STM8S003F3 STM8S003K3 Value line, 16-MHz STM8S 8-bit MCU, 8-Kbyte Flash memory, 128-byte data EEPROM, 10-bit ADC, 3 timers, UART, SPI, IC Datasheet - production data Features Core * 16 MHz advanced STM8 core with Harvard architecture and 3-stage pipeline LQFP32 7x7 mm * Extended instruction set UFQFPN20 3x3 mm Timers Memories * Program memory: 8 Kbyte Flash memory; data retention 20 years at 55 C after 100 cycles * RAM: 1 Kbyte * Data memory: 128 bytes true data EEPROM; endurance up to 100 k write/erase cycles * Advanced control timer: 16-bit, 4 CAPCOM channels, 3 complementary outputs, dead-time insertion and flexible synchronization * 16-bit general purpose timer, with 3 CAPCOM channels (IC, OC or PWM) * 8-bit basic timer with 8-bit prescaler * Auto wakeup timer Clock, reset and supply management * Window and independent watchdog timers * 2.95 V to 5.5 V operating voltage * Flexible clock control, 4 master clock sources - Low-power crystal resonator oscillator - External clock input - Internal, user-trimmable 16 MHz RC - Internal low-power 128 kHz RC * Clock security system with clock monitor * Power management - Low-power modes (wait, active-halt, halt) - Switch-off peripheral clocks individually - Permanently active, low-consumption power-on and power-down reset Communications interfaces * UART with clock output for synchronous operation, SmartCard, IrDA, LIN master mode * SPI interface up to 8 Mbit/s * I2C interface up to 400 Kbit/s Analog to digital converter (ADC) * 10-bit ADC, 1 LSB ADC with up to 5 multiplexed channels, scan mode and analog watchdog I/Os Interrupt management * Nested interrupt controller with 32 interrupts * Up to 27 external interrupts on 6 vectors TSSOP20 6.5x6.4 mm * Up to 28 I/Os on a 32-pin package including 21 high-sink outputs * Highly robust I/O design, immune against current injection Development support * Embedded single-wire interface module (SWIM) for fast on-chip programming and nonintrusive debugging August 2018 This is information on a product in full production. DS7147 Rev 10 1/103 www.st.com Contents STM8S003F3 STM8S003K3 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 6 2/103 4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13 4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.11 TIM2 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.14.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.14.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.14.3 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 STM8S003K3 LQFP32 pinout and pin description . . . . . . . . . . . . . . . . . . 22 5.2 STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description . . . . . . 25 5.3 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS7147 Rev 10 STM8S003F3 STM8S003K3 Contents 6.2.1 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.2 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2.3 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 39 7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.1 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1 10 Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 61 9.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 63 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 9.3.8 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.3.9 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10.1 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10.2 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10.3 UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 97 DS7147 Rev 10 3/103 4 Contents STM8S003F3 STM8S003K3 11 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 12 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 99 12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 12.3 13 4/103 12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DS7147 Rev 10 STM8S003F3 STM8S003K3 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. STM8S003F3/K3 value line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 15 TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Legend/abbreviations for STM8S003F3/K3 pin description tables . . . . . . . . . . . . . . . . . . . 21 STM8S003K3 descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM8S003F3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Flash, Data EEPROM and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 STM8S003K3 alternate function remapping bits for 32-pin devices . . . . . . . . . . . . . . . . . . 44 STM8S003F3 alternate function remapping bits for 20-pin devices . . . . . . . . . . . . . . . . . . 45 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Total current consumption with code execution in run mode at VDD = 5 V . . . . . . . . . . . . 52 Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 53 Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 55 Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . 55 Total current consumption in halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 57 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy with RAIN < 10 k , VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy with RAIN < 10 k RAIN, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DS7147 Rev 10 5/103 6 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. 6/103 STM8S003F3 STM8S003K3 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 89 TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DS7147 Rev 10 STM8S003F3 STM8S003K3 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. STM8S003F3/K3 value line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM8S003K3 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM8S003F3 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8S003F3 UFQFPN20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Typ. IDD(RUN) vs VDD, HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 58 Typ. IDD(RUN) vs fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 58 Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typ. IDD(WFI) vs. VDD HSE user external clock, fCPU = 16MHz . . . . . . . . . . . . . . . . . . . . . 59 Typ. IDD(WFI) vs. fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 60 Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical HSI frequency variation vs VDD at 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical LSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typ. VOL @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Typ. VOL @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typ. VOL @ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Typ. VOL @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Typ. VDD - VOH @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Typ. VDD - VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typ. VDD - VOH @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Typical NRST VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Typical NRST pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . 76 Typical NRST pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 88 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . 89 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DS7147 Rev 10 7/103 8 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. 8/103 STM8S003F3 STM8S003K3 TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 STM8S003F3/K3 value line ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . . 98 DS7147 Rev 10 STM8S003F3 STM8S003K3 1 Introduction Introduction This datasheet contains the description of the STM8S003F3/K3 value line features, pinout, electrical characteristics, mechanical data and ordering information. * For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S and STM8A microcontroller families reference manual (RM0016). * For information on programming, erasing and protection of the internal Flash memory please refer to the PM0051 (How to program STM8S and STM8A Flash program memory and data EEPROM). * For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). * For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044). DS7147 Rev 10 9/103 29 Description 2 STM8S003F3 STM8S003K3 Description The STM8S003F3/K3 value line 8-bit microcontrollers offer 8 Kbytes of Flash program memory, plus integrated true data EEPROM. They are referred to as low-density devices in the STM8S microcontroller family reference manual (RM0016). The STM8S003F3/K3 value line devices provide the following benefits: performance, robustness and reduced system cost. Device performance and robustness are ensured by true data EEPROM supporting up to 100000 write/erase cycles, advanced core and peripherals made in a state-of-the-art technology at 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system. The system cost is reduced thanks to a high system integration level with internal clock oscillators, watchdog, and brown-out reset. Full documentation is offered as well as a wide choice of development tools. Table 1. STM8S003F3/K3 value line features Features STM8S003K3 STM8S003F3 Pin count 32 20 Max. number of GPIOs (I/O) 28 16 External interrupt pins 27 16 Timer CAPCOM channels 7 7 Timer complementary outputs 3 2 A/D converter channels 4 5 High-sink I/Os 21 12 Low-density Flash program memory (byte) 8K 8K RAM (byte) 1K 1K True data EEPROM (byte) Peripheral set 128 128(1) Multi purpose timer (TIM1), SPI, I2C, UART, Window WDG, independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4) 1. Without read-while-write capability. 10/103 (1) DS7147 Rev 10 STM8S003F3 STM8S003K3 Block diagram Figure 1. STM8S003F3/K3 value line block diagram Reset block XTAL 1-16 MHz Clock controller Reset Reset POR RC int. 16 MHz BOR Detector RC int. 128 kHz Clock to peripherals and core Window WDG STM8 core Independent WDG Single wire debug interface Debug/SWIM 8 Kbyte program Flash 128 byte data EEPROM 400 Kbit/s 8 Mbit/s I2C SPI LIN master SPI emul. UART1 up to 5 channels ADC1 1/2/4 kHz beep Address and data bus 3 Block diagram 1 Kbyte RAM 16-bit advanced control timer (TIM1) 16-bit general purpose timer (TIM2) Up to 4 CAPCOM channels + 3 complementary outputs Up to 3 CAPCOM channels 8-bit basic timer (TIM4) Beeper AWU timer DS7147 Rev 10 11/103 29 Product overview 4 STM8S003F3 STM8S003K3 Product overview The following section intends to give an overview of the basic features of the STM8S003F3/K3 value line functional modules and peripherals. For more detailed information please refer to the corresponding family reference manual (RM0016). 