TRANSIENT SUPPRESSION
PRODUCTS
Transient Suppression Products
Table of Contents
INTRODUCTION
Introduction .......................................................................2
Multilayer Ceramic Transient Voltage Suppressors
Product Selection Guide ..................................................... 4
PRODUCT CATALOG
TransGuard® ......................................................................7
TransGuard® Automotive Series ........................................16
StaticGuard ......................................................................26
StaticGuard Automotive Series .........................................29
Miniature 0201 Automotive MLV ........................................32
MultiGuard Series ............................................................34
UltraGuard Series .............................................................39
Communication BUS Varistor ...........................................42
USB Series .......................................................................46
AntennaGuard Series .......................................................50
AntennaGuard Automotive Series .....................................54
Antenna PowerGuard .......................................................57
AntennaGuard Series Sub pF ............................................ 62
AntennaGuard Automotive Series Sub pF..........................64
Controlled Capacitance Multilayer Varistor ........................ 67
Miniature AC Varistor – MAV .............................................69
Glass Encapsulated TransGuard® .....................................72
Glass Encapsulated TransGuard® Automotive Series ......... 74
High Temp. Automotive Varistors ...................................... 76
High Temp. Low Leakage Automotive Varistors .................78
Radial Leaded Automotive TransGuard® ...........................80
Radial Leaded High Temp. Automotive TransGuard® .........82
Radial Leaded CapGuard ...............................................84
Surface Mount CapGuard ..............................................86
Axial TransGuard® and StaticGuard ................................... 88
TransFeed ........................................................................90
TransFeed Automotive Series ...........................................97
SnPb Multilayer Varistors ...............................................102
Glass Encapsulated MLV ................................................104
APPLICATION GUIDE
General Applications (TransGuard®) ................................ 117
Automotive Application (TransGuard®) ............................ 123
APPLICATION NOTES
TransGuard® ..................................................................133
IEC 61000-4 Requirements
Turn on Time Characteristics of AVX Multilayer Varistors
The Impact of ESD on Insulated Portable Equipment
Motor and Relay Application Study
Multilayer Varistors In Automobile MUX Bus Applications
SOLDERING ASSEMBLY GUIDELINES
TransGuard® ..................................................................145
PACKAGING
Paper Carrier Conguration ............................................ 150
Embossed Carrier Conguration ..................................... 151
Packaging of Chip Components ...................................... 152
Axial (Leads/Packaging) .................................................153
Radial Leads/Packaging .................................................154
1
Introduction
Introduction
Product Selection Guide
2
Introduction
Multilayer Ceramic Transient Voltage Suppressors
AVX TRANSGUARD - MULTILAYER VARISTORS
The AVX TransGuard® Varistors - Transient Voltage Suppressors (TVS) with unique high-energy multilayer construction represent state-of-the-art overvoltage
circuit protection. Monolithic multilayer construction provides protection from voltage transients caused by ESD (e.g. IEC 61000-4-2), lightning, inductive
switching, automotive related transients such as load dump (ISO 7637-2-5), jump start with and other automotive transients (e.g. ISO 7637 Pulse 1-3,
AEC-Q200-002, ISO 10605, ISO 16750-2, CI-220, CI-260) and more.
AVX varistors provide bi-directional transient voltage protection in the on-state and EMI/RFI attenuation in the off-state which allows designers to combine the
circuit protection and EMI/RFI attenuation function into a single highly reliable device. Parts are designed for use in temperatures from -55°C to +125°C (+150°C
components available) with no derating, exhibit very fast response, multiple strikes capability and high reliability. In addition, AVX automotive series varistors

AVX Varistors are provided in different mounting options, covering wide range of applications requirements. Surface mount varistors are available in single
element or multiple element (array) EIA industry standard packages. The parts are RoHS compliant and offer excellent solderability thanks to Ni Barrier/100%
Sn termination; Pd/Ag parts for hybrid assembly are also available as option upon request. AVX also offers SnPb termination as a special option. Thru-hole
components are supplied as conformally epoxy coated axial and radial devices and are RoHS compliant.
BENEFITS AND FEATURES

Bi Directional transient voltage protection
EMI Filtering in the off-state
Very fast response (< 1ns)
Multiple strikes capability
High reliability
No derating over operating temperature range
-55°C to +125°C (+150°C components available)
High peak current and high energy options
Low capacitance parts for RF, high speed data lines
and capacitance sensitive applications

RoHS Compliant
APPLICATIONS
AVX Varistors are used in wide range of application sectors such as:
Automotive
Consumer
Home appliances
Automation
Lighting
Industrial/Professional
Medical
Renewable/Smart Energy
Military
DIODE PROTECTION METHOD
THREE COMPONENT SOLUTION
TVS + EMI
XCVR
TVS DiodesMultiLayer Varistors (MLVs)
BUS
EMC
CAP
MLV PROTECTION METHOD
SINGLE COMPONENT SOLUTION
TVS & EMI
XCVR BUS
050316
3
Introduction
Multilayer Ceramic Transient Voltage Suppressors
TRANSGUARD® DESCRIPTION
TransGuard® products are zinc oxide (ZnO) based ceramic semiconductor
devices with non-linear voltage-current characteristics (bi-directional) similar
to back-to-back zener diodes. They have the added advantage of greater
current and energy handling capabilities as well as EMI/RFI attenuation.
Devices are fabricated by a ceramic sintering process that yields a structure
of conductive ZnO grains surrounded by electrically insulating barriers,
creating varistor-like behavior.
AVX VG series parts (large case size, high energy) are glass encapsulated.
These parts provide the same high reliability as traditional VC series parts.
The glass encapsulation provides enhanced resistance against harsh

The number of grain-boundary interfaces between conducting electrodes
determines “Breakdown Voltage” of the device. High voltage applications
such as AC line protection require many grains between electrodes while low
voltage requires few grains to establish the appropriate breakdown voltage.
Single layer ceramic disc processing proved to be a viable production
method for thick cross section devices with many grains, but attempts to
address low voltage suppression needs by processing single layer ceramic
disc formulations with huge grains has had limited success.
AVX, the world leader in the manufacture of multilayer ceramic capacitors,
now offers the low voltage transient protection marketplace a true multilayer,
monolithic surface mount varistor. Technology leadership in processing thin
dielectric materials and patented processes for precise ceramic grain growth
have yielded superior energy dissipation in the smallest size. Now a varistor
has voltage characteristics determined by design and not just cell sorting
whatever falls out of the process.
Multilayer ceramic varistors are manufactured by mixing ceramic powder in
an organic binder (slurry) and casting it into thin layers of precision thickness.
Metal electrodes are deposited onto the green ceramic layers which are then
stacked to form a laminated structure. The metal electrodes are arranged
so that their terminations alternate from one end of the varistor to the other.
          
providing uniform energy dissipation in a small volume.
050316
4
Product Selection Guide
Multilayer Ceramic Transient Voltage Suppressors
AVX VARISTORS PRODUCT SELECTION GUIDE
Series PN Code Fig. Technical Data Features / Applications Page
TransGuard®VC
VG
Case size:
Working Voltage:
Energy:
Peak Current:
0402 - 3220
3.3 - 85Vdc
0.05J - 12J
20A - 2000A
Wide range of multilayer varistors for bi-directional
overvoltage protection as well as EMI/RFI attenuation. 5-13
TransGuard®
Automotive Series
VCAS
VGAS
Case size:
Working Voltage:
Energy:
Peak Current:
0402 - 3220
5.6 - 85Vdc
0.05J - 13J
20A - 2000A
Wide range multilayer varistors for bi-directional overvoltage
protection as well as EMI/RFI attenuation in automotive
applications (AEC-Q200).
14-23
StaticGuard VC**LC
Case size:
Working Voltage:
Energy:
Capacitance:
0402 - 1206
18Vdc
0.02J - 0.1J
40 - 200pF
Lower capacitance version of TransGuard® for bi-directional
ESD protection as well as EMI/RFI attenuation. 24-26
StaticGuard
Automotive Series VCAS**LC
Case size:
Working Voltage:
Energy:
Capacitance:
0402 - 0805
18Vdc
0.02 - 0.1J
40 - 80pF
Lower capacitance version of TransGuard® for bi-directional
ESD protection as well as EMI/RFI attenuation in automotive
applications (AEC-Q200).
27-29
Miniature 0201 MLV VC0201
Case size:
Working Voltage:
Energy:
Peak Current:
0201
3.5 - 16Vdc
0.01, 0.02J
1 - 10A
Miniature 0201 varistor for any circuits with space
constraints or for embedded applications. 30-31
MultiGuard Array MG
Case size:
Working Voltage:
Energy:
Peak Current:
0405 - 0612
5.6 - 18Vdc
0.02 - 0.1J
15 - 30A
2 and 4-element MLV arrays to protect multiple lines against
ESD while saving board space and pick and place costs. 32-36
UltraGuardLow
Leakage Varistors
VCUG
MGUG
Case size:
Working Voltage:
Energy:
Peak Current:
0402 - 0612
3.0 - 32Vdc
0.02 - 0.4J
10 - 150A

high clock speed IC, low voltage power conversion circuits
and low leakage requirements.
37-39
Communication
Bus Varistors
CAN
FLX
Case size:
Working Voltage:
Peak Current:
Capacitance:
0402 - 0612
18, 32Vdc
4 - 15A
15 - 50pF
Low capacitance varistors designed for protection of
communication bus, data lines and other capacitance
sensitive automotive (AEC-Q200) as well as general
applications.
40-43
Low Capacitance
USB Series USB
Case size:
Working Voltage:
Peak Current:
Capacitance:
0402 - 0612
18Vdc
4A
3 - 10pF
Low capacitance varistors designed for use in high-speed
data lines and other capacitance sensitive applications. 44-47
AntennaGuard
Low Capacitance
Varistors
VC**AG
Case size:
Working Voltage:
Capacitance:
0402 - 0603
18Vdc
2 - 12pF
Low capacitance varistors designed for protection in RF
circuits, antennas, sensors, high-speed data lines, optic
circuits and other capacitance sensitive applications etc.
48-51
AntennaGuard Low
Capacitance
Automotive Series
VCAS**AG
Case size:
Working Voltage:
Capacitance:
0402 - 0603
18Vdc
2 - 12pF
Low capacitance varistors designed for protection in RF
circuits, antennas, sensors, high-speed data lines, optic
circuits and capacitance sensitive applications in automotive
applications (AEC-Q200).
52-54
AntennaGuard
PowerGuard
Low Capacitance
Varistors
VCAS**AP
Case size:
Working Voltage:
Capacitance:
0402 - 0603
18 - 30Vdc
1.5 - 3.3pF
Low capacitance varistors with higher energy rating and
low signal distortion designed for protection in RF circuits,
high-speed data lines, radars and other capacitance sensitive
automotive (AEC-Q200). and general applications.
55-57
Sub pF AG Series
Ultra-Low Capacitance VCH4**AG
Case size:
Working Voltage:
Capacitance:
0201, 0402
10 - 18Vdc
0.47 - 0.8pF
Ultra-low capacitance (<1pF) varistors designed for protection
in RF circuits, antennas, sensors, high-speed data lines, optic
circuits and capacitance sensitive applications.
58-59
Sub pF AG
Automotive Series
Ultra-Low Capacitance
VCASH4
Case size:
Working Voltage:
Capacitance:
0402
16Vdc
0.8pF
Ultra-low capacitance (<1pF) varistor designed for protection
in RF circuits, sensors, high-speed data lines, optic circuits and
capacitance sensitive automotive (AEC-Q200) applications.
60-62
Controlled
Capacitance VCAC
Case size:
Working Voltage:
Peak Current:
Capacitance:
0402, 0603
9 - 30Vdc
2 - 120A
33 - 1000pF
Varistors developed for use in mixed signal environment

automotive (AEC-Q200) and general applications.
63-64
012317
5
Product Selection Guide
Multilayer Ceramic Transient Voltage Suppressors
Series PN Code Fig. Technical Data Features / Applications Page
Miniature MAV Series MAV
Case size:
Working Voltage:
Peak Current:
Capacitance:
0402 - 0603
70Vdc
1 - 3A
6-22pF
Varistors designed for low power AC circuit protection, transient
suppression in LC resonant circuits and higher DC voltage data lines
protection in automotive (AEC-Q200) and general applications.
65-67
Glass Encapsulated
TransGuard®VG
Case size:
Working Voltage:
Energy:
Peak Current:
1206 - 3220
16 -125Vdc
0.7 - 12J
200 - 2000A
High energy range extension of TransGuard varistors. In addition the
glass encapsulation provides enhanced resistance against harsh
environment.
68-69
Glass Encapsulated
TransGuard®
Automotive Series
VGAS
Case size:
Working Voltage:
Energy:
Peak Current:
1206 - 3220
16 - 85Vdc
0.7 - 13J
200 - 2000A
High energy range extension of TransGuard automotive series
varistors for automotive (AEC-Q200) applications. In addition the
glass encapsulation provides enhanced resistance against harsh
environment.
70-71
High Temperature
Automotive Series
CANAT
VCAT
Case size:
Working Voltage:
Peak Current:
Capacitance:
0603 - 0612
18Vdc
4A
12, 22pF

(AEC-Q200) and general applications. 72-73
High Temperature
Low Leakage
Automotive Series
CANATL
Case size:
Working Voltage:
Peak Current:
Capacitance:
0603
32Vdc
5A
10pF

high temperature automotive (AEC-Q200) and general applications. 74-75
Radial Leaded
Automotive
TransGuard®
VR**AS
Case size:
Working Voltage:
Energy:
Peak Current:
Radial
18 - 48Vdc
0.7 - 1.6J
200 - 500A
Radial leaded epoxy coated varistors, designed for durability in harsh
environments for automotive (AEC-Q200) and general applications. 76-77
Radial Leaded
High Temperature
Automotive
TransGuard®
VR**AT
Case size:
Working Voltage:
Energy:
Peak Current:
Radial
14 - 48Vdc
0.1 - 2.0J
30 - 250A

