international Rectifier HEXFET Power MOSFET Surface Mount Available in Tape & Reel Dynamic dv/dt Rating Repetitive Avalanche Rated @ P-Channel 175C Operating Temperature @ Fast Switching Description Third Generation HEXFETs from international Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low PD-9.915 IRF9520S Voss = -1 0OV Ip = -6.8A Rosvon) = 0.600 on-resistance and cost-effectiveness. The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. SMD-220 Absolute Maximum Ratings Parameter Max. | Units Ip @ To = 25C Continuous Drain Current, Ves @ -10 V 6.8 tp @ Tc = 100C | Continuous Drain Current, Ves @ -10 V 48 A Ibm Pulsed Drain Current -27 Pp @ Tc = 25C | Power. Dissipation 60 Ww Po @ Ta= 25C | Power Dissipation (PCB Mount)** 3.7 Linear Derating Factor 0.40 WrC Linear Derating Factor (PCB Mount)** 0.025 Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy 300 mJ lan Avalanche Current 6.8 A Ear Repetitive Avalanche Energy 6.0 mJ dv/dt Peak Diode Recovery dv/dt @ 55 Vins Ty, Tste Junction and Storage Temperature Range -55 to +175 C Soldering Temperature, for 10 seconds 300 (1.6mm from case) | Thermal Resistance Parameter Min. Typ. Max. Units Rec Junction-to-Case _ _ 25 Rea Junction-to-Ambient (PCB mount)** _ _ 40 CNWW Raa Junction-to-Ambient _ _ 62 ** When mounted on 1" square PCB (FR-4 or G-10 Maiterial). For recommended footprint and soldering techniques refer to application note #AN-994. 317IRF9520S Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Vierypss Drain-to-Source Breakdown Voltage -100 | =_ V__ | Vas=0V, Ip=-250A AV erypss/ATy| Breakdown Voltage Temp. Coefficient | -0.10; | VC | Reference to 25C, ip=-1mA Roson) Static Drain-to-Source On-Resistance = | 060] Q | Vas=-10V, Ip=-4.1A Vasith) Gate Threshold Voltage 2.0), | -4.0 V__| Vos=Vas, Ip=-250A ts Forward Transconductance 2.0 _ _ S__| Vos=-50V, Ip=-4.1A @ loss Drain-to-Source Leakage Current | =100 BA Vos=-100V, Vas=0V _ | -500 Vps=-80V, Ves=0V, T= 150C. lass Gate-to-Source Forward Leakage =_ | -100 nA Vaes=-20V Gate-to-Source Reverse Leakage _ | 100 Ves=20V Qg Total Gate Charge 18 Ip=-6.8A Qys Gate-to-Source Charge | {| 30 | nC | Vos=-80V Qgu Gate-to-Drain ("Miller") Charge = _ 9.0 Vas=-10V See Fig. 6 and 13 tajon) Turn-On Delay Time | 96 - Vpp=-50V tr Rise Time _ 29 _ ns Ip=-6.8A Taott) Turn-Off Delay Time - 21 = Re=18Q t Fail Time _ 25 _ Ro=7.10 See Figure 10 @ Lo Internal Drain Inductance _ 4.5 _ e mio. seas ) @ nH | from package Ls Internal Source Inductance |75]} and center of die contact 8 Ciss Input Capacitance {| 390 | Vas=0V Coss Output Capacitance | 170} PF | Vos=-25V Crss Reverse Transfer Capacitance _ 45 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ | 68 MOSFET symbol D (Body Diode) . A showing the Ism Pulsed Source Current _ | 27 integral reverse @ (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage ~ | 63 V_ | Ty=25C, Is=-6.8A, Vag=0V @ tr Reverse Recovery Time _ 98 200 ns | Ty=25C, lr=-6.8A Qn Reverse Recovery Charge | 0.33 | 0.66 | uC |di/dt=100A/us @ fon Forward Tum-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: @ Repetitive rating; pulse width limited by Isps-6.8A, di/dts110A/us, VopsVierR)pss, max. junction temperature (See Figure 11) Tys175C Vpp=-25V, starting Ty=25C, L=9.7mH @ Pulse width < 300 ts; duty cycle <2%,. Re=25Q, las=-6.8A (See Figure 12) 318-Ip, Drain Current (Amps) -lp, Drain Current (Amps) 20us PULSE WIDTH Te = 25C -Vps, Drain-to-Source Voitage (volts) Fig 1. Typical Output Characteristics, Tc=25C Vpg = -50V 20us PULSE WIDTH -Vas, Gate-to-Source Voltage (volts) Fig 3. Typical Transfer Characteristics Rpsion): Drain-to-Source On Resistance -lp, Drain Current (Amps) (Normalized) rn ~ IRF9520S 20us PULSE WIOTH 175C To = -Vps, Drain-to-Source Voltage (volts) Fig 2. Typical Output Characteristics, To=175C es 7 74 40 60 80 100 120 140 160 4 Ty, Junction Temperature (C) Fig 4. Normalized On-Resistance Vs: Temperature 319IRF9520S [TOR] te oO Cgs + fgg Cus Coa 750 + D S S a on a to Capacitance (pF) Coss a 150 -Vas, Gate-to-Source Voltage (volts) rss FOR TEST CIRCUIT 0 SEE FIGURE 13 4 -Vps, Drain-to-Source Voltage (volts) Qg, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 103 OPERATION IN THIS AREA LIMITED g Fos (oN) 4 z 10 z > & E 102 = _ Oo S 5 s 5 a O 2 o S Q - 10 a > = ia 75 B 2 T ~ Ty=1759C 4 Ves = OV SINGLE PULSE 10 1. . . . 0 TY 2 5 10 2 5 102 2 5 402 -Vsp, Source-to-Drain Voltage (volts) -Vps, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 320-Ip, Drain Current (Amps) IRF9520S Ro Vos >~ Ves J \_D.U.T. "iy Vpp JT-10V Puise Width < ths Duty Factor < 0.1% t Vas 10% 25 50 75 100125) 180478 90% Tc, Case Temperature (C) Vps Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature 410 ie Thermal Response (Zajc) oO SINGLE PULSE rot] ] (THERMAL RESPONSE) fa tall NOTES: 1. DUTY FACTOR, D=t1/t2 2. PEAK Ty=Ppy x Zthjc + Te 10 106 104 1093 10? 0.4 4 410 t,, Rectangular Pulse Duration (seconds) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-CaseIRF9520S Vary tp to obtain Vos > required las 1000 Tp TOP 2.84 -4.8A BOTTOM -6.8A a 3 3S D Fig 12a. Unclamped Inductive Test Circuit zs o 3 kg Eas; Single Pulse Energy (mu) Vps = -25V 0 25 50 75 100 125 4150 175 Starting Ty, Junction Temperature(C) Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator Same Type as D.U.T. T 7 ~ aoe SUT! = Qg _____, stove 8 | + Gas -- Gen y Ye Charge > Ig = Ip Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506 Appendix B: Package Outline Mechanical Drawing See page 1507 Appendix C: Part Marking Information See page 1515 International Appendix D: Tape & Reel Information See page 1519 R tifier 322