4.1 Central processing unit STM8 The 8-bit STM8 core is designed for code efficiency and performance. It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions. Architecture and registers * Harvard architecture * 3-stage pipeline * 32-bit wide program memory bus - single cycle fetching for most instructions * X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations * 8-bit accumulator * 24-bit program counter - 16-Mbyte linear memory space * 16-bit stack pointer - access to a 64 K-level stack * 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing * 20 addressing modes * Indexed indirect addressing mode for look-up tables located anywhere in the address space * Stack pointer relative addressing mode for local variables and parameter passing Instruction set 12/103 * 80 instructions with 2-byte average instruction size * Standard data movement and logic/arithmetic functions * 8-bit by 8-bit multiplication * 16-bit by 8-bit and 16-bit by 16-bit division * Bit manipulation * Data transfer between stack and accumulator (push/pop) with direct stack access * Data transfer using the X and Y registers or direct memory-to-memory transfers DS7147 Rev 10 STM8S003F3 STM8S003K3 4.2 Product overview Single wire interface module (SWIM) and debug module (DM) The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming. SWIM Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 byte/ms. Debug module The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in realtime by means of shadow registers. 4.3 4.4 * R/W to RAM and peripheral registers in real-time * R/W access to all resources by stalling the CPU * Breakpoints on all program-memory instructions (software breakpoints) * Two advanced breakpoints, 23 predefined configurations Interrupt controller * Nested interrupts with three software priority levels * 32 interrupt vectors with hardware priority * Up to 27 external interrupts on six vectors including TLI * Trap and reset interrupts Flash program memory and data EEPROM * 8 Kbyte of Flash program single voltage Flash memory * 128 byte true data EEPROM * User option byte area Write protection (WP) Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction. There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes. To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to modify the content of main program memory and data EEPROM, or to reprogram the device option bytes. A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to Figure 2. DS7147 Rev 10 13/103 29 Product overview STM8S003F3 STM8S003K3 The size of the UBC is programmable through the UBC option byte (Table 13), in increments of 1 page (64-byte block) by programming the UBC option byte in ICP mode. This divides the program memory into two areas: * Main program memory: 8 Kbyte minus UBC * User-specific boot code (UBC): Configurable up to 8 Kbyte The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines. Figure 2. Flash memory organization Option bytes Data EEPROM (128 bytes) UBC area Remains write protected during IAP Low density Flash program memory (8 Kbytes) Programmable area from 64 bytes (1 page) up to 8 Kbytes (in 1 page steps) Program memory area Write access possible for IAP MS36408V1 Read-out protection (ROP) The read-out protection blocks reading and writing from/to the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. 14/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 4.5 Product overview Clock controller The clock controller distributes the system clock (fMASTER) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. Features * Clock prescaler: To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. * Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching. * Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. * Master clock sources: Four different clock sources can be used to drive the master clock: - 1-16 MHz high-speed external crystal (HSE) - Up to 16 MHz high-speed user-external clock (HSE user-ext) - 16 MHz high-speed internal RC oscillator (HSI) - 128 kHz low-speed internal RC (LSI) * Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. * Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated. * Configurable main clock output (CCO): This outputs an external clock for use by the application. Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers Bit Peripheral clock Bit Peripheral clock Bit Peripheral clock Bit Peripheral clock PCKEN17 TIM1 PCKEN13 UART1 PCKEN27 Reserved PCKEN23 ADC PCKEN16 Reserved PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved PCKEN14 TIM4 PCKEN10 I2C PCKEN24 Reserved PCKEN20 Reserved DS7147 Rev 10 15/103 29 Product overview 4.6 STM8S003F3 STM8S003K3 Power management For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between the lowest power consumption, the fastest start-up time and available wakeup sources. 4.7 * Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset. * Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset. * Active halt mode with regulator off: This mode is the same as active halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower. * Halt mode: In this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset. Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset. Window watchdog timer The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. The window function can be used to trim the watchdog behavior to match the application perfectly. The application software must refresh the counter before time-out and during a limited time window. A reset is generated in two situations: 16/103 1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 s up to 64 ms. 2. Refresh out of window: the down-counter is refreshed before its value is lower than the one stored in the window register. DS7147 Rev 10 STM8S003F3 STM8S003K3 Product overview Independent watchdog timer The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures. It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure The IWDG time base spans from 60 s to 1 s. 4.8 4.9 Auto wakeup counter * Used for auto wakeup from active halt mode * Clock source: internal 128 kHz internal low frequency RC oscillator or external clock * LSI clock can be internally connected to TIM1 input capture channel 1 for calibration Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. The beeper output port is only available through the alternate function remap option bit AFR7. 4.10 TIM1 - 16-bit advanced control timer This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver. 4.11 * 16-bit up, down and up/down autoreload counter with 16-bit prescaler * Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output * Synchronization module to control the timer with external signals * Break input to force the timer outputs into a defined state * Three complementary outputs with adjustable dead time * Encoder mode * Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break TIM2 - 16-bit general purpose timer * 16-bit autoreload (AR) up-counter * 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768 * 3 individually configurable capture/compare channels * PWM mode * Interrupt sources: 3 x input capture/output compare, 1 x overflow/update DS7147 Rev 10 17/103 29 Product overview 4.12 STM8S003F3 STM8S003K3 TIM4 - 8-bit basic timer * 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128 * Clock source: CPU clock * Interrupt source: 1 x overflow/update Table 3. TIM timer features Timer Counter size (bits) TIM1 16 Any integer from 1 to 65536 TIM2 16 TIM4 8 4.13 Counting CAPCOM Complem. Ext. mode trigger channels outputs Prescaler Up/down 4 3 Yes Any power of 2 from 1 to 32768 Up 3 0 No Any power of 2 from 1 to 128 Up 0 0 No Timer synchronization/ chaining No Analog-to-digital converter (ADC1) STM8S003F3/K3 value line products contain a 10-bit successive approximation A/D converter (ADC1) with up to 5 external multiplexed input channels and the following main features: * Input voltage range: 0 to VDDA * Conversion time: 14 clock cycles * Single and continuous, buffered continuous conversion modes * Buffer size (10 x 10 bits) * Scan mode for single and continuous conversion of a sequence of channels * Analog watchdog capability with programmable upper and lower thresholds * Analog watchdog interrupt * External trigger input * Trigger from TIM1 TRGO * End of conversion (EOC) interrupt Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers. 4.14 Communication interfaces The following communication interfaces are implemented: 18/103 * UART1: full feature UART, synchronous mode, SPI master mode, SmartCard mode, IrDA mode, LIN2.1 master capability * SPI: full and half-duplex, 8 Mbit/s * IC: up to 400 Kbit/s DS7147 Rev 10 STM8S003F3 STM8S003K3 4.14.1 Product overview UART1 Main features * 1 Mbit/s full duplex SCI * SPI emulation * High precision baud rate generator * Smartcard emulation * IrDA SIR encoder decoder * LIN master mode * Single wire half duplex mode Asynchronous communication (UART mode) * Full duplex communication - NRZ standard format (mark/space) * Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of following any standard baud rate regardless of the input frequency * Separate enable bits for transmitter and receiver * Two receiver wakeup modes: - Address bit (MSB) - Idle line (interrupt) * Transmission error detection with interrupt generation * Parity control Synchronous communication * Full duplex synchronous transfers * SPI master operation * 8-bit data communication * Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16) LIN