+150°C. Designed for durability in harsh environments and for high
temperature automotive (AEC-Q200) and general applications.
78-79
Radial CapGuard™ CG
Case size:
Working Voltage:
Peak Current:
Capacitance:
Radial
26, 45Vdc
200A
0.47, 1pF

capacitor integrated into single radial leaded component for bi-
directional overvoltage protection and RFI noise suppression in
automotive (AEC-Q200) and general applications.
80-81
Axial TransGuard
and StaticGuard VA
Case size:
Working Voltage:
Energy:
Peak Current:
Axial
3.3 - 60Vdc
0.1 - 2.0J
30 - 300A
Axial Version of TransGuard® and StaticGuard varistors for bi-
directional overvoltage protection as well as EMI/RFI attenuation in
the off-state.
84-85
TransFeed V*F
Case size:
Working Voltage:
Energy:
Peak Current:
0805
5.6 - 26Vdc
0.05 - 0.3J
20 - 120A

with enhanced attenuation characteristics for EMI reduction. 86-92
TransFeed
Automotive Series V*AF
Case size:
Working Voltage:
Energy:
Peak Current:
0805
5.6 - 26Vdc
0.05 - 0.3J
15 -120A

with enhanced attenuation characteristics for EMI reduction for
automotive (AEC-Q200) applications.
93-97
SnPb Multilayer Varistors VCLD
Case size:
Working Voltage:
Energy:
Peak Current:
0603 - 1210
5.6 - 85Vdc
0.1 - 2.0J
30 - 500A
Varistors with SnPb termination for bi-directional overvoltage
protection as well as EMI/RFI attenuation in the off-state. 98-99
Glass Encapsulated
MLV VJ
Case size:
Working Voltage:
Energy:
Peak Current:
1206 - 3220
16 - 385Vdc
0.3 - 15J
120 -3000A
Special series of high energy, large case size varistors for
automotive, industrial/commercial and telecom applications. 100-111
012317
6
Product Catalog
7
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
GENERAL DESCRIPTION
TransGuard® multilayer varistors are zinc oxide (ZnO) based ceramic semiconductor devices with non-linear
voltage-current characteristics (bi-directional) similar to back- to-back zener diodes. They have the added
advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation.
The increasing use of electronics technologies in all areas require reliable protection against transient voltages
that could damage the electronics circuitry as well as EMI/RFI attenuation to prevent signal distortion and to
meet regulatory requirements. AVX TransGuard components help achieve both functions with single component.
GENERAL
CHARACTERISTICS
Operating Temperature:
-55°C to +125°C
Working Voltage: 3.3 - 85Vdc
Case Size: 0402 - 1812
Energy: 0.05 - 4.2J
Peak Current: 20 - 2000A
FEATURES
Bi-Directional protection
Very fast response to ESD strikes
Multi-strike capability
High Reliability
EMI/RFI Filtering
Wide range of components
APPLICATIONS
IC Protection
Micro Controllers
Relays
I/O Ports
Keyboard Protection
Portable devices
Industrial Controllers
Automation
Smart Grid
Telecom
LED Lights
Cameras
Base Stations
Motion detector
Alarms
and more
HOW TO ORDER
18
Working
Voltage
03 = 3.3Vdc
05 = 5.6Vdc
09 = 9Vdc
12 = 12Vdc
14 = 14Vdc
16 = 16Vdc
18 = 18Vdc
22 = 22Vdc
26 = 26Vdc
30 = 30Vdc
31 = 31Vdc
38 = 38Vdc
42 = 42Vdc
45 = 45Vdc
48 = 48Vdc
56 = 56Vdc
60 = 60Vdc
65 = 65Vdc
85 = 85Vdc
D
Energy
Rating
X= 0.05J
A= 0.1J
B= 0.2J
C= 0.3J
D= 0.4J
E= 0.5J
F= 0.7J
G= 0.9J
H= 1.2J
J= 1.5-1.6J
K= 0.6J
M= 1.0J
N= 1.1J
P= 2.5 -3.7J
R= 1.7J
L= 0.8 J
S= 1.9-2.0J
U= 4.0-5.0J
W= 5.1-6.0J
Y= 6.5-12J
400
Clamping
Voltage
100 = 12V
150 = 18V
200 = 22V
250 = 27V
300 = 32V
380 = 38V
390 = 42V
400 = 42V
440 = 44V
490 = 49V
540 = 54V
560 = 60V
570 = 57V
580 = 60V
620 = 67V
650 = 67V
770 = 77V
800 = 80V
900 = 90V
101 = 100V
111 = 110V
121 = 120V
131 = 135V
151 = 150V
161 = 165V
R
Packaging
D = 7” (1000)*
R = 7” (4000 or 2000)*
T = 13” (10,000)*
W = 7” (10,000)**
*Not available for 0402
**Only available for 0402
VC
Varistor
Chip
VC = Varistor Chip
VG = Varistor Glass
1206
Case
Size
0402
0603
0805
1206
1210
1812
2220
3220
P
Termination
P = Ni/Sn plated
012717
8
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq Case
Vdc Vac V V A μA J A pF
VC060303A100 3.3 2.3 5.0±20% 12 1100 0.1 30 1450 K0603
VC080503A100 3.3 2.3 5.0±20% 12 1100 0.1 40 1400 K0805
VC080503C100 3.3 2.3 5.0±20% 12 1100 0.3 120 5000 K0805
VC120603A100 3.3 2.3 5.0±20% 12 1100 0.1 40 1250 K1206
VC120603D100 3.3 2.3 5.0±20% 12 1100 0.4 150 4700 K 1206
VC040205X150 5.6 4.0 8.5±20% 18 135 0.05 20 175 M0402
VC060305A150 5.6 4.0 8.5±20% 18 135 0.1 30 750 K0603
VC080505A150 5.6 4.0 8.5±20% 18 135 0.1 40 1100 K0805
VC080505C150 5.6 4.0 8.5±20% 18 135 0.3 120 3000 K0805
VC120605A150 5.6 4.0 8.5±20% 18 135 0.1 40 1200 K1206
VC120605D150 5.6 4.0 8.5±20% 18 135 0.4 150 3000 K1206
VC040209X200 9.0 6.4 12.7±15% 22 125 0.05 20 175 M0402
VC060309A200 9.0 6.4 12.7±15% 22 125 0.1 30 550 K0603
VC080509A200 9.0 6.4 12.7±15% 22 125 0.1 40 750 K0805
VC080512A250 12.0 8.5 16±15% 27 125 0.1 40 525 K0805
VC040214X300 14.0 10.0 18.5±12% 32 115 0.05 20 85 K0402
VC060314A300 14.0 10.0 18.5±12% 32 115 0.1 30 350 K0603
VC080514A300 14.0 10.0 18.5±12% 32 115 0.1 40 325 K0805
VC080514C300 14.0 10.0 18.5±12% 32 115 0.3 120 900 K0805
VC120614A300 14.0 10.0 18.5±12% 32 115 0.1 40 600 K1206
VC120614D300 14.0 10.0 18.5±12% 32 115 0.4 150 1050 K1206
VC121016J390 16.0 13.0 25.5±10% 40 2.5 10 1.6 500 3100 K1210
VG181216P390 16.0 11.0 24.5±10% 40 515 2.9 1000 7000 K1812
VG181216P400 16.0 11.0 24.5±10% 42 510 2.9 1000 5000 K1812
VG222016Y400 16.0 11.0 24.5±10% 42 10 10 7.2 1500 13000 K2220
VC040218X400 18.0 13.0 25.5±10% 42 110 0.05 20 65 M0402
VC060318A400 18.0 13.0 25.5±10% 42 110 0.1 30 150 K0603
VC080518A400 18.0 13.0 25.5±10% 42 110 0.1 30 225 K0805
VC080518C400 18.0 13.0 25.5±10% 42 110 0.3 100 550 K0805
VC120618A400 18.0 13.0 25.5±10% 42 110 0.1 30 350 K1206
VC120618D400 18.0 13.0 25.5±10% 42 110 0.4 150 900 K1206
VC120618E380 18.0 13.0 25.5±10% 38 115 0.5 200 930 K1206
VG121018J380 18.0 14.0 22±10% 38 2.5 15 1.5 400 2300 K1210
VC121018J390 18.0 13.0 25.5±10% 42 510 1.6 500 3100 K1210
VG181218P380 18.0 14 22±10% 38 515 2.3 800 5000 K1218
VG181218P440 18.0 14.0 27.5±10% 44 515 2.9 800 5000 K1812
VG222018W380 18.0 14.0 22±10% 38 10 15 5.8 1200 18000 K2220
VG121022R440 22.0 17.0 27±10% 44 2.5 15 1.7 400 1600 K1210
VG222022Y440 22.0 17.0 27±10% 44 10 15 7.2 1200 18000 K2220
VG222022Y490 22.0 17.0 30±10% 49 10 15 6.8 1200 12000 K2220
VC060326A580 26.0 18.0 34.5±10% 60 110 0.1 30 155 K0603
VC080526A580 26.0 18.0 34.5±10% 60 110 0.1 30 120 K0805
VC080526C580 26.0 18.0 34.5±10% 60 110 0.3 100 250 K0805
VC120626D580 26.0 18.0 34.5±10% 60 110 0.4 120 500 K1206
VC120626F540 26.0 20.0 33.0±10% 54 115 0.7 200 600 K1206
VC121026H560 26.0 18.0 34.5±10% 60 510 1.2 300 2150 K1210
VG121026S540 26.0 20.0 33±10% 54 2.5 15 1.9 400 1600 K1210
VG181226P540 26.0 20 35±10% 54 515 3800 3000 K1812
012317
9
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq Case
Vdc Vac V V A μA J A pF
VG181226P570 26.0 23.0 35.0±10% 57 515 2.5 600 3000 K1812
VG181226P540 26.0 20.0 35.0±10% 54 515 3.0 800 3000 K1812
VG222026Y540 26.0 20.0 33.0±10% 54 10 15 7.8 1200 11000 K2220
VG222026Y570 26.0 23.0 35.0±10% 57 10 15 6.8 1100 7000 K2220
VG322026N570 26.0 20.0 33.0±10% 57 10 15 1.1 400 5500 K3220
VC060330A650 30.0 21.0 41.0±10% 67 110 0.1 30 125 K0603
VC080530A650 30.0 21.0 41.0±10% 67 110 0.1 30 90 M0805
VC080530C650 30.0 21.0 41.0±10% 67 110 0.3 80 250 K0805
VC120630D650 30.0 21.0 41.0±10% 67 110 0.4 120 400 K1206
VC121030G620 30.0 21.0 41.0±10% 67 510 0.9 220 1750 K1210
VC121030H620 30.0 21.0 41.0±10% 67 510 1.2 280 1850 K1210
VC121030S620 30.0 21.0 41.0±10% 67 510 1.9 300 1500 K1210
VC080531C650 31.0 25.0 39.0±10% 65 110 0.3 80 250 K0805
VC120631M650 31.0 25.0 39.0±10% 65 115 1.0 200 500 K1206
VG121031R650 31.0 25.0 39.0±10% 65 2.5 15 1.7 300 1200 K1210
VG181231P650 31.0 25.0 39.0±10% 65 515 3.7 800 2600 K1812
VG222031Y650 31.0 25.0 39.0±10% 65 10 15 9.6 1200 6100 K2220
VC080538C770 38.0 30.0 47.0±10% 77 110 0.3 80 200 K0805
VC120638N770 38.0 30.0 47.0±10% 77 115 1.1 200 400 K1206
VG121038S770 38.0 30.0 47.0±10% 77 2.5 15 2.0 400 1000 K1210
VG181238U770 38.0 30.0 47.0±10% 77 515 4.2 800 1300 K1812
VG222038Y770 38.0 30.0 47.0±10% 77 10 15 12 2000 4200 K2220
VG322038J920 38.0 30.0 47.0±10% 92 10 15 1.5 400 2600 K3220
VC120642L800 42.0 32.0 51.0±10% 80 115 0.8 180 600 K1206
VC120645K900 45.0 35.0 56.0±10% 90 115 0.6 200 260 K1206
VG121045S900 45.0 35.0 56.0±10% 90 2.5 15 2300 800 K1210
VG181245U900 45.0 35.0 56.0±10% 90 515 4.0 500 1200 K1812
VG222045Y900 45.0 35.0 56.0±10% 90 10 15 12 1000 5000 K2220
VC120648D101 48.0 34.0 62.0±10% 100 110 0.4 100 225 K1206
VC121048G101 48.0 34.0 62.0±10% 100 510 0.9 220 450 K1210
VC121048H101 48.0 34.0 62.0±10% 100 510 1.2 250 500 K1210
VC120656F111 56.0 40.0 68.0±10% 110 115 0.7 100 180 K1206
VG121056P111 56.0 40.0 68.0±10% 110 2.5 15 2.3 250 500 K1210
VG181256U111 56.0 40.0 68.0±10% 110 515 4.8 500 800 K1812
VG222056Y111 56.0 40.0 68.0±10% 110 10 15 91000 2000 K2220
VC121060J121 60.0 42.0 76.0±10% 120 510 1.5 250 400 K1210
VC120665L131 65.0 50.0 82.0±10% 135 115 0.8 100 250 K1206
VC120665M131 65.0 50.0 82.0±10% 135 115 1.0 150 250 K1206
VG121065P131 65.0 50.0 82.0±10% 135 2.5 15 2.7 350 600 K1210
VG181265U131 65.0 50.0 82.0±10% 135 515 4.5 400 600 K1812
VG222065Y131 65.0 50.0 82.0±10% 135 10 15 6.5 800 3000 K2220
VC121085S151 85.0 60.0 100±10% 150 135 2.0 250 275 K1210
VG181285U161 85.0 60.0 100±10% 165 515 4.5 400 500 K1812
VG222085Y161 85.0 60.0 100±10% 165 10 15 6.8 800 1500 K2220
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC )
VCClamping Voltage (V @ IVC )
IVC Test Current for VC
IL
Maximum Leakage Current at the

ET
IP
Cap 
and 0.5 VRMS
Freq Frequency at which capacitance is measured
(K = 1kHz, M = 1MHz)
012317
10
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
LW
T
t
C
A
B
A
D
DIMENSIONS: mm (inches)
SOLDERING PAD: mm (inches)
AVX Style 0402 0603 0805 1206 1210 1812 2220 3220
(L) Length mm
(in.)
1.00±0.10
(0.040±0.004)
1.60±0.15
(0.063±0.006)
2.00.20
(0.079±0.008)
3.20±0.20
(0.126±0.008)
3.20±0.20
(0.126±0.008)
4.50±0.30
(0.177±0.012)
5.70±0.40
(0.224±0.016)
8.20±0.40
(0.323±0.016)
(W) Width mm
(in.)
0.50±0.10
(0.020±0.004)
0.80±0.15
(0.031±0.006)
1.25±0.20
(0.049±0.008)
1.60±0.20
(0.063±0.008)
2.49±0.20
(0.098±0.008)
3.20±0.30
(0.126±0.012)
5.00.40
(0.197±0.016)
5.00.40
(0.197±0.016)
(T) Max
Thickness
mm
(in.) 0.6
(0.024)
0.9
(0.035)
1.02
(0.040)
1.02 (0.040)
1.27 (0.050)1)
1.70 (0.067)2)
1.70
(0.067)
2.00
(0.080)
2.50
(0.098)
2.50 max.
(0.098 max.)
(t) Land Length mm
(in.)
0.25±0.15
(0.010.006)
0.35±0.15
(0.014±0.006)
0.71 max.
(0.028 max.)
0.94 max.
(0.037 max.)
1.14 max.
(0.045 max.)
1.00 max.
(0.039 max.)
1.00 max.
(0.039 max.)
1.30 max.
(0.051 max.)
1) Applicable for: VC120618E380
2) Applicable for: VC120626F540, VC120631M650, VC120638N770, VC120642L800, VC120645K900, VC120656F111, VC120660M131
Pad Layout 0402 0603 0805 1206 1210 1812 2220 3220
A1.61 (0.024) 0.89 (0.035) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.00 (0.039) 1.00 (0.039) 2.21 (0.087)
B1.51 (0.020) 0.76 (0.030) 1.02 (0.040) 2.03 (0.080) 2.03 (0.080) 3.60 (0.142) 4.60 (0.18) 5.79 (0.228)
C1.70 (0.067) 2.54 (0.100) 3.05 (0.120) 4.06 (0.160) 4.06 (0.160) 5.60 (0.220) 6.60 (0.26) 10.21 (0.402)
D1.51 (0.020) 0.76 (0.030) 1.27 (0.050) 1.65 (0.065) 2.54 (0.100) 3.00 (0.118) 5.00 (0.20 ) 5.50 (0.217)
012317
11
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent
transient clamping characteristics up to 20 amps peak current, while
maintaining very low leakage currents under DC operating conditions. The VI
curves below show the voltage/current characteristics for the 5.6V, 9V, 14V,
18V and low capacitance StaticGuard parts with currents ranging from parts
of a micro amp to tens of amps.
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical performance
with repeated high current pulses resulting in decreased breakdown
voltage and increased leakage current. It has been suggested that irregular
intergranular boundaries and bulk material result in restricted current
paths and other non-Schottky barrier paralleled conduction paths in the
ceramic. Repeated pulsing of TransGuard® transient voltage suppressors
          
