each trace
wi thin a pair)
Inter-pair
(length of each pair
compared to oth er pairs)
Recommended
Inter–pair Trace
Separation Based
on 2 Layer Board
Recommended Inter–
pair Trace Separation
Based on 4 Layer
Board
Max +0.75 inch +3 inch
Min 2x trace width 2x trace width
SiI 1160 PanelLink Transmitter
Data Sheet
SiI-DS-0126-B 28
Package Dimensions
Package
100-pin TQFP Package Dimensions and Marking Specification
SiI1160CTU
LLLLLL.LLLL
YYWW
TTTTTTm
Device #
Lot #
Date Code
Trace Code
TMDS™ E1 F1
D1
G1
A2
A1
L1
c
eb
JEDEC Package Code MS-026-AED
typ max
A Thickness 1.20
A1 Stand-off 0.15
A2 Body Thickness 1.00 1.05
D1 Body Size 14.00
E1 Body Size 14.00
F1 Footprint 16.00
G1 Footprint 16.00
L1 Lead Length 1.00
b Lead Width 0.20
c Lead Thickness 0.20
e Lead Pitch 0.50
Dimensions in millimeters.
Overall thickness A=A1+A2.
Package: SiI1160CTU
Legend Description
LLLLLL.LLLL Lot Number
YY Year of Mfr
WW Week of Mfr
TTTTTT Trace Code
m Maturity Code
=0: engineering
samples
=1: pre-production
>1: production
Figure 22. 100-pin TQFP Package Dimensions (JEDEC code MS-026-AED)
Ordering Information
Standard Part Number: SiI1160CTU
(‘U’ indicates Universal package usable in both standard and lead-free environments)
SiI 1160 PanelLink Transmitter
Data Sheet
29 SiI-DS-0126-B
© 2005 Silicon Image. Inc. SiI-DS-0126-B
Silicon Image, Inc. Tel: (408) 616-4000
1060 E. Arques Avenue Fax: (408) 830-9530
Sunnyvale, CA 94085 E-mail: salessupport@siimage.com
USA Web: www.siliconimage.com