master mode 4.14.2 * Emission: generates 13-bit synch. break frame * Reception: detects 11-bit break frame SPI * Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave * Full duplex synchronous transfers * Simplex synchronous transfers on two lines with a possible bidirectional data line * Master or slave operation - selectable by hardware or software * CRC calculation * 1 byte Tx and Rx buffer * Slave/master selection input pin DS7147 Rev 10 19/103 29 Product overview 4.14.3 I2C * * 20/103 STM8S003F3 STM8S003K3 I2C master features - Clock generation - Start and stop generation I2C slave features - Programmable I2C address detection - Stop bit detection * Generation and detection of 7-bit/10-bit addressing and general call * Supports different communication speeds - Standard speed (up to 100 kHz) - Fast speed (up to 400 kHz) DS7147 Rev 10 STM8S003F3 STM8S003K3 5 Pinouts and pin descriptions Pinouts and pin descriptions Table 4. Legend/abbreviations for STM8S003F3/K3 pin description tables Type Level Output speed Port and control configuration Reset state I = input, O = output, S = power supply Input CM = CMOS Output HS = high sink O1 = slow (up to 2 MHz) O2 = fast (up to 10 MHz) O3 = fast/slow programmability with slow as default state after reset O4 = fast/slow programmability with fast as default state after reset Input float = floating, wpu = weak pull-up Output T = true open drain, OD = open drain, PP = push pull Bold x (pin state after internal reset release) Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release. DS7147 Rev 10 21/103 29 Pinouts and pin descriptions 5.1 STM8S003F3 STM8S003K3 STM8S003K3 LQFP32 pinout and pin description PB7 PF4 PD1 (HS)/SWIM PD2 (HS) [TIM2_CH3] PD3 (HS)/TIM2_CH2/ADC_ETR PD4 (HS)/BEEP/TIM2_CH1 PD5 (HS)/UART1_TX PD0 (HS)/ TIM1_BKIN [CLK_CCO] PC7 (HS)/SPI_MISO PC6 (HS)/SPI_MOSI PC5 (HS)/SPI_SCK PC4 (HS)/TIM1_CH4/CLK_CCO PC3 (HS)/TIM1_CH3 PC2 (HS)/TIM1_CH2 PC1 (HS)/TIM1_CH1/UART1_CK PE5 (HS)/SPI_NSS TIM1_CH1N/AIN0/(HS) PB0 [SPI_NSS] TIM2_CH3/(HS)PA3 TIM1_CH2N/ AIN1/(HS) PB1 VDD TIM1_CH3N/AIN2/(HS) PB2 VCAP TIM1_ETR/AIN3/(HS) PB3 VSS I2C_SCL/(T) PB4 OSCOUT/PA2 PB6 OSCIN/PA1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 9 10 11 12 13 14 15 16 I2C_SDA/(T) PB5 1 2 3 4 5 6 7 8 NRST PD6 (HS)/UART1_RX PD7 (HS)/TLI [TIM1_CH4] Figure 3. STM8S003K3 LQFP32 pinout MS37740V1 Table 5. STM8S003K3 descriptions Ext. interrupt High sink(1) Speed OD PP Main function (after reset) wpu NRST I/O - X - - - - - Reset 2 PA1/OSCIN(2) I/O X X X - Pin name Type 1 LQFP32 22/103 Output floating Input O1 X DS7147 Rev 10 X Port A1 Default alternate function Alternate function after remap [option bit] Resonator/ crystal in - STM8S003F3 STM8S003K3 Pinouts and pin descriptions Table 5. STM8S003K3 descriptions (continued) - - - - - - Digital ground - S - - - - - - - 1.8 V regulator capacitor - S - - - - - - - Digital power supply - PA3/TIM2_CH3 [SPI_NSS] I/O X X X HS O3 X X Port A3 Timer 2 channel 3 SPI master/ slave select [AFR1] 8 PF4 I/O X X - - O1 X X Port F4 - - 9 PB7 I/O X X - - O1 X X Port B7 - - 10 PB6 I/O X X - - O1 X X Port B6 - - data - VSS S 5 VCAP 6 VDD 7 Type 4 I/O X O1 X X Port A2 Default alternate function Resonator/ crystal out 11 PB5/I I/O X - X - O1 12 PB4/I2C_SCL I/O X - X - O1 T(3) - 13 PB3/AIN3 [TIM1_ETR] I/O X X X HS O3 X Analog X Port B3 input 3/Timer 1 external trigger - 14 PB2/AIN2 [TIM1_CH3N] X HS O3 X Analog input 2/Timer 1 X Port B2 - inverted channel 3 - 15 PB1/AIN1 [TIM1_CH2N] X HS O3 X Analog input 1/Timer 1 X Port B1 - inverted channel 2 - 16 PB0/AIN0 [TIM1_CH1N] I/O X X X HS O3 X Analog input 0/Timer 1 X Port B0 - inverted channel 1 - 17 PE5/SPI_NSS I/O X X X HS O3 X X SPI Port E5 master/slave select - 18 PC1/TIM1_CH1/ UART1_CK I/O X X X HS O3 X Timer 1 X Port C1 channel 1 UART1 clock - 19 PC2/TIM1_CH2 I/O X X X HS O3 X X Port C2 Timer 1channel 2 - 20 PC3/TIM1_CH3 I/O X X X HS O3 X X Port C3 Timer 1 channel 3 - I/O X X X DS7147 Rev 10 - Port B5 I2C - 2C_SDA I/O X T(3) PP - PA2/OSCOUT OD - 3 Speed X Pin name floating X LQFP32 High sink(1) Alternate function after remap [option bit] Ext. interrupt Main function (after reset) Output wpu Input Port B4 I2C clock - 23/103 29 Pinouts and pin descriptions STM8S003F3 STM8S003K3 Table 5. STM8S003K3 descriptions (continued) Main function (after reset) PP OD Speed High sink(1) Output Ext. interrupt wpu floating Pin name Type LQFP32 Input Default alternate function Alternate function after remap [option bit] X HS O3 X Timer 1 channel X Port C4 4/configurable clock output - X X HS O3 X X Port C5 SPI clock - I/O X X X HS O3 X X Port C6 SPI master out/slave in - I/O X X X HS O3 X X Port C7 SPI master in/ slave out - 25 PD0/[TIM1_BKIN I/O X [CLK_CCO] X X HS O3 X X Port D0 Configurable Timer 1 - break clock output input [AFR5] 26 PD1/SWIM(4) I/O X X X HS O4 X X Port D1 SWIM data interface 27 PD2 [TIM2_CH3] I/O X X X HS O3 X X Port D2 28 PD3/TIM2_CH2 [ADC_ETR] I/O X X X HS O3 X Timer 2 X Port D3 channel 2/ADC external trigger - 29 PD4/BEEP/ TIM2_CH1 I/O X X X HS O3 X Timer 2 X Port D4 channel 1/BEEP output - 30 PD5/ UART1_TX I/O X X X HS O3 X X Port D5 UART1 data transmit - 31 PD6/ UART1_RX I/O X X X HS O3 X X Port D6 UART1 data receive - 32 PD7/TLI [TIM1_CH4] X X HS O3 X X Port D7 Top level interrupt 21 PC4/TIM1_CH4/C I/O X LK_CCO X 22 PC5/SPI_SCK I/O X 23 PC6/SPI_MOSI 24 PC7/SPI_MISO I/O X - Timer 2 channel 3 [AFR1] Timer 1 channel 4 [AFR6] 1. I/O pins used simultaneously for high-current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings given in Section 9: Electrical characteristics. 2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application. 3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented). 4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release. 24/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 5.2 Pinouts and pin descriptions STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description Figure 4. STM8S003F3 TSSOP20 pinout UART1_CK/TIM2_CH1/BEEP/(HS)PD4 1 20 PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR UART1_TX/AIN5/(HS) PD5 2 19 PD2(HS)/AIN3/[TIM2_CH3] UART1_RX/AIN6/(HS) PD6 3 18 PD1(HS)/SWIM NRST 4 17 PC7(HS)/SPI_MISO [TIM1_CH2] OSCIN/PA1 5 16 PC6(HS)/SPI_MOSI [TIM1_CH1] OSCOUT/PA2 6 15 PC5 (HS)/SPI_SCK [TIM2_CH1] VSS 7 14 PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N] VCAP 8 13 PC3(HS)/TIM1_CH3 [TLI] [TIM1_CH1N] 9 12 PB4(T)/I2C_SCL [ADC_ETR] 10 11 PB5(T)/I2C_SDA [TIM1_BKIN] VDD [SPI_NSS] TIM2_CH3/(HS) PA3 MS37741V1 1. HS high sink capability. 2. (T) True open drain (P-buffer and protection diode to VDD not implemented). 3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). DS7147 Rev 10 25/103 29 Pinouts and pin descriptions STM8S003F3 STM8S003K3 PD2(HS)/AIN3/{TIM2_CH3] 20 19 18 17 16 PD6(HS)/AIN6/UART1_RX PD5(HS)/AIN5/UART1_TX PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR PD4 (HS)/BEEP / TIM2_CH1/UART1_CK Figure 5. STM8S003F3 UFQFPN20 pinout OSCIN/PA1 2 14 PC7(HS)/SPI_MISO[TIM1_CH2] OSCOUT/PA2 3 13 PC6(HS)/SPI_MOSI [TIM1_CH1] VSS 4 12 PC5 (HS)/SPI_SCK [TIM2_CH1] VCAP 5 11 PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N] 7 8 9 10 [TIM1_CH1N] [TLI] TIM1_CH3 /(HS)PC3 6 [ADC_ETR] I2C_SCL/(T)PB4 PD1(HS)/SWIM [TIM1_BKIN] I2C_SDA/(T)PB5 15 [SPI_NSS] TIM2_CH3/(HS) PA3 1 VDD NRST MS36409V1 1. HS high sink capability. 2. (T) True open drain (P-buffer and protection diode to VDD not implemented). 3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). 26/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Pinouts and pin descriptions Table 6. STM8S003F3 pin description High sink(1) Speed Type Output Ext. interr. Pin name wpu Input floating UFQFPN20 TSSOP20 Pin no. OD Main function (after PP reset) Default alternate function Alternate function after remap [option bit] - PD4/ BEEP/ 1 18 TIM2_ CH1/ UART1 _CK I/O X X X HS O3 X X Port D4 Timer 2 channel 1/BEEP output/ UART1 clock 2 19 PD5/ AIN5/ UART1 _TX I/O X X X HS O3 X X Port D5 Analog input 5/ UART1 data transmit - 3 20 PD6/ AIN6/ UART1 _RX I/O X X X HS O3 X X Port D6 Analog input 6/ UART1 data receive - 4 1 NRST I/O - X - - - - - Reset 5 2 PA1/ OSCIN(2) X X X - O1 X X Port A1 Resonator/ crystal in - 6 3 PA2/ OSCOUT I/O X X X - O1 X X Port A2 Resonator/ crystal out - 7 4 VSS S - - - - - - - Digital ground - 8 5 VCAP S - - - - - - - 1.8 V regulator capacitor - 9 6 VDD S - - - - - - - Digital power supply - 7 PA3/ TIM2_ CH3 [SPI_ NSS] I/O X X X HS O3 X X Port A3 Timer 2 channel 3 SPI master/ slave select [AFR1] 8 PB5/ I2C_ SDA [TIM1_ BKIN] I/O X - X - O1 T(3) - Port B5 I2C data Timer 1 break input [AFR4] O1 T(3) 10 11 12 9 PB4/ I2C_ SCL PC3/ TIM1_CH3 10 [TLI] 13 [TIM1_ CH1N] I/O I/O I/O X X - X X X - HS O3 DS7147 Rev 10 X - X Port B4 Port C3 - I2C clock Timer 1 channel 3 ADC external trigger [AFR4] Top level interrupt [AFR3] Timer 1 inverted channel 1 [AFR7] 27/103 29 Pinouts and pin descriptions STM8S003F3 STM8S003K3 Table 6. STM8S003F3 pin description (continued) PC4/ CLK_CCO/ TIM1_ 11 14 CH4/AIN2/ [TIM1_ CH2N] 15 16 17 18 19 High sink(1) Speed Type Output Ext. interr. Pin name wpu Input floating UFQFPN20 TSSOP20 Pin no. OD Main function (after PP reset) Default alternate function I/O X X X HS O3 X X Port C4 Configurable clock output/Timer 1 - channel 4/Analog input 2 Alternate function after remap [option bit] Timer 1 inverted channel 2 [AFR7] 12 PC5/ SPI_SCK [TIM2_ CH1] I/O X X X HS O3 X X Port C5 SPI clock Timer 2 channel 1 [AFR0] 13 PC6/ SPI_MOSI [TIM1_ CH1] I/O X X X HS O3 X X Port C6 SPI master out/slave in Timer 1 channel 1 [AFR0] 14 PC7/ SPI_MISO [TIM1_ CH2] I/O X X X HS O3 X X Port C7 SPI master in/ slave out Timer 1 channel 2 [AFR0] X X X HS O4 X X Port D1 SWIM data interface X X X HS O3 X X Port D2 Timer 2 Analog input channel 3 3 [AFR1] Port D3 Analog input 4/ Timer 2 channel 2/ADC external trigger 15 PD1/ SWIM(4) 16 PD2/AIN3/ [TIM2_ CH3] PD3/ AIN4/ 17 TIM2_ CH2/ 20 ADC_ ETR I/O I/O I/O X X X HS O3 X X - - 1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings. 2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended d to use PA1 only in input mode if halt/active-halt is used in the application. 