breakdown voltage and minimal increases in leakage current.
ESD TEST OF 0402 PARTS
PEAK POWER VS PULSE DURATION
INSERTION LOSS CHARACTERISTICS
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
100
80
60
40
20
0
10-9 10-7 10-5 10-3 10-1 10 103105
Current (A)
Voltage (V)
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
1300
1200
10 100 1000
IMPULSE DURATION (µS)
PEAK POWER (W)
1100
1000
900
800
700
600
500
400
300
200
100
0
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
10 100 1000 10000
8kV ESD STRIKES
BREAKDOWN VOLTAGE (Vb)
35
30
25
20
15
10
5
VC040205X
VC04LC18V
VC040214X
VC040218X
VC040209X
0
-5
-10
-15
-20
-25
0.01 0.1 1 10
Frequency (GHz)
dB
012317
12
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent transient clamping characteristics up to 500 amps peak current, depending on case size
and energy rating, while maintaining very low leakage currents under DC operating conditions. The VI curve below shows the voltage/current characteristics for
the 3.3V, 5.6V, 12V, 14V, 18V, 26V, 30V, 48V and 60VDC parts with currents ranging from parts of a micro amp to tens of amps.
VI Curves - 9V, 12V, and 14V Products
50
40
30
20
10
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
9V, 0.1J 12V, 0.1J 14V, 0.1J 14V, >0.1J
VI Curves - 3.3V and 5.6V Products
25
20
15
10
5
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
3.3V, 0.1J 3.3V, >0.1J 5.6V, 0.1J 5.6V, >0.1J
VI Curves - 30V, 48V, and 60V Products
200
150
100
50
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
30V, 0.1J 30V, >0.1J 48V 60V
VI Curves - 18V and 26V Products
100
80
60
40
20
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
18V, 0.1J 18V, >0.1J 26V, 0.1J 26V, >0.1J
VI Curve - 85V Product
0
40
80
120
160
200
1.E-09 1.E-06 1.E-03 1.E+00 1.E+03
Current (A)
Voltage (V)
012317
13
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
3.3V
012317
14
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
TEMPERATURE CHARACTERISTICS
TransGuard® suppressors are designed to operate over the full temperature range from -55°C to +125°C. This operating temperature range is for both surface
mount and axial leaded products.
Temperature Dependence of Voltage
10
20
30
40
50
60
70
80
90
100
Voltage as a Percent of
Average Breakdown Voltage
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Current (A)
-40 C 25 C 85 C 125 C
-60 -40 -20 0 20 40 60 80 100 120 140 160
1.25
1
0.8
0.6
0.4
0.2
0
o
TYPICAL ENERGY DERATING VS TEMPERATURE
Temperature ( C)
Energy Derating
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 18V
18V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
B
C
o
50
40
30
20
V
VB
C
( )
( )
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 5.6V
5.6V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
V
VB
B
C
C
o
20
15
10
5
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 26V
Temperature (C)
Typical Breakdown (V )
and Clamping (V ) Voltages
B
C
26V
V
VB
C
( )
( )
60
50
40
30
Average
25° C Reference
+25
+20
+15
+10
+5
0
-5
-10
-15
-20
-25 -40 -20 0 20 40 60 80 100 120 140
Temperature (°C)
Capacitance Relative to 25°C
TYPICAL CAPACITANCE VS TEMPERATURE
012317
15
TransGuard®
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical performance
with repeated high current pulses resulting in decreased breakdown
voltage and increased leakage current. It has been suggested that irregular
intergranular boundaries and bulk material result in restricted current paths
and other non-Schottky barrier paralleled conduction paths in the ceramic.
Repeated pulsing of both 5.6 and 14V TransGuard® transient voltage
Repetitive Peak Current Strikes
TransGuard®1210 1.5J Product
10%
8%
4%
2%
0%
6%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC121018J390
Figure 3
30%
25%
15%
5%
10%
0%
20%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC08LC18A500
Figure 4
Repetitive Peak Current Strikes
StaticGuard 0805 0.1J Product
10%
8%
4%
2%
0%
6%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC120618D400
VC120626D580
VC120614D300
VC120605D150
Figure 1
Repetitive Peak Current Strikes
TransGuard®0805 0.1J and 0.3J Products
0%
5%
10%
15%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC080518C400
VC080518A400
Figure 2
Repetitive Peak Current Strikes
TransGuard®1206 0.4J Product
CAPACITANCE/FREQUENCY
CHARACTERISTICS
VC060305A150
VC060326A580
VC06LC18X500
100
80
60
40
20
0
0 20 40
Frequency (MHz)
60 80 100
Capacitance Change (%)
VC080518C400
VC080514A300
VC080505C150
100
80
60
40
20
0
0 20 40
Frequency (MHz)
60 80 100
Capacitance Change (%)
VC120648D101
VC12LC18A500
VC120614D300
100
80
60
40
20
0
0 20 40
Frequency (MHz)
60 80 100
Capacitance Change (%)
TransGuard®Capacitance vs Frequency 0603 TransGuard®Capacitance vs Frequency 0805 TransGuard®Capacitance vs Frequency 1206
     
degradation in breakdown voltage and minimal increases in leakage
current. The plots of typical breakdown voltage vs number of 150A pulses
are shown below.
012317
16
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
GENERAL DESCRIPTION
The TransGuard Automotive Series are zinc oxide (ZnO) based ceramic semiconductor devices with non-
linear, bi-directional voltage-current characteristics.
They have the advantage of offering bi-directional overvoltage protection as well as EMI/RFI attenuation in
a single SMT package. The Automotive Series high current and high energy handling capability make them
well suited for protection against automotive related transients.
AVX VG series parts (large case size, high energy) are glass encapsulated. These parts provide the same
high reliability as traditional VC series parts. The glass encapsulation provides also enhanced resistance

Operating Temperature: -55ºC to +125ºC
FEATURES
High Reliability
High Energy Absorption (Load Dump)
High Current Handling

Bi-Directional protection
EMI/RFI attenuation
Multi-strike capability
Sub 1nS response to ESD strike
APPLICATIONS
Internal Combustion Engine (ICE) Vehicles
Hybrid Electric Vehicles (HEV)
Plug-in Hybrid Electric Vehicles (PHEV)
Commercial Vehicles
CAN, LIN, FLEXRAY based modules
Sensors
Module load dump protection
Motor/inductive load transient suppression
HOW TO ORDER
VC 18 D R P400AS 1206
Varistor Chip Automotive
Series
Working
Voltage
Energy
Rating
Clamping
Voltage
Case
Size
0402
0603
0805
1206
1210
1812
2220
3220
Package Termination
P = Ni/Sn plated
LEAD-FREE COMPATIBLE
COMPONENT
VC = Varistor Chip
VG = Varistor Glass

03 = 3.3Vdc
05 = 5.6Vdc
09 = 9Vdc
12 = 12Vdc
14 = 14Vdc
16 = 16Vdc
18 = 18Vdc
22 = 22Vdc
26 = 26Vdc
30 = 30Vdc
31 = 31Vdc
34 = 34Vdc
38 = 38Vdc
42 = 42Vdc
45 = 45Vdc
48 = 48Vdc
56 = 56Vdc
60 = 60Vdc
65 = 65Vdc
85 = 85Vdc
A = 0.1J
B = 0.2J
C = 0.3J
D = 0.4J
E = 0.5J
F = 0.7J
H = 1.2J
J = 1.5J
K = 0.6J
L = 0.8J
S = 1.9-2.0J
X = 0.05J
M = 1J
N = 1.1J
U = 4.0-5.0J
P = 2.5-3.7J
Y = 6.5-12J
140 = 14V
150 = 18V
220 = 22V
250 = 27V
300 = 32V
380 = 38V
390 = 42V
400 = 42V
440 = 44V
490 = 49V
540 = 54V
570 = 57V
580 = 60V
620 = 67V
650 = 67V
770 = 77V
800 = 80V
900 = 90V
101 = 100V
111 = 110V
131 = 135V
151 = 150V
D = 7” (1000)*
R = 7” (4000)*
T = 13” (10,000)*
W = 7” (10,000)**
0402 only
*Not available for 0402
**Only available for 0402
012317
17
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
ELECTRICAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETELD IPCap Freq VJump PDiss. Max
Vdc Vac V V A μA J J A pF V W
VCAS060303A140 3.3 2.3 6.0±20% 14 150 0.1 -30 1450 K - 0.002
VCAS080503A140 3.3 2.3 6.0±20% 14 150 0.1 -40 1000 K - 0.002
VCAS080503C140 3.3 2.3 6.0±20% 14 150 0.3 -120 4500 K - 0.006
VCAS120603A140 3.3 2.3 6.0±20% 14 150 0.1 -40 1500 K - 0.002
VCAS120603D140 3.3 2.3 6.0±20% 14 150 0.4 -150 4000 K - 0.009
VCAS040205X150 _ _ 5.6 4.0 8.5±20% 18 135 0.05 -20 175 M - 0.001
VCAS060305A150 _ _ 5.6 4.0 8.5±20% 18 135 0.1 -30 750 K - 0.001
VCAS080505A150 _ _ 5.6 4.0 8.5±20% 18 135 0.1 -40 1100 K - 0.001
VCAS080505C150 _ _ 5.6 4.0 8.5±20% 18 135 0.3 -120 3000 K - 0.005
VCAS120605A150 _ _ 5.6 4.0 8.5±20% 18 135 0.1 -40 1200 K - 0.002
VCAS120605D150 _ _ 5.6 4.0 8.5±20% 18 135 0.4 -150 3000 K - 0.008
VCAS040209X200 _ _ 9 6.4 12.7±15% 22 125 0.05 -20 175 M - 0.001
VCAS060309A200 _ _ 9 6.4 12.7±15% 22 125 0.1 -30 550 K - 0.002
VCAS080509A200 _ _ 96.4 12.7±15% 22 125 0.1 -40 750 K - 0.002
VCAS080512A250 _ _ 12 8.5 16±15% 27 125 0.1 -40 525 K - 0.002
VCAS040214X300 _ _ 14 10 18.5±12% 32 115 0.05 -20 85 K16 0.001
VCAS060314A300 _ _ 14 10 18.5±12% 32 115 0.1 -30 350 K16 0.002
VCAS080514A300 _ _ 14 10 18.5±12% 32 115 0.1 -40 325 K16 0.002
VCAS080514C300 _ _ 14 10 18.5±12% 32 115 0.3 -120 900 K20 0.006
VCAS120614A300 _ _ 14 10 18.5±12% 32 115 0.1 -40 600 K20 0.002
VCAS120614D300 _ _ 14 10 18.5±12% 32 115 0.4 -150 1050 K20 0.008
VCAS060316B400 _ _ 16 11 25.5±10% 42 110 0.2 0.25 30 150 K27.5 0.003
VCAS120616K380 _ _ 16 11 25.5±10% 38 110 0.6 1.5 200 930 K27.5 0.010
VCAS121016J390 _ _ 16 11 25.5±10% 42 510 1.6 3500 3100 K27.5 0.030
VGAS121016S390 16 14 24.5±10% 40 2.5 15 2 5 500 3000 K27.5 0.01
VGAS181216P390 16 11 24.5±10% 40 515 2.9 10 1000 7000 K27.5 0.07
VGAS222016Y390 16 11 24.5±10% 40 10 15 10.2 45 1500 20000 K27.5 0.08
VGAS181216P400 _ _ 16 11 24.5±10% 42 510 2.9 10 1000 5000 K27.5 0.070
VGAS222016Y400 16 11 24.5±10% 42 10 10 7.2 25 1500 13000 K25.5 0.100
VCAS040218X400 _ _ 18 13 25.5±10% 42 110 0.05 0.05 20 65 M27.5 0.001
VCAS060318A400 _ _ 18 13 25.5±10% 42 110 0.1 0.25 30 150 K27.5 0.003
VCAS080518A400 _ _ 18 13 25.5±10% 42 110 0.1 0.1 30 225 K27.5 0.002
VCAS080518C400 _ _ 18 13 25.5±10% 42 110 0.3 1120 550 K27.5 0.007
VCAS120618A400 _ _ 18 13 25.5±10% 42 110 0.1 0.5 30 350 K27.5 0.002
VCAS120618D400 _ _ 18 13 25.5±10% 42 110 0.4 1.5 150 900 K27.5 0.008
VCAS120618E380 _ _ 18 13 25.5±10% 38 110 0.5 1.5 200 930 K27.5 0.010
VCAS121018J390 _ _ 18 13 25.5±10% 42 510 1.6 3500 3100 K27.5 0.030
VGAS181218P440 18 14 27.5±10% 44 515 2.9 6800 5000 K27.5 0.05
VGAS222022Y490 22 17 30±10% 49 10 15 6.8 25 1200 12000 K27.5 0.03
VCAS060326A580 _ _ 26 18 34.5±10% 60 110 0.1 0.1 30 155 K27.5 0.002
VCAS080526A580 _ _ 26 18 34.5±10% 60 110 0.1 0.15 30 120 K27.5 0.002
VCAS080526C580 _ _ 26 18 34.5±10% 60 110 0.3 0.5 100 250 K27.5 0.006
VCAS120626D580 _ _ 26 18 34.5±10% 60 110 0.4 1120 500 K27.5 0.008
VCAS120626F540 _ _ 26 18 33.0±10% 54 115 0.7 1.5 200 600 K27.5 0.008
VCAS121026H560 _ _ 26 18 34.5±10% 60 510 1.2 3300 2150 K27.5 0.018
VGAS181226P570 26 23 35.0±10% 57 515 2.5 8600 3000 K30 0.015
VGAS222026Y570 26 23 35±10% 57 10 15 6.8 25 1100 7000 K30 0.030
VGAS322026Z570 26 23 35±10% 57 10 15 13 50 1800 15000 K30 0.04
VCAS060330A650 _ _ 30 21 41.0±10% 67 110 0.1 0.15 30 125 K29 0.002
VCAS080530A650 _ _ 30 21 41.0±10% 67 110 0.1 0.15 30 90 M29 0.002
VCAS080530C650 _ _ 30 21 41.0±10% 67 110 0.3 0.5 80 250 K29 0.005
VCAS120630D650 _ _ 30 21 41.0±10% 67 110 0.4 1120 400 K29 0.008
VCAS121030H620 _ _ 30 21 41.0±10% 67 510 1.2 3280 1850 K30 0.018
VCAS121030S620 _ _ 30 21 41.0±10% 67 510 1.9 3300 1500 K29 0.038
VCAS080531C650 _ _ 31 25 39.0±10% 65 110 0.3 0.5 80 250 K29 0.005
VCAS120631M650 _ _ 31 25 39.0±10% 65 115 11.5 200 500 K29 0.008
012317
18
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
ELECTRICAL CHARACTERISTICS
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC )
VCClamping Voltage [V @ IIV]
IVC Test Current for VC
IL
Et
IP
Cap RMS
VJump Jump Start (V)
P Power Dissipation (W)
AVX PN VW (DC) VW (AC) VBVCIVC ILETELD IPCap Freq VJump PDiss. Max
Vdc Vac V V A μA J J A pF V W
VGAS121031R650 31 25 39±10% 65 2.5 15 1.7 4.5 300 1200 K30 0.05
VGAS181231P650 31 25 39.0±10% 65 515 3.7 8800 2600 K30 0.06
VGAS222031Y650 31 25 39±10% 65 10 15 9.6 23 1200 6100 K30 0.03
VCAS120634N770 _ _ 34 30 47.0±10% 77 115 1.1 1.5 200 400 K48 0.008
VGAS121034S770 _ _ 34 30 47.0±10% 77 2.5 15 23.0 400 1000 K48 0.040
VGAS181234U770 _ _ 34 30 47.0±10% 77 515 56.1 800 1500 K48 0.080
VGAS222034Y770 34 30 47.0±10% 77 10 15 12 25 2000 6300 K48 0.240
VCAS080538C770 _ _ 38 30 47.0±10% 77 110 0.3 -80 200 K48 0.006
VCAS120642L800 _ _ 42 32 51.0±10% 80 115 0.8 -180 600 K48 0.016
VCAS120642K900 42 32 56±10% 90 115 0.6 200 260 K48 0.012
VGAS181242U900 42 35 56.0±10% 90 515 4.0 6500 1200 K48 0.015
VGAS222042Y900 42 37 56±10% 90 10 15 12 24 1000 5000 K48 0.06
VCAS120645K900 45 35 56±10% 90 125 0.6 200 260 K48 0.012N
VCAS120648D101 _ _ 48 34 62.0±10% 100 110 0.4 -100 225 K48 0.008
VCAS121048H101 _ _ 48 34 62.0±10% 100 110 1.2 -250 500 K48 0.022
VCAS120656F111 _ _ 56 40 68.0±10% 110 115 0.7 -100 180 K48 0.014
VGAS181256U111 56 40 68±10% 110 515 4.8 -500 1100 K48 0.04
VCAS120660M131 _ _ 60 50 82.0±10% 135 115 1 - 150 250 K48 0.008
VCAS121060J121 60 42 76±10% 120 510 1.5 250 400 K48 0.03
VGAS121065P131 65 50 82±10% 135 2.5 15 2.7 350 600 K48 0.05
VGAS181265U131 65 50 82±10% 135 515 4.5 -400 800 K48 0.03
VGAS222065Y131 65 50 82±10% 135 10 15 6.5 -1100 3000 K48 0.06
VCAS121085S151 _ _ 85 60 100.0±10% 150 135 2 - 250 275 K48 0.040
VGAS181285U161 85 60 100±10% 165 515 4.5 -400 500 K48 0.04
012317
19
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
AUTOMOTIVE SERIES LOAD DUMP TEST
ACCORDING TO ISO DP7637 REV 2 PULSE 5
Automotive Load Dump Pulse
(According to ISO 7637 Pulse 5)
Voltage (V)
Energy (Joules)
Time (msec)
LOAD DUMP LIBRARY
TYPICAL MAX VZ VERSUS PULSE DURATION AND RI
12V SYSTEMS 24V SYSTEMS
When using the test method indicated below, the amount of
Energy dissipated by the varistor must not exceed the Load Dump