3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented). 4. The PD1 pin is in input pull-up during the reset phase and after internal reset release. 28/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 5.3 Pinouts and pin descriptions Alternate function remapping As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 8: Option bytes. When the remapping option is active, the default alternate function is no longer available. To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers. Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016). DS7147 Rev 10 29/103 29 Memory and register map STM8S003F3 STM8S003K3 6 Memory and register map 6.1 Memory map Figure 6. Memory map 0x00 0000 RAM (1 Kbyte) 0x00 03FF 0x00 0800 513 byte stack Reserved 0x00 4000 Data EEPROM 0x00 407F 0x00 47FF 0x00 4800 0x00 480A 0x00 480B Reserved Option bytes Reserved 0x00 4FFF 0x00 5000 GPIO and periph. reg. 0x00 57FF 0x00 5800 Reserved 0x00 7EFF 0x00 7F00 0x00 7FFF 0x00 8000 0x00 807F 0x00 8080 0x00 9FFF 0x00 A000 CPU/SWIM/debug/ITC registers 32 interrupt vectors Flash program memory (8 Kbyte) Reserved 0x02 7FFF 30/103 DS7147 Rev 10 MS36410V1 STM8S003F3 STM8S003K3 Memory and register map Table 7 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case. Table 7. Flash, Data EEPROM and RAM boundary addresses Memory area Size (byte) Start address End address Flash program memory 8K 0x00 8000 0x00 9FFF RAM 1K 0x00 0000 0x00 03FF Data EEPROM 128 0x00 4000 0x00 407F 6.2 Register map 6.2.1 I/O port hardware register map Table 8. I/O port hardware register map Register label Register name Reset status 0x00 5000 PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX(1) PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x00 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX(1) PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 0x00 500A PC_ODR Port C data output latch register 0x00 0x00 500B PB_IDR Port C input pin value register 0xXX(1) PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 0x00 500F PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX(1) PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x02 0x00 5013 PD_CR2 Port D control register 2 0x00 Address 0x00 5002 0x00 5007 0x00 500C 0x00 5011 Block Port A Port B Port C Port D DS7147 Rev 10 31/103 41 Memory and register map STM8S003F3 STM8S003K3 Table 8. I/O port hardware register map (continued) Register label Register name Reset status 0x00 5014 PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX(1) PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 0x00 5019 PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX(1) PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 Address 0x00 5016 0x00 501B Block Port E Port F 1. Depends on the external circuitry. 6.2.2 32/103 General hardware register map DS7147 Rev 10 STM8S003F3 STM8S003K3 Memory and register map Table 9. General hardware register map Address Block Register label 0x00 501E to 0x00 5059 Register name Reset status Reserved area (60 byte) 0x00 505A FLASH_CR1 Flash control register 1 0x00 0x00 505B FLASH_CR2 Flash control register 2 0x00 0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF FLASH _FPR Flash protection register 0x00 0x00 505E FLASH _NFPR Flash complementary protection register 0xFF 0x00 505F FLASH _IAPSR Flash in-application programming status register 0x00 0x00 505D Flash 0x00 5060 to 0x00 5061 0x00 5062 Reserved area (2 byte) Flash FLASH _PUKR 0x00 5063 0x00 5064 0x00 50A1 Flash FLASH _DUKR ITC 0x00 50C1 0x00 EXTI_CR1 External interrupt control register 1 0x00 EXTI_CR2 External interrupt control register 2 0x00 Reserved area (17 byte) RST RST_SR 0x00 50B4 to 0x00 50BF 0x00 50C0 Data EEPROM unprotection register Reserved area (59 byte) 0x00 50A2 to 0x00 50B2 0x00 50B3 0x00 Reserved area (1 byte) 0x00 5065 to 0x00 509F 0x00 50A0 Flash Program memory unprotection register Reset status register 0xXX(1) Reserved area (12 byte) CLK CLK_ICKR Internal clock control register 0x01 CLK_ECKR External clock control register 0x00 0x00 50C2 Reserved area (1 byte) 0x00 50C3 CLK_CMSR Clock master status register 0xE1 0x00 50C4 CLK_SWR Clock master switch register 0xE1 0x00 50C5 CLK_SWCR Clock switch control register 0xXX CLK_CKDIVR Clock divider register 0x18 CLK_PCKENR1 Peripheral clock gating register 1 0xFF 0x00 50C8 CLK_CSSR Clock security system register 0x00 0x00 50C9 CLK_CCOR Configurable clock control register 0x00 0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF 0x00 50C6 0x00 50C7 0x00 50CB CLK Reserved area (1 byte) DS7147 Rev 10 33/103 41 Memory and register map STM8S003F3 STM8S003K3 Table 9. General hardware register map (continued) Address Block 0x00 50CC 0x00 50CD CLK Register label Register name Reset status CLK_HSITRIMR HSI clock calibration trimming register 0x00 CLK_SWIMCCR SWIM clock control register 0bXXXX XXX0 0x00 50CE to 0x00 50D0 0x00 50D1 0x00 50D2 Reserved area (3 byte) WWDG WWDG_CR WWDG control register 0x7F WWDG_WR WWDR window register 0x7F 0x00 50D3 to 0x00 50DF Reserved area (13 byte) 0x00 50E0 0x00 50E1 IWDG 0x00 50E2 IWDG_KR IWDG key register 0xXX(2) IWDG_PR IWDG prescaler register 0x00 IWDG_RLR IWDG reload register 0xFF 0x00 50E3 to 0x00 50EF Reserved area (13 byte) 0x00 50F0 0x00 50F1 AWU 0x00 50F2 0x00 50F3 BEEP AWU_CSR1 AWU control/status register 1 0x00 AWU_APR AWU asynchronous prescaler buffer register 0x3F AWU_TBR AWU timebase selection register 0x00 BEEP_CSR BEEP control/status register 0x1F 0x00 50F4 to 0x00 50FF Reserved area (12 byte) 0x00 5200 SPI_CR1 SPI control register 1 0x00 0x00 5201 SPI_CR2 SPI control register 2 0x00 0x00 5202 SPI_ICR SPI interrupt control register 0x00 SPI_SR SPI status register 0x02 SPI_DR SPI data register 0x00 0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07 0x00 5206 SPI_RXCRCR SPI Rx CRC register 0x00 0x00 5207 SPI_TXCRCR SPI Tx CRC register 0x00 0x00 5203 0x00 5204 SPI 0x00 5208 to 0x00 520F Reserved area (8 byte) 0x00 5211 0x00 5212 0x00 5213 0x00 5214 I2C control register 1 I2C_CR1 0x00 5210 I2C_CR2 I2C I I2C I2C_FREQR 2C 0x00 control register 2 0x00 frequency register 0x00 I2C_OARL I own address register low 0x00 I2C_OARH I2C own address register high 0x00 0x00 5215 34/103 2C Reserved DS7147 Rev 10 STM8S003F3 STM8S003K3 Memory and register map Table 9. General hardware register map (continued) Address Block 0x00 5216 Register label Register name Reset status I2C_DR I2C data register 0x00 2 0x00 5217 I2C_SR1 I C status register 1 0x00 0x00 5218 I2C_SR2 I2C status register 2 0x00 I2C_SR3 I2 0x00 0x00 5219 0x00 521A I2 C I2C_ITR C status register 3 2 I C interrupt control register 0x00 2 0x00 521B I2C_CCRL I C clock control register low 0x00 0x00 521C I2C_CCRH I2C clock control register high 0x00 0x00 521D I2C_TRISER 0x00 521E I2C_PECR 0x00 521F to 0x00 522F TRISE register 0x02 packet error checking register 0x00 I I 2C 2C Reserved area (17 byte) 0x00 5230 UART1_SR UART1 status register 0xC0 0x00 5231 UART1_DR UART1 data register 0xXX 0x00 5232 UART1_BRR1 UART1 baud rate register 1 0x00 0x00 5233 UART1_BRR2 UART1 baud rate register 2 0x00 0x00 5234 UART1_CR1 UART1 control register 1 0x00 UART1_CR2 UART1 control register 2 0x00 0x00 5236 UART1_CR3 UART1 control register 3 0x00 0x00 5237 UART1_CR4 UART1 control register 4 0x00 0x00 5238 UART1_CR5 UART1 control register 5 0x00 0x00 5239 UART1_GTR UART1 guard time register 0x00 0x00 523A UART1_PSCR UART1 prescaler register 0x00 0x00 5235 0x00 523B to 0x00523F UART1 Reserved area (21 byte) DS7147 Rev 10 35/103 41 Memory and register map STM8S003F3 STM8S003K3 Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 5250 TIM1_CR1 TIM1 control register 1 0x00 0x00 5251 TIM1_CR2 TIM1 control register 2 0x00 0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00 0x00 5253 TIM1_ETR TIM1 external trigger register 0x00 0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00 0x00 5255 TIM1_SR1 TIM1 status register 1 0x00 0x00 5256 TIM1_SR2 TIM1 status register 2 0x00 0x00 5257 TIM1_EGR TIM1 event generation register 0x00 0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00 0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00 0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00 0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00 0x00 525C TIM1_CCER1 TIM1 capture/compare enable register 1 0x00 0x00 525D TIM1_CCER2 TIM1 capture/compare enable register 2 0x00 0x00 525E TIM1_CNTRH TIM1 counter high 0x00 TIM1_CNTRL TIM1 counter low 0x00 TIM1_PSCRH TIM1 prescaler register high 0x00 0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00 0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF 0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF 0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00 0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00 0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00 0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00 0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00 0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00 0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00 0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00 0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00 0x00 526D TIM1_BKR TIM1 break register 0x00 0x00 526E TIM1_DTR TIM1 dead-time register 0x00 0x00 526F TIM1_OISR TIM1 output idle state register 0x00 Address 0x00 525F 0x00 5260 0x00 5270 to 0x00 52FF 36/103 Block TIM1 Reserved area (147 byte) DS7147 Rev 10 STM8S003F3 STM8S003K3 Memory and register map Table 9. General hardware register map (continued) Address Block 0x00 5300 Register label Register name Reset status TIM2_CR1 TIM2 control register 1 0x00 0x00 5301 Reserved 0x00 5302 Reserved 0x00 5303 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5304 TIM2_SR1 TIM2 status register 1 0x00 0x00 5305 TIM2_SR2 TIM2 status register 