VCAS060316B400   
100ms 37 38 42
200ms 36 37 41
400ms 35 36 39
VCAS120616K380   
100ms 42 45 55
200ms 40 43 50
400ms 39 40 45
VCAS121016J390   
100ms 48 53 74
200ms 46 50 64
400ms 43 46 56
VGAS181216P400   
100ms 46 52 72
200ms 37 41 59
400ms 32 35 51
VGAS222016Y400   
100ms 53 60 77
200ms 50 55 73
400ms 47 50 66
VCAS040218X400   
100ms 38 39 40
200ms 37 37 38
400ms 34 35 36
VCAS060318A400   
100ms 37 38 42
200ms 36 37 41
400ms 35 36 39
VCAS080518A400   
100ms 37 39 40
200ms 35 38 39
400ms 33 37 38
VCAS080518C400   
100ms 40 41 48
200ms 39 40 45
400ms 38 39 42
VCAS120618A400   
100ms 43 45 55
200ms 41 43 48
400ms 40 41 45
VCAS120618D400   
100ms 42 45 55
200ms 40 42 50
400ms 39 40 45
VCAS120618E380   
100ms 42 45 55
200ms 40 43 50
400ms 39 40 45
VCAS121018J390   
100ms 48 53 74
200ms 46 50 64
400ms 43 46 56
VCAS060326A580   
100ms 51 56 58
200ms 50 54 56
400ms 49 51 53
VCAS080526A580   
100ms 51 53 59
200ms 49 51 57
400ms 48 50 51
VCAS080526C580   
100ms 51 54 62
200ms 49 51 56
400ms 48 49 51
VCAS120626D580   
100ms 52 60 68
200ms 50 57 65
400ms 47 54 61
VCAS121026H560   
100ms 61 74 91
200ms 59 69 82
400ms 55 64 70
VCAS060330A650   
100ms 57 59 63
200ms 56 58 61
400ms 54 57 58
VCAS080530A650   
100ms 58 62 66
200ms 56 61 64
400ms 53 57 61
VCAS080530C650   
100ms 58 61 63
200ms 57 58 62
400ms 55 56 59
VCAS120630D650   
100ms 61 70 75
200ms 57 66 69
400ms 56 62 64
VCAS121030H620   
100ms 70 77 98
200ms 64 70 89
400ms 56 65 70
VGAS181234U770   
100ms 87 110 125
200ms 82 97 114
400ms 75 85 95
VGAS222034Y770   
100ms 100 125 165
200ms 91 115 155
400ms 84 104 120
012317
20
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
LW
T
t
C
A
B
A
D
DIMENSIONS: MM (INCHES)
SOLDERING PAD: MM (INCHES)
AVX Style 0402 0603 0805 1206 1210 1812 2220 3220
(L) Length mm
(in.)
1.00±0.10
(0.040±0.004)
1.60±0.15
(0.063±0.006)
2.00.20
(0.079±0.008)
3.20±0.20
(0.126±0.008)
3.20±0.20
(0.126±0.008)
4.50±0.30
(0.177±0.012)
5.70±0.40
(0.224±0.016)
8.20±0.40
(0.323±0.016)
(W) Width mm
(in.)
0.50±0.10
(0.020±0.004)
0.80±0.15
(0.031±0.006)
1.25±0.20
(0.049±0.008)
1.60±0.20
(0.063±0.008)
2.49±0.20
(0.098±0.008)
3.20±0.30
(0.126±0.012)
5.00.40
(0.197±0.016)
5.00.40
(0.197±0.016)
(T) Max
Thickness mm
(in.)
0.6
(0.024)
0.9
(0.035)
1.02
(0.040)
1.02 (0.040)
1.27 (0.050)1)
1.70 (0.067)2)
1.70
(0.067)
2.00
(0.080)
2.50
(0.098)
2.50 max.
(0.098 max.)
(t) Land Length mm
(in.)
0.25±0.15
(0.010.006)
0.35±0.15
(0.014±0.006)
0.71 max.
(0.028 max.)
0.94 max.
(0.037 max.)
1.14 max.
(0.045 max.)
1.00 max.
(0.039 max.)
1.00 max.
(0.039 max.)
1.30 max.
(0.051 max.)
1) Applicable for: VCAS120618E380
2) Applicable for: VCAS120626F540, VCAS120631M650, VCAS120638N770, VCAS120642L800, VCAS120645K900, VCAS120656F111, VCAS120660M131
Pad Layout 0402 0603 0805 1206 1210 1812 2220 3220
A1.61 (0.024) 0.89 (0.035) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.00 (0.039) 1.00 (0.039) 2.21 (0.087)
B1.51 (0.020) 0.76 (0.030) 1.02 (0.040) 2.03 (0.080) 2.03 (0.080) 3.60 (0.142) 4.60 (0.18) 5.79 (0.228)
C1.70 (0.067) 2.54 (0.100) 3.05 (0.120) 4.06 (0.160) 4.06 (0.160) 5.60 (0.220) 6.60 (0.26) 10.21 (0.402)
D1.51 (0.020) 0.76 (0.030) 1.27 (0.050) 1.65 (0.065) 2.54 (0.100) 3.00 (0.118) 5.00 (0.20 ) 5.50 (0.217)
012317
21
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
FORWARD TRANSMISSION CHARACTERISTICS (S21)
0603 Case Size
0805 Case Size
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
1
18A - 730 MHz
26A - 550 MHz
30A - 665 MHz
100 1000 10000
Frequency (MHz)
Insertion Los (dB)
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
1
18A - 730 MHz
26A - 550 MHz
30A - 665 MHz
100 1000 10000
Frequency (MHz)
Insertion Los (dB)
10
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
1
18C - 300 MHz
26A - 555 MHz
26C - 460 MHz
30A - 530 MHz
30C - 390 MHz
38C - 430 MHz
100 1000 10000
Frequency (MHz)
Insertion Los (dB)
10
012317
22
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
FORWARD TRANSMISSION CHARACTERISTICS (S21)
1206 Case Size
1210 Case Size
0
-10
-20
-30
-40
-50
-60
1
18D - 180 MHz
18E - 78 MHz
26D - 260 MHz
26F - 210 MHz
30D 125 MHz
42L - 95 MHz
48D - 325 MHz
56F - 290 MHz
100 1000 10000
Frequency (MHz)
Insertion Los (dB)
10
0
-10
-20
-30
-40
-50
-60
1
18J - 100 MHz
30H - 140 MHz
48H - 225 MHz
100 1000 10000
Frequency (MHz)
Insertion Los (dB)
10
012317
23
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
V-I CHARACTERISTICS
0603 Case Size
0805 Case Size
90
80
70
60
50
40
30
20
10
0
18A
26A
30A
Current (A)
Voltage (V)
1.00E-09 1.00E-06 1.00E-03 1.00E+00 1.00E+03
120
100
80
60
40
20
0
Current (A)
Voltage (V)
1.00E-09 1.00E-06 1.00E-03 1.00E+00 1.00E+03
18C
26C
30C
38C
012317
24
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
FORWARD TRANSMISSION CHARACTERISTICS (S21)
1206 Case Size
1210 Case Size
140
120
100
80
60
40
20
0
Current (A)
Voltage (V)
1.00E-09 1.00E-06 1.00E-03 1.00E+00 1.00E+03
18E
26D
30D
42L
48D
56F
160
140
120
100
80
60
40
20
0
Current (A)
Voltage (V)
1.00E-09 1.00E-06 1.00E-03 1.00E+00 1.00E+03
18J
30H
48H
60J
85S
012317
25
TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
ESD V-I CHARACTERISTICS
TYPICAL VOLTAGE AT 8 KV PULSE
No Part 8kV
120618A400
120618D400
120618E380
120626D580
120626F540
120630D650
120656F111
2000
1500
1000
500
0
0 50 100 150 200
8 kV ESD Vc
(150pF/300ohm IEC Network)
Time (nsec)
Voltage (V)
30.0
28.0
26.0
24.0
22.0
20.0
Initial 10 100
# Pulses
Breakdown Voltage
1000 10000
ESD 8 kV IEC 61000-4-2 150pF / 330Ω Resistor
VC060318A400
8kV Pulse Peak Voltage (V) 30ns Voltage (V) 100ns Voltage (V)
No Part
(No Suppression) 2130 1370 517
120618A400 171 123 65
120618D400 177 133 66
120618E380 161 121 63
120626D580 203 155 88
102626F540 201 159 84
120630D650 249 177 106
120656F111 366 262 169
012317
26
StaticGuard
Multilayer Ceramic Transient Voltage Suppressors
ESD Protection for CMOS, Bi Polar and SiGe Based Systems
GENERAL DESCRIPTION
The StaticGuard Series are low capacitance versions of the TransGuard and are designed
for general ESD protection of CMOS, Bi-Polar, and SiGe based systems. The low capacitance
makes these products suitable for use in high speed data transmission lines.
HOW TO ORDER
VC
Varistor
Chip
LC
Low Cap
Design
06
Case
Size
04 = 0402
06 = 0603
08 = 0805
12 = 1206
18
Working
Voltage
18 = 18.0VDC
X
Energy Rating
A = 0.10 Joules
V = 0.02 Joules
X = 0.05 Joules
500
Clamping
Voltage
500 = 50V
GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to 125ºC

Case Size: 0402, 0603, 0805, 1206
FEATURES
Typical ESD failure voltage for CMOS

Low capacitance (<200pF) is required for
high-speed data transmission.
Low leakage current (IL) is necessary for
battery operated equipment.
15kV ESD pulse (air discharge) per
IEC 61000-4-2, Level 4, generates < 20
millijoules of energy.
APPLICATIONS
Sensors
CMOS
SIGe based systems
Higher speeed data lines
Capacitance sensitive
applications and more
X
Packaging
(PCS/REEL)
D = 1,000*
R = 4,000*
T = 10,000*
W = 10,000**
*Not available for 0402
**Only available for 0402
P
Termination
P = Ni/Sn
ELECTRIAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq Size
VC04LC18V500   25-40 50 110 0.02 15 40 M0402
VC06LC18X500   25-40 50 110 0.05 30 50 M0603
VC08LC18A500   25-40 50 110 0.1 30 80 M0805
VC12LC18A500   25-40 50 110 0.1 30 200 K1206
VW(DC) DC Working Voltage [V] ILMaximum leakage current at the working
VW(AC) AC Working Voltage [V] 
VBTypical Breakdown Votage (Min-Max) ET
[V @ 1mADC, 25°C] IP
VCClamping Voltage [V @ IIVC]Cap 
IVC Test Current for VC and 0.5VRMS, 2C, K = 1kHz, M = 1MHz
080916
27
StaticGuard
Multilayer Ceramic Transient Voltage Suppressors
ESD Protection for CMOS, Bi Polar and SiGe Based Systems
TYPICAL PERFORMANCE DATA
VC08LC18A500 Capacitance Histogram
14%
12%
10%
8%
6%
4%
2%
0%
14%
12%
10%
8%
6%
4%
2%
0%
Capacitance (pF)
Measured Data Calculated Distribution1MHz, 0.5VRMS
61 63 65 67 69 71 73 75 77 79 81 83 85 87 89
VC06LC18X500 Capacitance Histogram
30%
20%
25%
15%
5%
10%
0%
Capacitance (pF @ 1MHz & 0.5V)
Measured Data Calculated
45 50 55 60 65
VC06LC18X500
VC08LC18A500
VC12LC18A500
0
-10
-20
-30
-40
DB
0 500 1000 1500 2000 2500
Frequency (MHz)
50
45
40
35
301 10 100 1000 10000
Number of ESD Strikes
Clamping Voltage (V)
VC12LC18A500 VC08LC18A500
VC06LC18X500
StaticGuard ESD RESPONSE
IEC 61000-4-2 (8 Kv Contact Discharge)
VI Curves - StaticGuard Products
100
80
60
40
20
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
06LC 08LC 12LC 10LC
VC12LC18A500 Capacitance Histogram
14%
12%
10%
8%
6%
4%
2%
0%
14%
12%
10%
8%
6%
4%
2%
0%
Capacitance (pF)
Measured Data Calculated Distribution1MHz, 0.5VRMS
161 163 165 167 169 171 173 175 177 179 181 183 185 187 189
StaticGuard S21
080916
28
StaticGuard
Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent
transient clamping characteristics up to 20 amps peak current, while
maintaining very low leakage currents under DC operating conditions. The VI
curves below show the voltage/current characteristics for the 5.6V, 9V, 14V,
18V and low capacitance StaticGuard parts with currents ranging from parts
of a micro amp to tens of amps.
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical
performance with repeated high current pulses resulting in decreased
breakdown voltage and increased leakage current. It has been
suggested that irregular intergranular boundaries and bulk material
result in restricted current paths and other non-Schottky barrier
paralleled conduction paths in the ceramic. Repeated pulsing of
TransGuard® transient voltage suppressors with 150Amp peak 8 x

and minimal increases in leakage current.
ESD TEST OF 0402 PARTS
PEAK POWER VS PULSE DURATION
INSERTION LOSS CHARACTERISTICS
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
100
80
60
40
20
0
10-9 10-7 10-5 10-3 10-1 10 103105
Current (A)
Voltage (V)
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
1300
1200
10 100 1000
IMPULSE DURATION (µS)
PEAK POWER (W)
1100
1000
900
800
700
600
500
400
300
200
100
0
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
10 100 1000 10000
8kV ESD STRIKES
BREAKDOWN VOLTAGE (Vb)
35
30
25
20
15
10
5
VC040205X
VC04LC18V
VC040214X
VC040218X
VC040209X
0
-5
-10
-15
-20
-25
0.01 0.1 1 10
Frequency (GHz)
dB
080916
29
StaticGuard Automotive Series
Multilayer Varistors for Automotive Applications
GENERAL DESCRIPTION
The StaticGuard Automotive Series are low capacitance versions of the TransGuard and are designed for general
ESD protection of CMOS, Bi-Polar, and SiGe based systems. The low capacitance makes these products suitable
for use in automotive CAN and LIN bus communication lines as well as other high speed data transmission
applications requiring low capacitance protection.
HOW TO ORDER
VC
Varistor
Chip
LC
Low Cap
Design
AS
Series
AS = Automotive
06
Case
Size
04 = 0402
06 = 0603
08 = 0805
18
Working
Voltage
18 = 18.0VDC
X
Energy Rating
A = 0.10 Joules
V = 0.02 Joules
X = 0.05 Joules
500
Clamping
Voltage
150 = 18V
200 = 22V
300 = 32V
400 = 42V
500 = 50V
GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to 125ºC

Case Size: 0402, 0603, 0805
FEATURES

ISO 7637 Pulse 1-3 capability
Meet 27.5Vdc Jump Start requirements
Multi-strike capability
Sub 1nS response to ESD strike
APPLICATIONS
CAN BUS
LIN BUS
CMOS
Module interfaces
Switches
Sensors
Camera modules
Datalines
Capacitance sensitive
applications and more
R
Packaging
(PCS/REEL)
D = 1,000
R = 4,000
T = 10,000
W = 0402
10000
P
Termination
P = Ni/Sn
ELECTRIAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq VJUMP PDISS Size
VCAS04LC18V500   25-40 50 110 0.02 15 40 M27.5 0.0004 0402
VCAS06LC18X500   25-40 50 110 0.05 30 50 M27.5 0.001 0603
VCAS08LC18A500   25-40 50 110 0.1 30 80 M27.5 0.002 0805
VW(DC) DC Working Voltage [V] ET
VW(AC) AC Working Voltage [V] IP
VBTypical Breakdown Votage [V @ 1mADC, 2C] Cap 
VCClamping Voltage [V @ IIVC] and 0.5VRMS, 2C, M = 1MHz, K = 1kHz
IVC  VJump Jump Start [V, 5 min]
ILMaximum leakage current at the working PDISS Power Dissipation [W

080916
30
StaticGuard Automotive Series
Multilayer Varistors for Automotive Applications
VOLTAGE/CURRENT CHARACTERISTICS
ELECTRICAL TRANSIENT CONDUCTION
080916
31
StaticGuard Automotive Series
Multilayer Varistors for Automotive Applications
VOLTAGE/CURRENT CHARACTERISTICS
005X81CL60SACV005V81CL40SACV
VCAS08LC18A500
080916
32
GENERAL DESCRIPTION
AVX 0201 Multi-Layer Automotive Varistors are designed for circuits where board space is a premium. 0201
MLV offer bi-directional ESD protection in the smallest package available today. The added advantage is
EMI/RFI attenuation. 0201 MLV can replace 2 diodes and the EMC capacitor for a one chip solution.

in one ultra compact device.
GENERAL CHARACTERISTICS
Operating Temperature: -55°C to +125°C
Working Voltage: 9Vdc
Case Size: 0201
APPLICATIONS
Manifold absolute pressure sensor
Camera modules
Embedded components
Any circuit with space constraints
FEATURES
Bi-Directional protection

Low VB Version
Fastest response time to ESD strikes
Multi-strike capability
Ultra compact 0201 case size
MultiLayer Varistors (MLVs)
XCVR
MLV PROTECTION METHOD
SINGLE COMPONENT SOLUTION
TVS & EMI
DIODE PROTECTION METHOD
THREE COMPONENT SOLUTION
TVS & EMI
XCVRBUS BUS
TVS Diodes
MSL 1
Pb Free 260ºC
HOW TO ORDER
VC
Varistor
Clamp
Automotive
Series
AS
Chip
Size
0201
0201
Working
Voltage
09 = 9V
09
Energy
Rating
V = 0.02J
V
Capacitance
300 = 32V
300
Package
W = 7"
10kpcs
W
Termination
P = Ni Barrier/
100% Sn (matte)
P
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Cap tol
Vdc Vac V V A µA J A pF
VCAS020109V300WP 9.0 6.4 16.5±10% 32 110 0.02 530 ±40%
VW(DC) DC Working Voltage [V] ILMaximum leakage current at the working voltage [µA]
VW(AC) AC Working Voltage [V] ET Transient Energy Rating [J, 10x1000µS]
VBBreakdown Votage [V @ 1mADC] IPPeak Current Rating [A, 8x20µS]
VCClamping Votage [V @ IVC] Cap RMS
IVC Test Current for VC [A, 8x20µS]
Miniature 0201 Automotive MLV
ESD Protection for Automotive Circuits with Board Space Constraints
071819
33
Miniature 0201 Automotive MLV
ESD Protection for Automotive Circuits with Board Space Constraints
0
10
20
30
40
50
1.E-07 1.E-05 1.E-03 1.E-01 1.E+01
Volt (V)
Current (A)
V-I Curve
PHYSICAL DIMENSIONSL: mm (inches)
VOLTAGE/CURRENT CHARACTERISTICS
W
L
T
t t
Size (EIA) Length (L) Width (W) Max Thickness (T) Terminal
0201 0.60±0.03
(0.024±0.001)
0.30±0.03
(0.011±0.001)
0.33 max.
(0.013 max.)
0.15±0.05
(0.000.002)
071819
34
MultiGuard Series
(2&4 Elements) Multilayer Ceramic Transient Voltage Suppression
Arrays – ESD Protection for CMOS and Bi Polar Systems
GENERAL DESCRIPTION
AVX’s Transient Voltage Suppression (TVS) Arrays address six trends in today’s electronic circuits: (1) mandatory ESD
protection, (2) mandatory EMI control, (3) signal integrity improvement, (4) PCB downsizing, (5) reduced component
placement costs, and (6) protection from induced slow speed transient voltages and currents.
AVX’s MultiGuard products offer numerous advantages, which include a faster turn-on-time (<1nS), repetitive strike
capability, and space savings. In some cases, MultiGuard consumes less than 75% of the PCB real estate required for
the equivalent number of discrete chips. This size advantage, coupled with the savings associated with placing only
one chip, makes MultiGuard the TVS component of choice for ESD protection of I/O lines in portable equipment and
programming ports in cellular phones. Other applications include differential data line protection, ASIC protection and
LCD driver protection for portable computing devices.
GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to 125ºC
Working Voltage: 5.6Vdc-18Vdc
Case Size: 0405 2x Array
0508 2x Array
0612 4x Array
Energy: 0.02-0.1J
Peak Current: 15-30A
FEATURES
Bi-Directional protection
Very fast response time to ESD strikes

2 and 4 element arrays
Multiple lines protection
Space saving
Pick & place cost savings
APPLICATIONS
I/O Lines
Portable equipment
Cell phones, radios
Programming ports
Differential data lines
ASIC
LCD driver
and more
HOW TO ORDER
MG L14 A T P30004 2
MultiGuard Style
S = Standard Construction
L = Low Capacitance
Case
Size
04 = 0405
05 = 0508
06 = 0612

2 = 2 Elements
4 = 4 Elements
Working
Voltage
05 = 5.6VDC
09 = 9.0VDC
14 = 14.0VDC
18 = 18.0VDC
Energy Rating
A = 0.10 Joules
V = 0.02 Joules
X = 0.05 Joules
Packaging
(PCS/REEL)
D = 1,000
R = 4,000
T = 10,000
Termination
Finish
P = Ni/Sn
(Plated)
Clamping
Voltage
150 = 18V
200 = 22V
300 = 32V
400 = 42V
500 = 50V
080216
35
MultiGuard Series
(2&4 Elements) Multilayer Ceramic Transient Voltage Suppression
Arrays – ESD Protection for CMOS and Bi Polar Systems
ELECTRICAL CHARACTERISTICS PER ELEMENT
AVX
Part Number
Working
Voltage
(DC)
Working
Voltage
(AC)
Breakdown
Voltage
Clamping
Voltage
Test
Current
For VC
Maximum
Leakage
Current
Transient
Energy
Rating
Peak
Current
Rating
Typical
Cap
2 Element
0405 Chip
MG042S05X150 _ _ 5.6 4.0 8.5±20% 18 135 0.05 15 300
MG042L14V400 _ _ 14.0 10.0 18.5±12% 32 115 0.02 15 45
MG042L18V500 _ _ 18.0 14.0 28.0±10% 50 110 0.02 15 40
2 Element
0508 Chip
MG052S05A150 _ _ 5.6 4.0 8.5±20% 18 135 0.10 30 825
MG052S09A200 _ _ 9.0 6.4 12.7±15% 22 125 0.10 30 550
MG052S14A300 _ _ 14.0 10.0 19.5±12% 32 115 0.10 30 425
MG052S18A400 _ _ 18.0 14.0 25.5±10% 42 110 0.10 30 225
MG052L18X500 _ _   28.0±10% 50 110 0.10 20 50
4 Element
0612 Chip
MG064S05A150 _ _ 5.6 4.0 8.5±20% 18 135 0.10 30 825
MG064S09A200 _ _ 9.0 6.4 12.7±15% 22 125 0.10 30 550
MG064S14A300 _ _ 14.0 10.0 19.5±12% 32 115 0.10 30 425
MG064S18A400 _ _ 18.0 14.0 25.5±10% 42 110 0.05 15 120
MG064L18X500 _ _   28.0±10% 50 110 0.10 20 75
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VB
Typical Breakdown Voltage
(V @ 1mADC )
VB Tol VB Tolerance is ± from Typical Value
VCClamping Voltage (V @ IVC )
IVC 
IL
ET
IP
Cap Typical Capacitance (pF) @ 1MHz and 0.5 VRMS
COMPONENT LAYOUT
SIZE: 0405 SIZE: 0508 SIZE: 0612
2 Element 4 Element
080216
36
MultiGuard Series
(2&4 Elements) Multilayer Ceramic Transient Voltage Suppression
Arrays – ESD Protection for CMOS and Bi Polar Systems
PHYSICAL DIMENSIONS AND PAD LAYOUT
2-ELEMENT MULTIGUARD 4-ELEMENT MULTIGUARD
L
BL
BW C/L
OF CHIP
C
L
T
W
P
SS
L
BL
BW C/L
OF CHIP
C
L
T
W
P
SS
SIZE: 0508SIZE: 0405
L
BL
BW C/L OF CHIP
C
L
T
W
XX
PSS
SIZE: 0612
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
0405 2 ELEMENT DIMENSIONS mm (inches)
0508 2 ELEMENT DIMENSIONS mm (inches)
PAD LAYOUT DIMENSIONS mm (inches) PAD LAYOUT DIMENSIONS mm (inches)
0612 4 ELEMENT DIMENSIONS mm (inches)
L W T BW BL P S
1.00 ± 0.15
(0.030.006)
1. 37± 0.15
(0.050.006)
0 .66 MAX
(0.026 MAX)
0.36±0.10
(0.010.004)
0.20±0.10
(0.000.004)
064 REF
(0.025 REF)
0.32±0.10
(0.010.004)
L W T BW BL P S
1.25±0.20
(0.049±0.008)
2.00.20
(0.079±0.008)
1.02 MAX
(0.040 MAX)
0.41±0.1
(0.010.004)
0.18 0.76 REF
(0.030 REF)
0.38±0.10
(0.010.004)
(0.007 )
L W T BW BL P X S
1.60±0.20
(0.063±0.008)
3.20±0.20
(0.126±0.008)
1.22 MAX
(0.048 MAX)
0.41±0.10
(0.016±0.004)
0.18 0.76 REF
(0.030 REF)
1.14±0.10
(0.045±0.004)
0.38±0.10
(0.015±0.004)
(0.007 )
A B C D E
0405 2 Element
0.46
(0.018)
0.74
(0.029)
1.20
(0.047)
0.38
(0.015)
0.64
(0.025)
A B C D E
0508 2 Element
0.89
(0.035)
1.27
(0.050)
2.16
(0.085)
0.46
(0.018)
0.76
(0.030)
A B C D E
0612 4 Element
0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)
+0.25
+.010
-0.08
-.003
+0.25
+.010
-0.08
-.003
080216
37
MultiGuard Series
(2&4 Elements) Multilayer Ceramic Transient Voltage Suppression
Arrays – ESD Protection for CMOS and Bi Polar Systems
TYPICAL PERFORMANCE CURVES VOLTAGE/CURRENT CHARACTERISTICS
TYPICAL PERFORMANCE CURVES TEMPERATURE CHARACTERISTICS
MultiGuard suppressors are designed to operate over the full temperature range from -55°C to +125°C.
Multilayer construction and improved grain structure result in excellent
transient clamping characteristics in excess of 30 amps (20 amps
on MG064L18X500) peak current while maintaining very low leakage
currents under DC operating conditions. The VI curves below show the
voltage/current characteristics for the 5.6V, 9V, 14V and 18V parts with
currents ranging from fractions of a micro amp to tens of amps.
5.6V
25
20
15
10
5
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
MG064S05A150
9.0V and 14.0V
50
40
30
20
10
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
MG064S09A200 MG064S14A300
MG064L18X500
70
60
50
40
20
30
10
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
MG064L18X500
18V
100
80
60
40
20
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
MG064S18A400
-60 -40 -20 0 20 40 60 80 100 120 140 160
0.2
0
o
TYPICAL ENERGY DERATING VS TEMPERATURE
Temperature ( C)
Energy Derating
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 18V
18V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
B
C
o
50
40
30
20
V
VB
C
( )
( )
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 5.6V
5.6V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
V
VB
B
C
C
o
20
15
10
5
Temperature Dependence of Voltage
Voltage as a Percent of
Average Breakdown Voltage
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Current (A)
-40 C 25 C 85 C 125 C
100
90
80
70
60
50
40
30
20
10
080216
38
MultiGuard Series
(2&4 Elements) Multilayer Ceramic Transient Voltage Suppression
Arrays – ESD Protection for CMOS and Bi Polar Systems
TRANSIENT VOLTAGE SUPPRESSORS TYPICAL PERFORMANCE CURVES
APPLICATION
0 200100 400 600 800300 500
CAPACITANCE (pF) DISTRIBUTION
700 900 1000
MG064S05A510
MG064S09A200
MG064S18A400
MG064L18X500
MG064S14A300
revieceRrettimsnarT
MUX BUS
14V - 18V 0.02J
74AHCT05
DATA
14V - 18V 0.1J
FERRITE
BEAD
KEYBOARD
CONTROLLER
74AHCT05
CLOCK
14V - 18V 0.1J
FERRITE
BEAD
080216
39
UltraGuard Series
ESD Protection for Low Leakage Requirements
GENERAL DESCRIPTION
Faster semiconductor clock speeds and an increasing reliance on batteries as power sources have
resulted in the need for varistors that exhibit very low leakage current. The UltraGuard (UG) Series
of AVX Transient Voltage Suppressors address this problem.
The UG Series is the ideal transient protection solution for high clock speed integrated circuit
application, battery-operated device, backlit display, medical/instrument application, low voltage
power conversion circuits and power supervisory chip sets. In addition, UltraGuard’s low leakage
characteristics are also suitable for optic circuits like LDD, SerDes, and laser diodes.
Discrete Chips2-Element Arrays4-Element Arrays
0402, 0603,(0405 and 0508)(0612)
and 0805
GENERAL
CHARACTERISTICS
Operting Teperature: -55°C to +125°C
Working Voltage: 3.0dc - 32Vdc
Case Size: 0402-1206
0405 2xArray, 0508 2xArray
0612 4xArray

Energy: 0.02-1.2J
Peak Current: 80-200A
Typ Cap: 30-5000pF
FEATURES
Bi-Directional protection
Ultra low leakage 1uA max
Multi-strike capability
Single, 2 and 4 element components
Compact footprint