2 0x00 0x00 5306 TIM2_EGR TIM2 event generation register 0x00 0x00 5307 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00 0x00 5308 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00 0x00 5309 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00 0x00 530A TIM2_CCER1 TIM2 capture/compare enable register 1 0x00 TIM2_CCER2 TIM2 capture/compare enable register 2 0x00 0x00 530C TIM2_CNTRH TIM2 counter high 0x00 0x00 530D TIM2_CNTRL TIM2 counter low 0x00 0x00 530E TIM2_PSCR TIM2 prescaler register 0x00 0x00 530F TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 5310 TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 5311 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00 0x00 5312 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00 0x00 5313 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00 0x00 5314 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00 0x00 5315 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00 0x00 5316 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00 0x00 530B TIM2 0x00 5317 to 0x00 533F Reserved area (43 byte) 0x00 5340 TIM4_CR1 TIM4 control register 1 0x00 5341 Reserved 0x00 5342 Reserved 0x00 5343 0x00 TIM4_IER TIM4 interrupt enable register 0x00 TIM4_SR TIM4 status register 0x00 0x00 5345 TIM4_EGR TIM4 event generation register 0x00 0x00 5346 TIM4_CNTR TIM4 counter 0x00 0x00 5347 TIM4_PSCR TIM4 prescaler register 0x00 0x00 5348 TIM4_ARR TIM4 auto-reload register 0xFF 0x00 5344 TIM4 DS7147 Rev 10 37/103 41 Memory and register map STM8S003F3 STM8S003K3 Table 9. General hardware register map (continued) Address Block Register label 0x00 5349 to 0x00 53DF 0x00 53E0 to 0x00 53F3 Register name Reset status Reserved area (153 byte) ADC1 ADC_DBxR 0x00 53F4 to 0x00 53FF ADC data buffer registers 0x00 Reserved area (12 byte) 0x00 5400 ADC _CSR ADC control/status register 0x00 0x00 5401 ADC_CR1 ADC configuration register 1 0x00 0x00 5402 ADC_CR2 ADC configuration register 2 0x00 0x00 5403 ADC_CR3 ADC configuration register 3 0x00 0x00 5404 ADC_DRH ADC data register high 0xXX 0x00 5405 ADC_DRL ADC data register low 0xXX 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00 ADC_TDRL ADC Schmitt trigger disable register low 0x00 ADC_HTRH ADC high threshold register high 0x03 0x00 5409 ADC_HTRL ADC high threshold register low 0xFF 0x00 540A ADC_LTRH ADC low threshold register high 0x00 0x00 540B ADC_LTRL ADC low threshold register low 0x00 0x00 540C ADC_AWSRH ADC analog watchdog status register high 0x00 0x00 540D ADC_AWSRL ADC analog watchdog status register low 0x00 0x00 540E ADC_AWCRH ADC analog watchdog control register high 0x00 0x00 540F ADC_AWCRL ADC analog watchdog control register low 0x00 0x00 5407 0x00 5408 ADC1 0x00 5410 to 0x00 57FF Reserved area (1008 byte) 1. Depends on the previous reset source. 2. Write only register. 38/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 6.2.3 Memory and register map CPU/SWIM/debug module/interrupt controller registers Table 10. CPU/SWIM/debug module/interrupt controller registers Register Label Register Name Reset Status 0x00 7F00 A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 XH X index register high 0x00 XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x03 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 Address Block 0x00 7F04 0x00 7F05 (1) CPU 0x00 7F0B to 0x00 7F5F 0x00 7F60 Reserved area (85 byte) CFG_GCR Global configuration register 0x00 0x00 7F70 ITC_SPR1 Interrupt software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF ITC_SPR4 Interrupt software priority register 4 0xFF ITC_SPR5 Interrupt software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF 0x00 7F73 0x00 7F74 CPU ITC 0x00 7F78 to 0x00 7F79 0x00 7F80 0x00 7F81 to 0x00 7F8F Reserved area (2 byte) SWIM SWIM_CSR SWIM control status register 0x00 Reserved area (15 byte) DS7147 Rev 10 39/103 41 Memory and register map STM8S003F3 STM8S003K3 Table 10. CPU/SWIM/debug module/interrupt controller registers (continued) Register Label Register Name Reset Status 0x00 7F90 DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM debug module control register 1 0x00 0x00 7F97 DM_CR2 DM debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10 0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00 0x00 7F9A DM_ENFCTR DM enable function register 0xFF Address 0x00 7F95 Block DM 0x00 7F9B to 0x00 7F9F Reserved area (5 byte) 1. Accessible by debug module only 40/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 7 Interrupt vector mapping Interrupt vector mapping Table 11. Interrupt mapping IRQ no. Source block - RESET - TRAP 0 TLI 1 2 Wakeup from Wakeup from Halt mode Active-halt mode Description Reset Vector address Yes Yes 0x00 8000 Software interrupt - - 0x00 8004 External top level interrupt - - 0x00 8008 AWU Auto wake up from halt - Yes 0x00 800C CLK Clock controller - - 0x00 8010 Yes(1) 0x00 8014 Yes (1) 3 EXTI0 Port A external interrupts 4 EXTI1 Port B external interrupts Yes Yes 0x00 8018 5 EXTI2 Port C external interrupts Yes Yes 0x00 801C 6 EXTI3 Port D external interrupts Yes Yes 0x00 8020 7 EXTI4 Port E external interrupts Yes Yes 0x00 8024 8 - Reserved 0x00 8028 9 - Reserved 0x00 802C 10 SPI 11 TIM1 12 End of transfer Yes Yes 0x00 8030 TIM1 update/overflow/underflow/ trigger/break - - 0x00 8034 TIM1 TIM1 capture/compare - - 0x00 8038 13 TIM2 TIM2 update /overflow - - 0x00 803C 14 TIM2 TIM2 capture/compare - - 0x00 8040 15 - Reserved 0x00 8044 16 - Reserved 0x00 8048 17 UART1 Tx complete - - 0x00 804C 18 UART1 Receive register DATA FULL - - 0x00 8050 19 I2C Yes Yes 0x00 8054 20 - Reserved 0x00 8058 21 - Reserved 0x00 805C 22 ADC1 ADC1 end of conversion/analog watchdog interrupt - - 0x00 8060 23 TIM4 TIM4 update/overflow - - 0x00 8064 24 Flash EOP/WR_PG_DIS - - 0x00 8068 I2C interrupt Reserved 0x00 806C to 0x00 807C 1. Except PA1 DS7147 Rev 10 41/103 41 Option bytes 8 STM8S003F3 STM8S003K3 Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy. Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in Table 12: Option bytes below. Option bytes can also be modified `on the fly' by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM). Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures. Table 12. Option bytes Addr. 0x4800 0x4801 0x4802 0x4803 0x4804 Option name Read-out protection (ROP) User boot code (UBC) Alternate function remapping (AFR) Option byte no. 7 6 5 0x4809 0x480A HSE clock startup 1 0 OPT1 UBC[7:0] 0x00 NUBC[7:0] 0xFF NOPT1 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF WWDG _HW WWDG _HALT 0x00 OPT3 Reserved HSITRIM LSI _EN IWDG _HW NOPT3 Reserved NHSI TRIM NLSI _EN NIWDG _HW NWWDG NWWDG _HW _HALT Reserved EXT CLK CKAWU SEL PRS C1 PRS C0 0x00 NOPT4 Reserved NEXT CLK NCKAW USEL NPR SC1 NPR SC0 0xFF OPT5 NOPT5 HSECNT[7:0] 0x00 NHSECNT[7:0] 0xFF Table 13. Option byte description Option byte no. OPT0 42/103 0xFF OPT4 Clock option 0x4808 2 0x00 Misc. option 0x4807 3 ROP[7:0] NOPT2 0x4806 4 Factory default setting OPT0 OPT2 0x4805 Option bits Description ROP[7:0] Memory readout protection (ROP) 0xAA: Enable readout protection (write access via SWIM protocol) Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details. DS7147 Rev 10 STM8S003F3 STM8S003K3 Option bytes Table 13. Option byte description (continued) Option byte no. Description OPT1 UBC[7:0] User boot code area 0x00: no UBC, no write-protection 0x01: Pages 0 defined as UBC, memory write-protected 0x02: Pages 0 to 1 defined as UBC, memory write-protected Page 0 and page 1 contain the interrupt vectors. ... 0x7F: Pages 0 to 126 defined as UBC, memory write-protected Other values: Pages 0 to 127 defined as UBC, memory-write protected. Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM write protection for more details. OPT2 AFR[7:0] Refer to the following section for alternate function remapping descriptions of bits [7:2] and [1:0] respectively. HSITRIM: high-speed internal clock trimming register size 0: 3-bit trimming supported in CLK_HSITRIMR register 1: 4-bit trimming supported in CLK_HSITRIMR register LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source OPT3 IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN OPT4 CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for for AWU PRSC[1:0] AWU clock prescaler 0x: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler OPT5 HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles DS7147 Rev 10 43/103 45 Option bytes 8.1 STM8S003F3 STM8S003K3 Alternate function remapping bits Table 14. STM8S003K3 alternate function remapping bits for 32-pin devices Description(1) Option byte number OPT2 AFR7Alternate function remapping option 7 Reserved. AFR6 Alternate function remapping option 6 0: AFR6 remapping option inactive: default alternate function(2) 1: Port D7 alternate function = TIM1_CH4. AFR5 Alternate function remapping option 5 0: AFR5 remapping option inactive: default alternate function(2) 1: Port D0 alternate function = CLK_CCO. AFR[4:2] Alternate function remapping option 4:2 Reserved. AFR1 Alternate function remapping option 1 0: AFR1 remapping option inactive: default alternate function(2) 1: Port A3 alternate function = SPI_NSS; port D2 alternate function TIM2_CH3 AFR0 Alternate function remapping option 0 Reserved. 1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0 2. Refer to the pinout description. 44/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Option bytes Table 15. STM8S003F3 alternate function remapping bits for 20-pin devices Option byte number OPT2 Description AFR7Alternate function remapping option 7 0: AFR7 remapping option inactive: default alternate function(1) 1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function = TIM1_CH2N. AFR6 Alternate function remapping option 6 Reserved. AFR5 Alternate function remapping option 5 Reserved. AFR4 Alternate function remapping option 4 0: AFR4 remapping option inactive: default alternate function(1). 