APPLICATIONS
Battery operated devices
High clock speed IC
Low voltage power conversion
Power supervisory chip sets
Optic circuits (LDD, SerDes
Laser diodes
Any circuit with low leakage
requirements
VC 0180 L 1 W PUG 04
Surface
Mount Chip
MG
Array
Maximum
Working
Voltage
0030 = 3.0VDC
0050 = 5.0VDC
0075 = 7.5VDC
0100 = 10.0VDC
0150 = 15.0VDC
0180 = 18.0VDC
0320 = 32.0VDC
0150
Maximum
Working
Voltage
0030 = 3.0VDC
0050 = 5.0VDC
0075 = 7.5VDC
0100 = 10.0VDC
0150 = 15.0VDC
Series
Low
Leakage
Series
UG
Series
Low
Leakage
Series
Case Size
04 = 0402
06 = 0603
08 = 0805
12 = 1206
06
Case Size
04 = 0405
05 = 0508
06 = 0612
Capacitance
L = Low
H = High
L
Capacitance
L = Low
H = High
No. of Elements
4
No. of Elements
2 = 2 Elements
4 = 4 Elements
Packaging
(pieces per reel)
D = 1,000 (7” reel)
R = 4,000 (7” reel)
T = 10,000 (13” reel)
W = 10,000 (7” reel, 0402 only)
Termination
Finish
P = Ni/Sn
(Plated)
W
Packaging
(pieces per reel)
D = 1,000 (7” reel)
R = 4,000 (7” reel)
T = 10,000 (13” reel)
P
Termination
Finish
P = Ni/Sn
(Plated)
HOW TO ORDER
40
UltraGuard Series
ESD Protection for Low Leakage Requirements
AVX Part Number VWVWVB (Min) VCIVC ILETIPCap Freq Case Elements
MGUG040030L2 _ _ 3.0 2.3 6.8 18 1 1 0.05 15 300 M 0405 2
MGUG050030L2 _ _ 3.0 2.3 17.2 32 1 1 0.1 30 425 M 0508 2
MGUG060030L4 _ _ 3.0 2.3 17.2 32 1 1 0.1 30 425 M 0612 4
VCUG040030L1 _ _ 3.0 2.3 6.8 18 1 1 0.05 20 175 M 0402 1
VCUG060030L1 _ _ 3.0 2.3 6.8 18 1 1 0.1 30 750 K 0603 1
VCUG080030H1 _ _ 3.0 2.3 6.8 18 1 1 0.3 120 3000 K 0805 1
VCUG080030L1 _ _ 3.0 2.3 6.8 18 1 1 0.1 40 1100 K 0805 1
VCUG120030H1 _ _ 3.0 2.3 6.8 18 1 1 0.4 150 3000 K 1206 1
VCUG120030L1 _ _ 3.0 2.3 6.8 18 1 1 0.1 40 1200 K 1206 1
MGUG040050L2 _ _ 5.0 3.5 20 50 1 1 0.02 15 40 M 0405 2
MGUG050050L2 _ _ 5.0 3.5 17.2 32 1 1 0.1 30 425 M 0508 2
MGUG060050L4 _ _ 5.0 3.5 17.2 32 1 1 0.1 30 425 M 0612 4
VCUG040050L1 _ _ 5.0 3.5 10.8 22 1 1 0.05 20 175 M 0402 1
VCUG060050L1 _ _ 5.0 3.5 10.8 22 1 1 0.1 30 550 K 0603 1
VCUG080050L1 _ _ 5.0 3.5 10.8 22 1 1 0.1 40 750 K 0805 1
VCUG120050H1 _ _ 5.0 3.5 16.3 32 1 1 0.4 150 1050 K 1206 1
VCUG120050L1 _ _ 5.0 3.5 16.3 32 1 1 0.1 40 600 K 1206 1
MGUG040075L2 _ _ 7.5 5.3 20 50 1 1 0.02 15 40 M 0405 2
MGUG050075L2 _ _ 7.5 5.3 17.2 32 1 1 0.1 30 425 M 0508 2
MGUG060075L4 _ _ 7.5 5.3 17.2 32 1 1 0.1 30 425 M 0612 4
VCUG040075L1 _ _ 7.5 5.3 16.3 32 1 1 0.05 20 85 M 0402 1
VCUG060075L1 _ _ 7.5 5.3 16.3 32 1 1 0.1 30 350 K 0603 1
VCUG080075H1 _ _ 7.5 5.3 16.3 32 1 1 0.3 120 900 K 0805 1
VCUG080075L1 _ _ 7.5 5.3 16.3 32 1 1 0.1 40 325 K 0805 1
VCUG120075H1 _ _ 7.5 5.3 16.3 32 1 1 0.4 150 1050 K 1206 1
VCUG120075L1 _ _ 7.5 5.3 16.3 32 1 1 0.1 40 600 K 1206 1
MGUG040100L2 _ _ 10 7.1 20 50 1 1 0.02 15 40 M 0405 2
MGUG050100L2 _ _ 10 7.1 23 42 1 1 0.1 30 225 M 0508 2
MGUG060100L4 _ _ 10 7.1 23 42 1 1 0.1 15 120 M 0612 4
VCUG040100L1 _ _ 10 7.1 23 42 1 1 0.05 20 65 M 0402 1
VCUG060100L1 _ _ 10 7.1 23 42 1 1 0.1 30 150 K 0603 1
VCUG080100H1 _ _ 10 7.1 23 42 1 1 0.3 100 550 K 0805 1
VCUG080100L1 _ _ 10 7.1 23 42 1 1 0.1 30 225 K 0805 1
VCUG120100H1 _ _ 10 7.1 23 42 1 1 0.4 150 900 K 1206 1
VCUG120100L1 _ _ 10 7.1 23 42 1 1 0.1 30 350 K 1206 1
MGUG040150L2 _ _ 15 11 20 50 1 1 0.02 15 50 M 0405 2
MGUG050150L2 _ _ 15 11 20 50 1 1 0.1 20 50 M 0508 2
MGUG060150L4 _ _ 15 11 20 50 1 1 0.05 20 75 M 0612 4
VCUG040150L1 _ _ 15 11 25 50 1 1 0.02 15 40 M 0402 1
VCUG060150L1 _ _ 15 11 31.1 60 1 1 0.1 30 155 K 0603 1
VCUG080150H1 _ _ 15 11 31.1 60 1 1 0.3 100 250 K 0805 1
VCUG080150L1 _ _ 15 11 31.1 60 1 1 0.1 30 120 K 0805 1
VCUG120150H1 _ _ 15 11 31.1 60 1 1 0.4 120 500 K 1206 1
VCUG040180L1 _ _ 18 14 28 55 1 1 0.05 10 30 M 0402 1
VCUG080320L1 _ _ 32 22 42.3 77 1 1 0.1 40 50 M 0805 1
Termination Finish Code
Packaging Code
VCIR (DC) DC Circuit Voltage (V)
VCIR (AC) AC Circuit Voltage (V)
Cap Req Standard or Low
IL
Cap 
Freq Frequency at which capacitance is measured (K = 1kHz, M = 1MHz)
41
UltraGuard Series
ESD Protection for Low Leakage Requirements
PHYSICAL DIMENSIONS MM (INCHES)
SOLDER PAD DIMENSIONS MM (INCHES)
0402 Discrete 0603 Discrete 0805 Discrete
Length 1.00 ±0.10 (0.040 ±0.004) 1.60 ±0.15 (0.063 ±0.006) 2.01 ±0.20 (0.079 ±0.008)
Width 0.50 ±0.10 (0.020 ±0.004) 0.80 ±0.15 (0.032 ±0.006) 1.25 ±0.20 (0.049 ±0.008)
Thickness 0.60 Max. (0.024 Max.) 0.90 Max. (0.035 Max.) 1.02 Max. (0.040 Max.)
Term Band Width 0.25 ±0.15 (0.010 ±0.006) 0.35 ±0.15 (0.014 ±0.006) 0.71 Max. (0.028 Max.)
0405 Array 0508 Array 0612 Array
Length 1.00 ±0.15 (0.039 ±0.006) 1.25 ±0.20 (0.049 ±0.008) 1.60 ±0.20 (0.063 ±0.008)
Width 1.37 ±0.15 (0.054 ±0.006) 2.01 ±0.20 (0.079 ±0.008) 3.20 ±0.20 (0.126 ±0.008)
Thickness 0.66 Max. (0.026 Max.) 1.02 Max. (0.040 Max.) 1.22 Max. (0.048 Max.)
Term Band Width 0.36 ±0.10 (0.014 ±0.004) 0.41 ±0.10 (0.016 ±0.004) 0.41 ±0.10 (0.016 ±0.004)
2.54
(0.100)
0.89
(0.035)
0.89
(0.035)
1.27
(0.050)
0.76
(0.030)
0.76
(0.030)
3.05
(0.120)
1.02
(0.040)
1.02
(0.040)
1.02
(0.040)
08050603
1.70 (0.067)
0.61
(0.024)
0.61
(0.024)
0.51
(0.020)
0.51
(0.020)
0402
A
B
C
D
E
A
B
C
D
E
0612 4-Element Array
2-Element Arrays
A B C D E
0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)
A B C D E
0405 0.46
(0.018)
0.74
(0.029)
1.20
(0.047)
0.38
(0.015)
0.64
(0.025)
0508 0.89
(0.035)
1.27
(0.050)
2.16
(0.085)
0.46
(0.018)
0.76
(0.030)
42
Communication BUS Varistor
GENERAL DESCRIPTION
The CAN BUS and FlexRay varistor is a zinc oxide (ZnO) based ceramic semiconductor device with non-linear voltage-
current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see
equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well
as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO
grains surrounded by electrically insulating barriers, creating varistor like behavior.
AVX Communication Bus Varistors offer the advantages of large in-rush current capability, low capacitance to minimize
  
through their bulk capacitance. These features coupled with an extremely low FIT rate and excellent process capability
make an ideal device for today’s automotive or general circuit protection.
GENERAL CHARACTERISTICS
Operting Teperature: -55°C to +125°C

Case Size: 0402, 0603
0405 2xArray
0612 4xArray
FEATURES
Compact footprint
High ESD capability (25kV)

EMI/RFI Attenuation
Low Capacitance/Low Insertion Loss
Very Fast Response Time
High Reliability <0.1 FIT

APPLICATIONS
Communication Bus:
CAN Bus, FlexRay, etc.
General I/O Protocols
Keyboard Interfaces
Datalines
Sensors
Capacitance sensitive
applications and more
CAN
Style
CAN = CAN BUS
FLX = FlexRay
0001
Case Size
0001 = 0603 Discrete
0002 = 0405 2-Element
0003 = 0405 2-Element
0004 = 0612 4-Element
0005 = 0402 Discrete
0006 = 0402 Discrete
0007 = 0603 Discrete
D
Packaging Code
(Reel Size)
D = 7” reel (1,000 pcs.)
R = 7” reel (4,000 pcs.)
T = 13” reel (10,000 pcs.)
W = 7” reel (10,000 pcs.) 0402 only
P
Termination
P = Ni/Sn
(Plated)
HOW TO ORDER
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC )
VCClamping Voltage (V @ IVC)
IVC 
IL
ET
IP
Cap Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms
Temp Range -55ºC to +125ºC
PERFORMANCE CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq VJump PDiss Max Case Elements
CAN0001 _ _   120 225 1 2 0.015 4 22 Max M 27.5 0.003 0603 1
CAN0002 _ _   70 145 1 2 0.015 4 22 Max M 27.5 0.003 0405 2
CAN0003 _ _   28.5 50 1 5 0.02 15 50 Max M 27.5 0.0008 0405 2
CAN0004 _ _   100 180 1 2 0.015 4 22 Max M 27.5 0.003 0612 4
CAN0005 _ _   33 55 1 2 0.05 10 37 Max M 27.5 0.01 0402 1
CAN0006 _ _   26 45 1 5 0.02 4 17 Max M 27.5 0.004 0402 1
CAN0007 _ _   61 120 1 5 0.05 5 15 Max M 27.5 0.003 0603 1
FLX0005 _ _   26 45 1 5 0.02 4 17 Max M 27.5 0.004 0402 1
Termination Finish Code
Packaging Code
080216
43
Communication BUS Varistor
S21 CHARACTERISTICS
TYPICAL MLV IMPLEMENTATION TYPICAL PULSE RATING CURVE
EQUIVALENT CIRCUIT MODEL
Where: Rv = Voltage Variable resistance (per VI curve)
Rp

Ron = turn on resistance
Lp
0 1 10 100 1000 10000
Frequency (MHz)
10.0
0.0
-10.0
-20.0
-30.0
-40.0
-50.0
Insertion Loss (dB)
CAN0001 CAN0005FLX0005
5
0
-5
-10
-15
-20
-25
-30
Insertion Loss (dB)
Frequency (MHz)
0.1 1 10 100 1000 10000
CAN0007
DIODE PROTECTION METHOD
THREE COMPONENT SOLUTION
TVS + EMI
XCVR
TVS DiodesMultiLayer Varistors (MLVs)
BUS
EMC
CAP
MLV PROTECTION METHOD
SINGLE COMPONENT SOLUTION
TVS & EMI
XCVR BUS 10000
1000
100
10
10 100 1000 10000
Pulse Duration (µS)
Peak Power (W)
Typical Pulse Rating Curve
Discrete MLV Model
PCB
Trace
To Device
Requiring
Protection
RVCRP
Ron
LP
Solder Pad
080216
44
Communication BUS Varistor
TYPICAL CAN BUS IMPLEMENTATION
SCHEME
TYPICAL FLEX RAY IMPLEMENTATION
SCHEME
PHYSICAL DIMENSIONS MM (INCHES)
SOLDER PAD DIMENSIONS MM (INCHES)
0402 Discrete 0603 Discrete 0405 Array 0612 Array
Length 1.00 ±0.10 (0.040 ±0.004) 1.60 ±0.15 (0.063 ±0.006) 1.00 ±0.15 (0.039 ±0.006) 1.60 ±0.20 (0.063 ±0.008)
Width 0.50 ±0.10 (0.020 ±0.004) 0.80 ±0.15 (0.032 ±0.006) 1.37 ±0.15 (0.054 ±0.006) 3.20 ±0.20 (0.126 ±0.008)
Thickness 0.60 Max. (0.024 Max.) 0.90 Max. (0.035 Max.) 0.66 Max. (0.026 Max.) 1.22 Max. (0.048 Max.)
Term Band Width 0.25 ±0.15 (0.010 ±0.006) 0.35 ±0.15 (0.014 ±0.006) 0.36 ±0.10 (0.014 ±0.004) 0.41 ±0.10 (0.016 ±0.010)
A
B
C
D
E
C
A
B
A
B
0405 Array
0402/0603 Discrete 0612 Array
A
B
C
D
E
0402, 060304050612
DiscreteArrayArray
A B C D E
0402 Discrete 0.61
(0.024)
0.51
(0.020)
1.70
(0.067)
0603 Discrete 0.89
(0.035)
0.76
(0.030)
2.54
(0.100)
0405 Array 0.46
(0.018)
0.74
(0.029)
0.12
(0047)
0.38
(0.015)
0.64
(0.025)
0612 Array 0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)
ECU
BP
BM
V2V1
V
CC
TX
D
Vcc
V2
V1
Transceiver
V
CC
TxD
RxD
CAN_H
CAN_L
Split
080216
45
Communication BUS Varistor
APPLICATION
AVX CAN BUS and FlexRay varistors offer

CAN or FlexRay network as shown on the right.
Some of the advantages over diodes include:
space savings
higher ESD capability @ 25kV contact


= CAN0001 = Feedthru Cap
= MultiGuard = Tantalum
LEDS Lamps
Tachometer
(Stepper Motor)
Speedometer
(Stepper Motor)
NTC Based
Temp. Sensor
F l L l
Lamp/
LED Drvr
8V Reg
5V Reg
Physical
Interface
DDC
BATT
Gauge
Motor
Drvr
LCD
Module
MCU
CAN
BUS
FlexRayTM
CAN
Powertrain
Body Control
Module/CAN
Gateway
Instrument
Cluster
Smart
Junction Box
Dash Board
Node HVAC
Door
Module
Wheel Node
Wheel Node
Wheel Node
Wheel Node
X-by-Wire Master
080216
46
USB Series
Low Capacitance Multilayer Varistors
GENERAL DESCRIPTION
USB Series varistors are designed to protect the high speed data lines against
ESD transients. They have very low capacitance and fast turn on times that
make this series ideal for data and transmission lines with high data rates.
The unique design enables these devices to meet the rigorous testing criteria
of the IEC 61000-4-2 standards. New and improved manufacturing process
has created these USB series to be one of the best plated varistors in the
market today.
GENERAL CHARACTERISTICS
Operating Temperature: -55ºC to 125ºC

Case Size: 0402, 0603, 0405 2x array, 0612 4x array
Typical Capaciatane: 3pF, 6pF, 10pF
FEATURES
Zinc Oxide (ZnO) based ceramic semiconductor devices with non-linear
voltage-current characteristics
Bi-directional device, similar to back-to-back Zener diodes plus an EMC
capacitor in parallel
Entire structure made up of conductive ZnO grains surrounded by
electrically insulating barriers, creating varistor-like behavior
Electrical advantages over Zener diodes are repetitive strike capability,
high in rush current capability, fast turn-on-time and EMI attenuation
Protects against ESD to meet IEC 61000-4-2 15kV (air) and 8kV (contact)
Low capacitance for high speed data lines
Available in discrete and array packages (2 and 4 element)
Low Clamping Voltage
Low Operating Voltage
Response time is < 1ns
TYPICAL APPLICATIONS
PART NUMBERING
USB BUS Lines/Firewire Data BUS
Lines
I/O BUS Lines
10/100/1000 Ethernet
Transmission Lines
Video Card Data Lines
Handheld Devices
Laptop Computers
LCD Monitors
and more
PINOUT CONFIGURATION
USB
Style
0001
Case Size
0001 = 0603 (Single)
0002 = 0405 (2-Element)
0004 = 0612 (4-Element)
0005 = 0402 (Single)
0006 = 0402 (Single)
D
Packaging Code
(Reel Size)
D = 7” (1,000 pcs.)
R = 7” (4,000 pcs.)
T = 13” (10,000 pcs.)
W = 7” (10,000 pcs.
0402 only)
P
Termination
P = Ni/Sn (Plated)
USB0001/0005/0006
0603 and 0402 (Single)
USB0002
0405 (Dual)
USB0004
0612
(Quad)
47
USB Series
Low Capacitance Multilayer Varistors
RATINGS
PERFORMANCE CHARACTERISTICS
Air Discharge ESD 15kV
Contact Discharge ESD 8kV
Operating Temperature –55°C to +125°C
Soldering Temperature 260°C
AVX Part No. VW (DC) VW (AC) VBILETIPCap. Case Size Elements
USB0001_ _   120 2 0.015 4 10 0603 1
USB0002_ _   70 2 0.015 4 10 0405 2
USB0004_ _   100 2 0.015 4 10 0612 4
USB0005_ _   300 2 0.015 4 3 0402 1
USB0006_ _   65 2 0.015 4 6 0402 1
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC )
IL
ET
IP
Cap Typical Capacitance (pF) @ 1 MHz and 0.5Vrms
USB TYPICAL S21 CHARACTERISTICS
10000
1000
100
10
10 100 1000 10000
Pulse Duration (µS)
Peak Power (W)
Typical Pulse Rating Curve
-35
-30
-25
-20
-15
-10
-5
0
00001 0001 001
Frequency (MHz)
Insertion Loss (dB)
USB0001
USB0005
USB0006
USB0002
USB0004
48
USB Series
Low Capacitance Multilayer Varistors
L W T BW BL P
USB0001
1.60±.15
(0.063±0.006)
0.80±0.15
(0.032±0.006)
0.90 Max
(0.035 Max.) N/A 0.35±0.15
(0.014±0.006) N/A
USB0002
1.00±0.15
(0.039±0.006)
1.37±0.15
(0.054±0.006)
0.66 Max
(0.026 Max.)
0.36±0.10
(0.014±0.004)
0.20±0.10
(0.008±0.004)
0.64 REF
(0.025 REF)
USB0004
1.60±0.20
(0.063±0.008)
3.20±0.20
(0.126±0.008)
1.22 Max
(0.048 Max.)
0.41±0.10
(0.016±0.004)
0.18+0.25/–0.08
(0.007+.01/–.003)
0.76 REF
(0.030 REF)
USB0005 / USB0006
1.0±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60 Max
(0.024 Max.) N/A 0.25±0.15
(0.010±0.006) N/A
A B C D E
USB0001
0.89
(0.035)
0.76
(0.030)
2.54
(0.100)
0.76
(0.030) N/A
USB0002
0.46
(0.018)
0.74
(0.029)
1.20
(0.047)
0.30
(0.012)
0.64
(0.025)
USB0004
0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)
USB0005 / USB0006
0.61
(0.024)
0.51
(0.020)
1.70
(0.067)
0.51
(0.020) N/A
mm (inches) mm (inches)
W
BL
L
T
D
A
B
C
USB0001/5/6 (Single)
W
BL
P
BW
T
L
E
D
A
B
C
USB0002 (Dual)
W
BL
P
BW
T
L
E
D
A
B
C
USB0004 (Quad)
PHYSICAL DIMENSIONS AND PAD LAYOUT
49
USB Series
Low Capacitance Multilayer Varistors
APPLICATIONS
USB0002
USB0002
USB0002
USB Port Protection
Ethernet Port Protection
USB
CONTROLLER
Ethernet
Port Ethernet
PHY
USB
Port
D+
D-
TX+
TX-
RX+
RX-
50
AntennaGuard Series
0402/0603 Low Capacitance Multilayer Varistors
ESD Protection for Antennas and Low Capacitor Loading Applications
GENERAL DESCRIPTION
AVX’s 0402/0603 AntennaGuard products are an ultra-low capacitance extension
of the proven TransGuard® TVS (transient voltage suppression) line of multilayer
varistors. RF designers now have a single chip option over conventional protection
          
          
reduced PCB real estate and lower installation costs.
          
& 0603 chips), 2 and 12pF (0603 chip). These low capacitance values have low
insertion loss, as well as give other TransGuard® advantages such as small size, sub-
nanosecond response time, low leakage currents and unsurpassed reliability (FIT
Rate of 0.2) compared to diodes.

circuit designers today, given the combination of increased signal “gain” demands,
coupled with the required downsizing of the transistor package. The ability to achieve
both objectives is tied to a reduced thickness of the SiO2 gate insulator layer within
the semiconductor. The corresponding result of such a change increases the Power
           
electronic products with RF transmitting and/or receiving features. AVX Low
Capacitance AG Series parts are ideal solution for this type of applications as well as
for many more where low capacitance ESD protection is needed.
GENERAL CHARACTERISTICS
Operating Temperature: -55°C to +125°C

Case Size: 0402, 0603
FEATURES
Smallest TVS Component
Single Chip Solution
Low Insertion Loss
Fastest Response Time to ESD Strikes
Capacitance: 2, 3 and 12pF
APPLICATIONS

Antennas
Laser Drivers
Sensors
Radars
RFID
Keyless entry

Datalines
Capacitance sensitive
applications and more
VC
Varistor
Chip
18
Working
Voltage
(DC)
04
Chip Size
04 = 0402
06 = 0603
AG
Varistor Series
AntennaGuard
3R0
Capacitance
2pF = 2R0
3pF = 3R0
12pF = 120
T
Capacitance
T = Ni/Sn
(Plated)
Y
Non-Std.
Cap
Tolerance
C = ±0.25pF (2R0)
Y = Max (3R0)
Y = +4, -2pF (120)
x
Reel
Size
1 = 7
3 = 13”
W = 7
(0402 only)
A
Not
Applicable
x
Reel
Quantity
A = 4,000
or 10,000
(i.e., 1A = 4,000
3A = 10,000)
WA = 10,000
HOW TO ORDER
050316
51
AntennaGuard Series
0402/0603 Low Capacitance Multilayer Varistors
ESD Protection for Antennas and Low Capacitor Loading Applications
ANTENNAGUARD CATALOG PART NUMBERS/ELECTRICAL VALUES
AVX Part Number VW (DC) VW (AC) IL Cap Cap Tolerance Case Size
VC04AG183R0YAT_ _   0.1 3 Max 0402
VC06AG182R0CAT_ _   0.1 2 ±0.25pF 0603
VC06AG183R0YAT_ _   0.1 3 Max 0603
VC06AG18120YAT_ _   0.1 12 +4, -2pF 0603
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
IL
Cap Maximum Capacitance (pF) @ 1 MHz and 0.5 Vrms; VC06AG18120YAT capacitance tolerance: +4, -2pF
PHYSICAL DIMENSIONS
SOLDERING PAD DIMENSIONS
mm (inches)
mm (inches)
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
0402 1.00±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60
(0.024)
0.25±0.15
(0.010.006)
0603 1.60±0.15
(0.063±0.006)
0.80±0.15
(0.031±0.006)
0.90
(0.035)
0.35±0.15
(0.014±0.006)
Suppression
Device
Pad Dimensions
A B C D
AVX 0402 1.70 (0.067) 0.61 (0.024) 0.51 (0.020) 0.61 (0.024)
AVX 0603 2.54 (0.100) 0.89 (0.035) 0.76 (0.030) 0.89 (0.035)
LW
T
t
A
B
D
C
050316
52
AntennaGuard Series
0402/0603 Low Capacitance Multilayer Varistors
ESD Protection for Antennas and Low Capacitor Loading Applications
ANTENNA VARISTORS
AVX offers a series of 0402 and 0603 chip varistors, designated the


packages), as well as low insertion loss. Antenna varistors can replace
output capacitors and provide ESD suppression in RF and capacitance
sensitive applications.

         
         
very susceptible to ESD damage due to the very thin layer of SiO2 uses as
the gate insulator. The ultra-thin SiO2 layer is required to improve the gain of
the transistor. In other words, the upside of the performance enhancement
becomes the downside of the transistors survival when subjected to an
ESD event.
ESD damage to the RF Field Effect Transistors (FETs) is a growing concern

            
trends relate to decreasing gate oxide thickness, which in turn, is directly
proportional to increased ESD sensitivity. As miniaturization trends
accelerate, the traditional methods to protect against ESD damage (i.e., PC

effective.
AVX’s AntennaGuard varistor can be used to protect the FET and offer
superior performance to the previously mentioned protection methods
given above. The standard EIA 0603 chip size, and particularly the 0402
chip, offer designers an ESD protection solution consistent with today’s
downsizing trend in portable electronic products. Savings in component
volume up to 86%, and PC board footprint savings up to 83% are realistic
expectations. These percentages are based upon the following table and
Figures 1A and 1B.
mm (inches)
Suppression Device
Pad Dimensions
D1 D2 D3 D4 D5
AVX 0402 TransGuard®1.70 (0.067) 0.61 (0.024) 0.51 (0.020) 0.61 (0.024) 0.51 (0.020)
AVX 0603 TransGuard®2.54 (0.100) 0.89 (0.035) 0.76 (0.030) 0.89 (0.035) 0.76 (0.030)
Competitor’s SOT23 Diode See Below
Figure 1A. 0402/0603
IR Solder Pad Layout Figure 1B. SOT23- Solder Pad Layout
D2
D3
D1
D5
D4
0.96
(0.037)
0.96
(0.037)
2.0
(0.079)
0.8
(0.031) mm (inch
0.9
(0.035)
050316
53
AntennaGuard Series
0402/0603 Low Capacitance Multilayer Varistors
ESD Protection for Antennas and Low Capacitor Loading Applications
Antenna varistors offer excellent ESD repetitive strike capability compared
to a SOT23 diode when subjected to IEC 61000-4-2 8Kv contact discharge. A
performance summary is shown in Figure 2.
ESD TEST OF ANTENNAGUARD RATINGS
Figure 2. Repetitive 8kV ESD Strike
0603 - 12pF
0603 - 3pF
0402 - 3pF
520 70
60
50
40
30
20
10
0
500
480
460
Breakdown Voltage (Vb) — 0402 & 0603 3pF Ratings
Breakdown Voltage (Vb) — 0603 12pF Rating
440
420
400
380 0 100
8kV ESD Strikes
1000 10,000
Antenna varistors also turn on and divert ESD overvoltages at a much faster
rate than SOT23 devices (typically 300pS vs 1500pS - 5000pS). See Figure 3.
Figure 3. Turn On Time
100%
90%
30ns
1ns 30ns
TIME (ns) 60ns
60ns
MLV
TURN ON TIME
300pS to 700pS
PEAK
SITVS TURN ON TIME
1.5nS to 5nS
The equivalent circuit model for a typical antenna varistor is shown in Figure
4.
Ln
RVRI
C1
Ln = BODY INDUCTANCE
C1 = DEVICE CAPACITANCE
RV = VOLTAGE VARIABLE RESISTOR
RI = INSULATION RESISTANCE
Figure 4. Antenna Varistor
            
replace the parallel capacitance typically found prior to the antenna output of


has little insertion loss. See Figure 3.
FET
2.2pF 2.7pF
12pF
3pF
Varistor
FET
ANTENNA VARISTOR S21
VC04AG183R0
VC06AG183R0
VC06AG18120
0.01 0.1 1.0 10
Frequency (GHz)
dB
0
-5
-10
-15
-20
-25
-30
Figure 5. Antenna vs Frequency
Typical implementations of the antenna varistors are shown for use
in cell phone, pager and wireless LAN applications in Figures 6A, 6B
and 6C.
Figure 6A. Cell Phone
Figure 6B. Pager
Figure 6C.
050316
54
AntennaGuard Automotive Series
0402/0603 Low Capacitance Automotive Varistors
ESD Protection for Automotive Circuits Sensitive to Capacitance
GENERAL DESCRIPTION
AVX 0402/0603 Automotive AntennaGuard products are an ultra low capacitance extension to the Automotive
TransGuard® Series and are intended for use in RF and other capacitance sensitive circuits.
These low capacitance values have low insertion loss, low leakage current and unsurpassed reliability
compared to diode options. These advantages combined with size advantages and bi-directional protection
make the AntennaGuard the right choice for automotive applications including RF circuits, sensors, high-
speed signal transmission lines, etc…
GENERAL CHARACTERISTICS
Operting Teperature: -55°C to +125°C

Case Size: 0402, 0603
FEATURES

25kV ESD rating
Meet 27.5Vdc Jump Start requirements
Multi-strike capability
Sub 1nS response to ESD strike
APPLICATIONS
RF Circuit
Sensors
Antennas
Data lines
Keyless entry
Capacitance sensitive applications
VC
Varistor
Chip
AS
Series
AS = Automotive
06
Case
Size
04 = 0402
06 = 0603
18
Working
Voltage
18 = 18.0VDC
AG
Type
3R0
Capacitance
2R0 = 2pF
3R0 = 3pF
120 = 12pF
T
Termination
T = Ni/Sn Plated
Y
Non-Std
Cap Tol
C = ±0.25pF
(2R0)
Y = Max
(for 3pF)
Y = +4/-2pF
(for 12pF)
1
Reel Size
1 = 7” reel
3 = 13” reel
W = 7” reel
(0402 only)
A
Not
Applicable
A
Reel Qty
A = 4K or 10K pcs
(i.e.: 1A = 4,000
3A = 10,000
WA = 10,000)
HOW TO ORDER
ELECTRIAL CHARACTERISTICS
AVX Part Number VW (DC) VW (AC) IL Cap Cap Tolerance VJump Case Size
VCAS04AG183R0YAT_ _   0.1 3 Max 27.5 0402
VCAS06AG182R0CAT_ _   0.1 2 ±0.25pF 27.5 0603
VCAS06AG183R0YAT_ _   0.1 3 Max 27.5 0603
VCAS06AG18120YAT_ _   0.1 12 +4, -2pF 27.5 0603
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
IL
Cap Maximum Capacitance (pF) @ 1 MHz and 0.5 Vrms; VC06AG18120YAT capacitance tolerance: +4, -2pF
VJump Jump Start (V)
080216
55
AntennaGuard Automotive Series
0402/0603 Low Capacitance Automotive Varistors
ESD Protection for Automotive Circuits Sensitive to Capacitance
PHYSICAL DIMENSIONS: mm (inches)
S21 TRANSMISSION CHARACTERISTICS
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
0402 1.00±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60
(0.024)
0.25±0.15
(0.010±0.006)
0603 1.60±0.15
(0.063±0.006)
0.80±0.15
(0.031±0.006)
0.90
(0.035)
0.35±0.15
(0.014±0.006)
L
W
T
t t
S21 Response
080216
56
AntennaGuard Automotive Series
0402/0603 Low Capacitance Automotive Varistors
ESD Protection for Automotive Circuits Sensitive to Capacitance
ESD CHARACTERISTICS
ELECTRICAL TRANSIENT CONDUCTION
AEC-Q200 Pulse Test
AEC-Q200-002
Electrical Transient Conduction
ISO 7637 Pulse 1-3
092011
080216
57
Antenna PowerGuard
AVX Low Capacitance Varistors
ESD Protection for Circuits Sensitive to Capacitance
GENERAL DESCRIPTION
AVX Antenna PowerGuard products are an ultra low capacitance extension of reliable AntennaGuard range
with new voltage, capacitance and energy ratings. Designed for use in RF circuits, sensors, high-speed lines,
optic circuits and capacitance sensitive applications.
The ability to handle larger transients makes the Antenna PowerGuard series useful in applications where

for use in automotive applications.
These low capacitance values have low insertion loss, low leakage current and unsurpassed reliability
compared to diode options. These advantages combined with size advantages and bi¬directional protection
make the Antenna PowerGuard the right choice for automotive and general applications, that are sensitive
to capacitance.
GENERAL CHARACTERISTICS
Operating Temperature: -55°C to+125°C
Case Size: 0402,0603
Working Voltage: 18 - 70Vdc
Capacitance: 1.5 -3.3pF
Energy: 0.02 -0.04J
Peak Current: 1 -3A
FEATURES