1: Port B4 alternate function = ADC_ETR; port B5 alternate function = TIM1_BKIN. AFR3 Alternate function remapping option 3 0: AFR3 remapping option inactive: default alternate function(1) 1: Port C3 alternate function = TLI. AFR2 Alternate function remapping option 2 Reserved. AFR1 Alternate function remapping option 1 (2) 0: AFR1 remapping option inactive: default alternate function(1) 1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3. AFR0 Alternate function remapping option 0(2) 0: AFR0 remapping option inactive: Default alternate functions(1) 1: Port C5 alternate function = TIM2_CH1; port C6 alternate function = TIM1_CH1; port C7 alternate function = TIM1_CH2. 1. Refer to the pinout description. 2. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0. DS7147 Rev 10 45/103 45 Electrical characteristics STM8S003F3 STM8S003K3 9 Electrical characteristics 9.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 9.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3 ). 9.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 5 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2 ). 9.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 9.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. Figure 7. Pin loading conditions STM8 pin 50 pF 9.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. 46/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 8. Pin input voltage STM8 pin VIN 9.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics, Table 17: Current characteristics and Table 18: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability. The device's mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand. Table 16. Voltage characteristics Symbol Min Max -0.3 6.5 VSS - 0.3 6.5 VSS - 0.3 VDD + 0.3 |VDDx - VDD| Variations between different power pins - 50 |VSSx - VSS| Variations between all the different ground pins - 50 VDDx - VSS VIN VESD Ratings Supply voltage(1) Input voltage on true open drain pins(2) Input voltage on any other pin(2) Electrostatic discharge voltage see Absolute maximum ratings (electrical sensitivity) on page 86 Unit V mV - 1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VINVDD while a negative injection is induced by VIN> gmcrit 9.3.4 Internal clock sources and timing characteristics Subject to general operating conditions for VDD and TA. High speed internal RC oscillator (HSI) Table 34. HSI oscillator characteristics Symbol fHSI Parameter Frequency Conditions Min Typ Max Unit - - 16 - MHz - - 1.0(2) User-trimmed with the CLK_HSITRIMR register Accuracy of HSI oscillator for given VDD and TA ACCHSI conditions(1) % Accuracy of HSI oscillator VDD = 5 V, -40 C TA 85 C (factory calibrated) -5 - 5 tsu(HSI) HSI oscillator wakeup time including calibration - - - 1.0(2) s IDD(HSI) HSI oscillator power consumption - - 170 250(3) A 1. See the application note. 2. Guaranteed by design. 3. Data based on characterization results. DS7147 Rev 10 63/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 19. Typical HSI frequency variation vs VDD at 4 temperatures Low speed internal RC oscillator (LSI) Subject to general operating conditions for VDD and TA. Table 35. LSI oscillator characteristics Symbol fLSI Parameter Conditions Min Typ - - Frequency Max Unit 128 - kHz s A tsu(LSI) LSI oscillator wakeup time - - - 7(1) IDD(LSI) LSI oscillator power consumption - - 5 - 1. Guaranteed by design. Figure 20. Typical LSI frequency variation vs VDD @ 4 temperatures 64/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 9.3.5 Electrical characteristics Memory characteristics RAM and hardware registers Table 36. RAM and hardware registers Symbol Parameter Conditions Min Unit VRM Data retention mode(1) Halt mode (or reset) VIT-max(2) V 1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design. 2. Refer to Table 20 on page 50 for the value of VIT-max. Flash program memory and data EEPROM General conditions: TA = -40 to 85 C. Table 37. Flash program memory and data EEPROM Symbol VDD tprog terase Parameter Conditions Operating voltage (all modes, execution/write/erase) IDD Unit 2.95 - 5.5 V Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/64 bytes) - - 6.0 6.6 ms Fast programming time for 1 block (64 bytes) - - 3.0 3.3 ms Erase time for 1 block (64 bytes) - - 3.0 3.3 ms 100 - - Erase/write (program memory) TA = 85 C Erase/write cycles(2) (data memory) Data retention (program memory) after 100 erase/write cycles at TA = 85 C tRET Max fCPU 16 MHz cycles(2) NRW Min(1) Typ cycles 100 k - - 20 - - 20 - - TRET = 55 C Data retention (data memory) after 10 k erase/write cycles at TA = 85 C Data retention (data memory) after 100 k erase/write cycles at TA = 85 C TRET = 85 C 1.0 - - Supply current (Flash programming or erasing for 1 to 128 bytes) - - 2.0 - years mA 1. Data based on characterization results. 2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. DS7147 Rev 10 65/103 87 Electrical characteristics 9.3.6 STM8S003F3 STM8S003K3 I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Table 38. I/O static characteristics Symbol Parameter Min Typ Max Unit -0.3 - 0.3 x VDD V 0.7 x VDD - VDD + 0.3 V V - 700 - mV 30 55 80 k Fast I/Os Load = 50 pF - - 20(2) ns Standard and high sink I/Os Load = 50 pF - - 125(2) ns Input leakage current, analog and digital VSS VIN VDD - - 1 A Ilkg ana Analog input leakage current VSS VIN VDD - - 250 (3) nA Ilkg(inj) Leakage current in adjacent I/O Injection current 4 mA - - 1(3) A VIL Input low level voltage VIH Input high level voltage Vhys Hysteresis(1) Rpu Pull-up resistor tR, tF Rise and fall time (10% - 90%) Ilkg Conditions VDD = 5 V VDD = 5 V, VIN = VSS 1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results. 2. Data guaranteed by design. 3. Data based on characterization results. 66/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 21. Typical VIL and VIH vs VDD @ 4 temperatures Figure 22. Typical pull-up resistance vs VDD @ 4 temperatures DS7147 Rev 10 67/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 23. Typical pull-up current vs VDD @ 4 temperatures 1. The pull-up is a pure resistor (slope goes through 0). Table 39. Output driving current (standard ports) Symbol VOL VOH Parameter Conditions Min Max Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 2 Output low level with 4 pins sunk IIO = 4 mA, VDD = 3.3 V - 1(1) Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 2.8 - IIO = 4 mA, VDD = 3.3 V 2.1(1) - Output high level with 4 pins sourced Unit V V 1. Data based on characterization results. Table 40. Output driving current (true open drain ports) Symbol Parameter Conditions IIO = 10 mA, VDD = 5 V VOL Output low level with 2 pins sunk IIO = 10 mA, VDD = 3.3 V IIO = 20 mA, VDD = 5 V 1. Data based on characterization results. 68/103 DS7147 Rev 10 Max Unit 1 1.5(1) 2(1) V STM8S003F3 STM8S003K3 Electrical characteristics Table 41. Output driving current (high sink ports) Symbol VOL VOH Parameter Conditions Min Max Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 0.8 Output low level with 4 pins sunk IIO = 10 mA, VDD = 3.3 V - 1.0(1) Output low level with 4 pins sunk IIO = 20 mA, VDD = 5 V - 1.5(1) Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 4.0 - Output high level with 4 pins sourced IIO = 10 mA, VDD = 3.3 V 2.1(1) - (1) - Output high level with 4 pins sourced IIO = 20 mA, VDD = 5 V 3.3 Unit V 1. Data based on characterization results. Typical output level curves Figure 25 to Figure 32 show typical output level curves measured with output on a single pin. Figure 24. Typ. VOL @ VDD = 5 V (standard ports) DS7147 Rev 10 69/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports) Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports) 70/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) Figure 28. Typ. VOL @ VDD = 5 V (high sink ports) DS7147 Rev 10 71/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports) 72/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports) DS7147 Rev 10 73/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) 74/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 9.3.7 Electrical characteristics Reset pin characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. Table 42. NRST pin characteristics Symbol VIL(NRST) VIH(NRST) VOL(NRST) Parameter NRST input low level voltage (1) NRST input high level voltage (1) NRST output low level voltage (1) (2) RPU(NRST) NRST pull-up resistor tIFP(NRST) NRST input filtered pulse (3) tINFP(NRST) tOP(NRST) NRST Input not filtered NRST output pulse (1) pulse (3) Conditions Min Typ 1) Max - -0.3 V - 0.3 x VDD - 0.7 x VDD - VDD + 0.3 - - 0.5 - 30 55 80 k - - - 75 ns - 500 - - ns - 20 - - s IOL= 2 mA Unit V 1. Data based on characterization results. 2. The RPU pull-up equivalent resistor is based on a resistive transistor. 3. Data guaranteed by design. Figure 34. Typical NRST VIL and VIH vs VDD @ 4 temperatures DS7147 Rev 10 75/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 35. Typical NRST pull-up resistance vs VDD @ 4 temperatures Figure 36. Typical NRST pull-up current vs VDD @ 4 temperatures The reset network shown in Figure 37 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL max. level specified in Table 38. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRST signal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF. 76/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 37. Recommended reset pin protection STM8 VDD RPU External reset circuit NRST Filter 0.1 F (Optional) MSv36491V1 SPI serial peripheral interface 9.3.8 Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under ambient temperature, fMASTER frequency and VDD supply voltage conditions. tMASTER = 1/fMASTER. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 43. SPI characteristics Symbol Min Max Master mode 0 8 Slave mode 0 7 SPI clock rise and fall time Capacitive load: C = 30 pF - 25 tsu(NSS)(1) NSS setup time Slave mode 4 x tMASTER - th(NSS)(1) NSS hold time Slave mode 70 - SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15 Master mode 5 - Slave mode 5 - Master mode 7 - Slave mode 10 - Data output access time Slave mode - 3 x tMASTER Data output disable time Slave mode 25 - tv(SO) (1) Data output valid time Slave mode (after enable edge) - 65 tv(MO)(1) Data output valid time Master mode (after enable edge) - 30 Slave mode (after enable edge) 27 - Master mode (after enable edge) 11 - fSCK 1/tc(SCK) tr(SCK) tf(SCK) (1) tw(SCKH) tw(SCKL)(1) Parameter SPI clock frequency tsu(MI) (1) tsu(SI)(1) Data input setup time th(MI) (1) th(SI)(1) Data input hold time ta(SO) (1)(2) tdis(SO) (1)(3) th(SO) (1) th(MO) (1) Data output hold time Conditions Unit MHz ns 1. Values based on design simulation and/or characterization results, and not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. DS7147 Rev 10 77/103 87 Electrical characteristics STM8S003F3 STM8S003K3 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. Figure 38. SPI timing diagram - slave mode and CPHA = 0 Figure 39. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT BIT6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT th(NSS) tc(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 78/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Figure 40. SPI timing diagram - master mode(1) High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MSB IN tr(SCK) tf(SCK) BIT6 IN LSB IN th(MI) MOSI OUTPUT MSB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DS7147 Rev 10 79/103 87 Electrical characteristics 9.3.9 STM8S003F3 STM8S003K3 I2C interface characteristics Table 44. I2C characteristics Standard mode I2C Fast mode I2C(1) Symbol Parameter Min(2) Max(2) Min(2) Max(2) Unit tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0(3) - 0(4) 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - s STOP to START condition time (bus free) 4.7 - 1.3 - s - 400 - 400 pF tw(STO:STA) Cb Capacitive load for each bus line 1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400kHz) 2. Data based on standard I2C protocol requirement, not tested in production 3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time 4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL 80/103 DS7147 Rev 10 s ns s STM8S003F3 STM8S003K3 Electrical characteristics Figure 41. Typical application with I2C bus and timing diagram VDD VDD 4.7 k 4.7 k STM8 100 SDA IC bus SCL 100 S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) th(STA) SCL tw(SCLH) tsu(SDA) th(SDA) tw(SCLL) tr(SCL) tf(SCL) S TOP tsu(STA:STO) tsu(STO) ai17490V2 1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD DS7147 Rev 10 81/103 87 Electrical characteristics 9.3.10 STM8S003F3 STM8S003K3 10-bit ADC characteristics Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise specified. Table 45. ADC characteristics Symbol Parameter Conditions Min Typ Max VDDA = 3 to 5.5 V 1 - 4 VDDA = 4.5 to 5.5 V 1 - 6 Unit fADC ADC clock frequency VAIN Conversion voltage range(1) - VSS - VDD V CADC Internal sample and hold capacitor - - 3 - pF fADC = 4 MHz - 0.75 - fADC = 6 MHz - 0.5 - - - 7 - tS(1) Sampling time tSTAB Wakeup time from standby tCONV Total conversion time (including sampling time, 10-bit resolution) MHz s s fADC = 4 MHz 3.5 s fADC = 6 MHz 2.33 s - 14 1/fADC 1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. Table 46. ADC accuracy with RAIN < 10 k , VDD = 5 V Symbol |ET| |EO| |EG| |ED| |EL| 82/103 Parameter Total unadjusted error (2) Offset Gain error (2) error (2) Differential linearity error (2) Integral linearity error (2) DS7147 Rev 10 Conditions Typ Max(1) fADC = 2 MHz 1.6 3.5 fADC = 4 MHz 2.2 4 fADC = 6 MHz 2.4 4.5 fADC = 2 MHz 1.1 2.5 fADC = 4 MHz 1.5 3 fADC = 6 MHz 1.8 3 fADC = 2 MHz 1.5 3 fADC = 4 MHz 2.1 3 fADC = 6 MHz 2.2 4 fADC = 2 MHz 0.7 1.5 fADC = 4 MHz 0.7 1.5 fADC = 6 MHz 0.7 1.5 fADC = 2 MHz 0.6 1.5 fADC = 4 MHz 0.8 2 fADC = 6 MHz 0.8 2 Unit LSB STM8S003F3 STM8S003K3 Electrical characteristics 1. Data based on characterization results. 2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy. Table 47. ADC accuracy with RAIN < 10 k RAIN, VDD = 3.3 V Symbol Parameter |ET| Total unadjusted error(2) |EO| Offset error(2) |EG| Gain error(2) |ED| Differential linearity error(2) |EL| Integral linearity error(2) Conditions Typ Max(1) fADC = 2 MHz 1.6 3.5 fADC = 4 MHz 1.9 4 fADC = 2 MHz 1 2.5 fADC = 4 MHz 1.5 2.5 fADC = 2 MHz 1.3 3 fADC = 4 MHz 2 3 fADC = 2 MHz 0.7 1.0 fADC = 4 MHz 0.7 1.5 fADC = 2 MHz 0.6 1.5 fADC = 4 MHz 0.8 2 Unit LSB 1. Data based on characterization results. 2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy. DS7147 Rev 10 83/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Figure 42. ADC accuracy characteristics EG 1023 1022 1021 1LSB IDEAL V -V DDA SSA = ----------------------------------------1024 (2) ET 7 (3) (1) 6 5 EO 4 EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 1021102210231024 VDDA 1. Example of an actual transfer curve. 2. The ideal transfer curve 3. End point correlation line ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. EO = Offset error: deviation between the first actual transition and the first ideal one. EG = Gain error: deviation between the last ideal transition and the last actual one. ED = Differential linearity error: maximum deviation between actual steps and the ideal one. EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation line. Figure 43. Typical application with ADC VDD VAIN VT 0.6V RAIN AINx CAIN 84/103 STM8 10-bit A/D conversion VT 0.6V DS7147 Rev 10 IL 1A CADC STM8S003F3 STM8S003K3 9.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). * ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard. * FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: * Corrupted program counter * Unexpected reset * Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 48. EMS data Symbol Parameter Conditions Level/class VFESD VDD = 3.3 V, TA = 25 C, Voltage limits to be applied on any I/O pin to fMASTER = 16 MHz, induce a functional disturbance conforming to IEC 61000-4-2 2B(1) VEFTB Fast transient voltage burst limits to be VDD = 3.3 V, TA = 25 C, applied through 100pF on VDD and VSS pins fMASTER = 16 MHz, to induce a functional disturbance conforming to IEC 61000-4-4 4A(1) 1. Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 EMC guidelines for STM8Smicrocontrollers. DS7147 Rev 10 85/103 87 Electrical characteristics STM8S003F3 STM8S003K3 Electromagnetic interference (EMI) Based on a simple application running on the product (toggling two LEDs through the I/O ports), the product is monitored in terms of emission. Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading. Table 49. EMI data Conditions Symbol Parameter Monitored frequency band General conditions SEMI Peak level EMI level VDD = 5 V TA = 25 C LQFP32 package conforming to IEC 61967-2 Max fHSE/fCPU(1) Unit 16 MHz/ 16 MHz/ 8 MHz 16 MHz 0.1 MHz to 30 MHz 5 5 30 MHz to 130 MHz 4 5 130 MHz to 1 GHz 5 5 2.5 2.5 - dBV - 1. Data based on characterization results. Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (one positive then one negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model can be simulated: the Human Body Model (HBM). This test conforms to the JESD22A114A/A115A standard. For more details, refer to the application note AN1181. Table 50. ESD absolute maximum ratings Symbol Ratings Class Maximum Unit value(1) VESD(HBM) Electrostatic discharge voltage (Human body model) TA = 25C, conforming to JESD22-A114 A 4000 V VESD(CDM) Electrostatic discharge voltage (Charge device model) TA= 25C, conforming to JESD22-C101 IV 1000 V 1. Data based on characterization results. 86/103 Conditions DS7147 Rev 10 STM8S003F3 STM8S003K3 Electrical characteristics Static latch-up Two complementary static tests are required on 10 parts to assess the latch-up performance: * A supply overvoltage (applied to each power supply pin) * A current injection (applied to each input, output and configurable I/O pin) is performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 51. Electrical sensitivities Symbol LU Parameter Static latch-up class Conditions Class(1) TA = 25 C A TA = 85 C A 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard). DS7147 Rev 10 87/103 87 Package information 10 STM8S003F3 STM8S003K3 Package information To meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at www.st.com. ECOPACK(R) is an ST trademark. 10.1 LQFP32 package information Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline c A2 A1 A SEATING PLANE C 0.25 mm ccc GAUGE PLANE C K D A1 L D1 L1 D3 24 17 16 32 9 PIN 1 IDENTIFICATION 1 E 8 e 1. Drawing is not to scale. 88/103 E1 E3 b 25 DS7147 Rev 10 5V_ME_V2 STM8S003F3 STM8S003K3 Package information Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint 0.80 1.20 24 17 25 16 0.50 0.30 7.30 6.10 9.70 7.30 32 9 8 1 1.20 6.10 9.70 5V_FP_V2 1. Dimensions are expressed in millimeters. DS7147 Rev 10 89/103 97 Package information STM8S003F3 STM8S003K3 Device marking for LQFP32 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 46. LQFP32 marking example (package top view) Product (1) identification STM8S003 K6T6C Date code Standard ST logo Y WW Revision code Pin 1 identifier R MS37767V1 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 90/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 10.2 Package information TSSOP20 package information Figure 47. TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline D 20 11 c E1 E 1 SEATING PLANE C 0.25 mm GAUGE PLANE 10 PIN 1 IDENTIFICATION k aaa C A1 A A2 b L L1 e YA_ME_V3 1. Drawing is not to scale. Table 53. TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 D(2) 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 - 8 0 - 8 aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side. 3. Dimension "E1" does not include interlead Flash or protrusions. Interlead Flash or protrusions shall not exceed 0.25mm per side. DS7147 Rev 10 91/103 97 Package information STM8S003F3 STM8S003K3 Figure 48. TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint 0.25 6.25 20 11 1.35 0.25 7.10 4.40 1.35 1 10 0.40 0.65 YA_FP_V1 1. Dimensions are expressed in millimeters. Device marking for TSSOP20 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 49. TSSOP20 marking example (package top view) Standard ST logo Product (1) identification 8S003F3P6 Date code Pin 1 identifier Y WW Revision code R MS37768V1 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 92/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 10.3 Package information UFQFPN20 package information Figure 50. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline D E Pin 1 TOP VIEW D D1 e L3 L1 ddd L2 10 5 A3 e b E1 1 E 15 20 16 A1 L5 A BOTTOM VIEW SIDE VIEW A0A5_ME_V4 1. Drawing is not to scale. Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.060 - D 2.900 3.000 3.100 0.1142 0.1181 0.1220 D1 - 2.000 - - 0.0790 - E 2.900 3.000 3.100 0.1142 0.1181 0.1220 E1 - 2.000 - - 0.07905 - L1 0.500 0.550 0.600 0.0197 0.0217 0.0236 L2 0.300 0.350 0.400 0.0118 0.0138 0.0157 L3 - 0.200 - - 0.0079 - L5 - 0.150 - - 0.0059 - DS7147 Rev 10 93/103 97 Package information STM8S003F3 STM8S003K3 Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max b 0.180 0.250 0.300 0.0071 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 51. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint A0A5_FP_V2 1. Dimensions are expressed in millimeters. 94/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 Package information Device marking for UFQFPN20 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 52. UFQFPN20 marking example (package top view) Product (1) identification S033 Date code Dot (pin 1) Y Revision code WW R MS37769V1 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DS7147 Rev 10 95/103 97 Package information 10.4 STM8S003F3 STM8S003K3 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 19: General operating conditions. The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x JA) Where: * TAmax is the maximum ambient temperature in C * JA is the package junction-to-ambient thermal resistance in C/W * PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) * PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. * PI/Omax represents the maximum power dissipation on output pins, where: PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH), and taking account of the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. Table 55. Thermal characteristics(1) Symbol JA Parameter Value Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm 60 Thermal resistance junction-ambient TSSOP20 - 4.4 mm 84 Thermal resistance junction-ambient UFQFPN20 -3 x 3 mm 90 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 10.4.1 Reference document JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org. 96/103 DS7147 Rev 10 Unit C/W STM8S003F3 STM8S003K3 10.4.2 Package information Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the order code (see Figure 53: STM8S003F3/K3 value line ordering information scheme(1)). The following example shows how to calculate the temperature range needed for a given application. Assuming the following application conditions: * Maximum ambient temperature TAmax= 75 C (measured according to JESD51-2) * IDDmax = 8 mA, VDD = 5.0 V * Maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 8 mA x 5.0 V = 400 mW PDmax = 400 mW + 64 mW Thus: PDmax = 464 mW Using the values obtained in Section Table 55.: Thermal characteristics TJmax is calculated as follows for LQFP32 7 x 7 mm = 60 C/W: TJmax = 75 C + (60 C/W x 464 mW) = 75 C + 27.8 C = 102.8 C This is within the range of the suffix 6 version parts (-40 < TJ < 105 C). In this case, parts must be ordered at least with the temperature range suffix 6. DS7147 Rev 10 97/103 97 Ordering information 11 STM8S003F3 STM8S003K3 Ordering information Figure 53. STM8S003F3/K3 value line ordering information scheme(1) Example: STM8 S 003 K 3 T 6 TR Product class STM8 microcontroller Family type S = standard Sub-family type(2) 00x = Value line sub-family 003 = low density Pin count F = 20 pins K = 32 pins Program memory size 3 = 8 Kbyte Package type T = LQFP P = TSSOP U = UFQFPN Temperature range 6 = -40 C to 85 C Package pitch No character = 0.5 mm or 0.65 mm(3) C = 0.8 mm(4) Packing No character = Tray or tube TR = Tape and reel 1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you. 2. Refer to Table 1: STM8S003F3/K3 value line features for detailed description. 3. TSSOP and UFQFPN packages. 4. LQFP package. 98/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 12 STM8 development tools STM8 development tools Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer. 12.1 Emulation and in-circuit debugging tools The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer. The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application. In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller. For improved cost effectiveness, STice is based on a modular design that allows users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers. STice key features * Occurrence and time profiling and code coverage (new features) * Advanced breakpoints with up to 4 levels of conditions * Data breakpoints * Program and data trace recording up to 128 KB records * Read/write on the fly of memory during emulation * In-circuit debugging/programming via SWIM protocol * 8-bit probe analyzer * 1 input and 2 output triggers * Power supply follower managing application voltages between 1.62 to 5.5 V * Modularity that allows users to specify the components users need to meet their development requirements and adapt to future requirements * Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8. DS7147 Rev 10 99/103 100 STM8 development tools 12.2 STM8S003F3 STM8S003K3 Software tools STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 16 Kbytes of code is available. 12.2.1 STM8 toolset STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes: ST Visual Develop - Full-featured integrated development environment from ST, featuring * Seamless integration of C and ASM toolsets * Full-featured debugger * Project management * Syntax highlighting editor * Integrated programming interface * Support of advanced emulation features for STice such as code profiling and coverage ST Visual Programmer (STVP) - Easy-to-use, unlimited graphical interface allowing read, write and verify the user STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences. 12.2.2 C and assembly toolchains Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of user application directly from an easy-to-use graphical interface. Available toolchains include: 12.3 * Cosmic C compiler for STM8 - One free version that outputs up to 16 Kbytes of code is available. For more information, see www.cosmic-software.com. * Raisonance C compiler for STM8 - One free version that outputs up to 16 Kbytes of code. For more information, see www.raisonance.com. * STM8 assembler linker - Free assembly toolchain included in the STVD toolset, which allows users to assemble and link the user application source code. Programming tools During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on user application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the user STM8. For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family. 100/103 DS7147 Rev 10 STM8S003F3 STM8S003K3 13 Revision history Revision history Table 56. Document revision history Date Revision 12-Jul-2011 1 Initial release. 2 Added NRW and tRET for data EEPROM in Table: Flash program memory and data EEPROM. Updated RPU in Table: NRST pin characteristics and Table: I/O static characteristics. Updated notes related to VCAP in Table: General operating conditions. 12-Jun-2012 3 Updated temperature condition for factory calibrated ACCHSI in Table: HSI oscillator characteristics. Changed SCK input to SCK output in Figure: SPI timing diagram - master mode. Modified Figure: 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3) to add the package top view. 18-Dec-2014 4 Updated the package information for the 20-pin TSSOP and the 20-pin UFQFPN. 5 Added package marking examples in Section: Package information: - Figure: LQFP32 marking example (package top view), - Figure: TSSOP20 marking example (package top view), - Figure: UFQFPN20 marking example (package top view). 26-Jun-2015 6 Addition of the footnotes about D and E1 dimensions to Table 53: TSSOP20 - 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data. Update of the standard for EMI characteristics in Section : Electromagnetic interference (EMI). 23-Sep-2015 7 Correction of UART peripheral in Figure 1: STM8S003F3/K3 value line block diagram. 8 Corrected text strings in Figure 10: External capacitor CEXT and Figure 37: Recommended reset pin protection PB4 line PP column value corrected in Table 5: STM8S003K3 descriptions PD1 line "floating" and "wpu" column values corrected in Table 6: STM8S003F3 pin description SPI_RXCRCR and SPI_TXCRCR reset values corrected in Table 9: General hardware register map 09-Jan-2012 21-Apr-2015 20-Apr-2016 Changes DS7147 Rev 10 101/103 102 Revision history STM8S003F3 STM8S003K3 Table 56. Document revision history (continued) Date 102/103 Revision Changes 03-May-2017 9 Updated: - All table footnotes from "Guaranteed by design, not tested in production" to "Guaranteed by design" and "Data based on characterization results, not tested in production" to "Data based on characterization results" - Section 9.2: Absolute maximum ratings - Section : Device marking for LQFP32 on page 90 - Section : Device marking for TSSOP20 on page 92 - Section : Device marking for UFQFPN20 on page 95 - Table 54: UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data - Figure 50: UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline - Figure 17: HSE external clock source was centered into the frame. 30-Aug-2018 10 Updated: - Table 34: HSI oscillator characteristics DS7147 Rev 10 STM8S003F3 STM8S003K3 IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2018 STMicroelectronics - All rights reserved DS7147 Rev 10 103/103 103