25kV ESD rating
Meet 48Vdc Jump Start requirements
Multi-strike capability
Sub 1nS response to ESD strike
APPLICATIONS
RF Circuit
Sensors
Antennas
Data lines
Radars
VC 1R5 TD 1A AAS 06 18AP
Varistor
Chip
Series
AS = Automotive
Case Size
04 = 0402
06 = 0603
Working
Voltage
18 = 18Vdc
24 = 24Vdc
30 = 30Vdc
60 = 60Vdc
70 = 70Vdc
Type Capacitance
2R0 = 2pF
3R0 = 3pF
120 = 12pF
Termination
T = Ni/Sn Plated
Non-Std’
Cap Tol
D = ±0.5pF
L = ±1.0pF
K = ±0.15pF
Reel Size
0 = 7" reel*
3 = 13" reel*
W = 7" reel**
* for 0603
** for 0402
N/A Reel Quantity
A = 4K or 10K pcs
(i.e.: 1A = 4,000
3A = 10,000
WA = 10,000)
HOW TO ORDER
PHYSICAL DIMENSIONS: MM (INCHES)
t t
T
L
W
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
0402 1.00±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60
(0.024)
0.25±0.15
(0.010.006)
0603 1.60±0.15
(0.063±0.006)
0.80±0.15
(0.031±0.006)
0.90
(0.035)
0.35±0.15
(0.014±0.006)
Bluetooth
Ethernet (IEEE 802.3bw
and IEEE 802.3bp)
VCAS06AP303R3LAT
093019
58
ELECTRIAL CHARACTERISTICS
AVX Part Number VW (DC) VW (AC) VBVCILETIPCap Cap
Tolerance VJump
Case
Size
VCAS04AP181R5DAT 18 13 150-210 350 0.1 0.02 1 1.5 ±0.5pF 48 0402
VCAS04AP182R0LAT 18 13 80-140 300 0.1 0.02 1 2.0 ±1.0pF 48 0402
VCAS06AP181R5DAT 18 13 150-200 375 0.1 0.02 1 1.5 ±0.5pF 48 0603
VCAS06AP182R0LAT 18 13 150-200 350 0.1 0.03 2 2.0 ±1.0pF 48 0603
VCAS06AP243R3LAT 24 17 90-150 240 0.1 0.04 3 3.3 ±1.0pF 48 0603
VCAS04AP301R5KAT 30 21 150-210 350 0.1 0.02 1 1.5 ±0.15pF 48 0402
VCAS04AP301R5DAT 30 21 150-210 350 0.1 0.02 1 1.5 ±0.5pF 48 0402
VCAS06AP302R0LAT 30 21 150-200 350 0.1 0.03 2 2.0 ±1.0pF 48 0603
VCAS06AP303R3LAT 30 21 90-150 240 0.1 0.04 3 3.3 ±1.0pF 48 0603
VCAS04AP601R5DAT 60 42 150-210 350 0.1 0.02 1 1.5 ±0.5pF 48 0402
VCAS06AP602R0LAT 60 42 150-200 350 0.1 0.03 2 2.0 ±1.0pF 48 0603
VCAS04AP701R5DAT 70 52 150-210 350 0.1 0.02 1 1.5 ±0.5pF 48 0402
VW (DC) DC Working Voltage [V] VB
VW (AC) AC Working Voltage [V]
VBBreakdown Votage [V @ 1mADC]
VCClamping Votage [V @ 1A]
IL
ET
lP
Cap 
Cap Tol Capacitance tolerance (pF) from Typ value
VJump Jump Start (V, 5min)
Antenna PowerGuard
AVX Low Capacitance Varistors
ESD Protection for Circuits Sensitive to Capacitance
093019
59
Antenna PowerGuard
AVX Low Capacitance Varistors
ESD Protection for Circuits Sensitive to Capacitance
V/I CHARACTERISTICS S21 CHARACTERISTICS
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01
Voltage (V)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
VCAS04AP: 30Vdc
VCAS04AP 301R 5
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
VCAS04AP: 60Vdc
VCAS04AP 601R 5
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000 10000
Insertion Loss (dB)
Frequency (MHz)
VCAS04AP: 30Vdc
VCAS04AP 301R 5
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000 10000
Insertion Loss (dB)
Frequency (MHz)
VCAS04AP: 60Vdc
VCAS04AP 601R 5
093019
60
Antenna PowerGuard
AVX Low Capacitance Varistors
ESD Protection for Circuits Sensitive to Capacitance
V/I CHARACTERISTICS S21 CHARACTERISTICS
0
50
100
150
200
250
300
350
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
VCAS06AP: 18Vdc
VCAS06AP 181R 5
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01
Voltage (V)
Current (Amps)
VCAS06AP: 60Vdc
VCAS06AP 602R 0LAT
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000 10000
Insertion Loss (dB)
Frequency (MHz)
VCAS06AP: 18Vdc
VCAS06AP 181R 5DAT
Insertion Loss (dB)
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000 10000
Frequency (MHz)
VCAS06AP: 60Vdc
VCAS06 AP60 2R0LAT
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01
Voltage (V)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01
Voltage (V)
0
50
100
150
200
250
300
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01
Voltage (V)
Current (Amps)
093019
61
Antenna PowerGuard
AVX Low Capacitance Varistors
ESD Protection for Circuits Sensitive to Capacitance
ESD CHARACTERISTIC
093019
62
AntennaGuard Series Sub pF
Ultra-low Capacitance Multilayer Varistors
ESD Protection for any Circuit Sensitive to Capacitance
FEATURES
High Reliability
Capacitance <1pF
Bi-Directional protection
Fastest response time to ESD strikes
Multi-strike capability
Low insertion loss

APPLICATIONS
Antennas
Optics
HDMI
RF circuits
FlexRay
Portable devices
Analog sensors
Any circuit sensitive to capacitance
VC 0R8 TM WA AH4 AG 10
Varistor
Chip
Chip Size
H2 = 0201
H4 = Thin 0402
Varistor Series
AntennaGuard
Working
Voltage
10 = 10V
15 = 15V
18 = 18V
Capacitance
0R8 = 0.8pF
0R7 = 0.7pF
0R4 = 0.47pF
Termination
T = Ni/Sn
Tolerance
M = ±20%
Reel
Size
W = 7
N/A Reel
Quantity
A = 10k
HOW TO ORDER
ANTENNAGUARD CATALOG PART NUMBERS/ELECTRICAL VALUES
AVX Part Number VW (DC) VBILCap Cap Tolerance 3db Freq (MHz) Case Size
VCH4AG100R8MA  125 <10 nA 0.8 ±20% 5800 LP 0402
VCH4AG150R8MA  125 <10 nA 0.8 ±20% 5800 LP 0402
VCH4AG150R4MA  135 <100 nA 0.47 ±20% 6700 LP 0402
VCH2AG180R7MA  135  0.7 ±20% 10800 0201
VW (DC) DC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC)
ILTypical leakage current at the working voltage
Cap 
Freq Frequency at which capacitance is measured (M = 1MHz)
GENERAL DESCRIPTION
AVX offers ultra-low capacitance ESD protection in the Sub 1pF range for use in
circuits that are sensitive to capacitance. The Sub pF Varistor (SPV) is available

SPV devices provide excellent response time to ESD strikes to protect sensitive
circuits from over voltage conditions.
The development of new information processing technologies call for ever
increasing digital system speeds. Higher speeds necessitate the use of ultra-low
capacitance values in order to minimize signal distortion.
63
AntennaGuard Sub pF
Ultra-low Capacitance Multilayer Varistors
ESD Protection for any Circuit Sensitive to Capacitance
S21 TRANSMISSION CHARACTERISTICS -SPV
ESD WAVE ABSORPTION CHARACTERISTICS
V/I CURVE - SPV
t t
T
L
W
2000
1500
1000
500
0
0 20 40 60 80 100
Voltage (V)
Time (nsec)
Std 8 kV Pulse No Part
VCH4AG150R8
VCH4AG150R4
5
0
-5
-10
-15
-20
10 100 1000
Insertion Loss (dB)
VCH4AG150R8MA-500
10000 100000
Frequency (MHz)
VCH4AG150RMA-250
200
150
100
50
0
Current (A)
Volt (V)
VCH4AG150R4MA-250 VCH4AG150R8MA-500
60-E0.190-E0.1 1.0E-03
mm (inches)
Size (EIA) 0402
Length (L) 1.00 ±0.10 (0.040 ± 0.004)
Width (W) 0.50 ±0.10 (0.020 ±0.004)
Max Thickness (T) 0.35 (0.014)
Terminal (t) 0.25±0.15 (0.010±0.006)
64
AntennaGuard Automotive Series Sub pF
Ultra-low Capacitance Automotive Varistor for
ESD Protection for Automotive Circuits Sensitive to Capacitance
FEATURES
High Reliability
Capacitance <1pF
Bi-Directional protection
Fastest response time to ESD strikes
Multi-strike capability
Low insertion loss


GENERAL
CHARACTERISTICS
Operating Temperature:
-55°C to +125°C
Working Voltage: 16Vdc

Capacitance < 1pF
APPLICATIONS
Antennas, RF circuits
Optics
HDMI, Firewire, Thunderbolt
High speed communication bus
GPS
Camera link
Sensors
Touch screen interfaces
Circuits sensitive to capacitance
VC 0R8 TM WA AH4AS AG 16
Varistor
Chip
Chip Size

0402
Automotive
Series
Varistor
Series
AG Series
Ultra-low
Capacitance
Working
Voltage
16 = 16V
Capacitance
0R8 = 0.8pF
Termination
T = Ni Barrier/
100% Sn
Tolerance
M = ±20%
Reel
Size
W = 7
N/A Reel
Quantity
A = 10k
HOW TO ORDER
ANTENNAGUARD CATALOG PART NUMBERS/ELECTRICAL VALUES
AVX Part Number VW (DC) VBILCap Cap Tolerance 3db Freq (MHz) Case Size
VCASH4AG160R8MA  125 1 0.8 ±20% 5800 LP 0402
VW (DC) DC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC)
ILTypical leakage current at the working voltage
Cap RMS
Freq Frequency at which capacitance is measured (M = 1MHz)
GENERAL DESCRIPTION
AVX offers ultra-low capacitance ESD protection in the Sub 1pF range for use
in automotive circuits that are sensitive to capacitance. The Automotive Sub
pF Varistor (ASPV) is available in 0.8pF capacitance value in a compact 0402

strikes to protect sensitive circuits from over voltage.
The development of new information processing technologies call for ever
increasing digital system speeds. Higher speeds necessitate the use of ultra-
low capacitance values in order to minimize signal distortion.
LEAD-FREE COMPATIBLE
COMPONENT
65
AntennaGuard Automotive Series Sub pF
Ultra-low Capacitance Automotive Varistor for
ESD Protection for Automotive Circuits Sensitive to Capacitance
t t
T
L
W
mm (inches)
Size (EIA) 0402
Length (L) 1.00 ±0.10 (0.040 ± 0.004)
Width (W) 0.50 ±0.10 (0.020 ±0.004)
Max Thickness (T) 0.35 (0.014)
Terminal (t) 0.25±0.15 (0.010±0.006)
DIMENSIONS
S21 TRANSMISSION CHARACTERISTICS -SPV V/I CURVE - SPV
5
0
-5
-10
-15
-20
10 100 1000
Insertion Loss (dB)
10000 100000
Frequency (MHz)
160
140
120
100
80
60
40
20
Current (A)
Volt (V)
1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03
66
AntennaGuard Automotive Series Sub pF
Ultra-low Capacitance Automotive Varistor for
ESD Protection for Automotive Circuits Sensitive to Capacitance
No Part VCASH4AG160R8MATWA
No Part VCASH4AG160R8MATWA
EYE DIAGRAM - USB-HS (480MHZ) TEST
EYE DIAGRAM - PCI-E (2.5GHZ) TEST
67
Controlled Capacitance
Multilayer Varistor
GENERAL DESCRIPTION

suppressor developed for use in mixed signal environments. The Controlled Cap MLV has

conducting into the IC, and 3) clamp transient voltages

can be targeted. A Controlled Cap MLV can greatly improve overall system EMC performance and
reduce system size.
FEATURES
Single Chip Solution
Tageted EMI/RFI Filtering
20dB Range for tiltering purposes
Improves system EMC performance
Very fast response to ESD
25kV ESD
GENERAL
CHARACTERISTICS
Operating Teperature: -55°C to +125°C
Working Voltage: 22, 26Vdc
Case Size: 0603
APPLICATIONS
EMI TVS Module Control
High Speed ASICS
Mixed Signal Environment
Sensors and more
VCAC 470 RN P0603 22 A
Varistor Chip
Automotive
Capacitance
Chip Size
0402
0603
Working
Voltage
09 = 9V
17 = 17V
22 = 22V
26 = 26V
30 = 30V
Energy
Rating
X = 0.05J
A = 0.1J
B = 0.2J
C = 0.3J
Capacitance
330 = 33pF
380 = 38pF
470 = 47pF
820 = 82pF
102 = 1000pF
Packaging
R = 4k pcs
D = 7” reel (1,000 pcs)
R = 7” reel (4,000 pcs)
T = 13” reel (10,000 pcs)
W = 7” Reel (10,000 pcs
0402 only)
Tolerance
N = ±30%
M = ±20%
Termination
P = Ni Barrier/
100% Sn (matte)
HOW TO ORDER
AVX Part Number VW (DC) VW (AC) VBVCILETIPCap Cap
Tolerance
Case
Size
VCAC060309B102N 9.0 6.4 12.7±15% 22 25 0.2 120 1000 ±30% 0603
VCAC060317X330M 17 12 27±20% 52 10 0.05 2 33 ±20% 0603
VCAC060322A470N 22 17 32.5±25% 50 10 0.1 30 47 30% 0603
VCAC060326C820M 26 20 36.0±15% 67 10 0.3 30 82 20% 0603
VCAC040230X380N 30 21 41±10% 67 5 0.05 10 38 ±30% 0402
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBBreakdown Votage [V @ 1mADC]
VCClamping Votage [V @ 1A]
ILMaximum leakage current at the working voltage [µA]
ETTransient Energy Rating [J, 10x1000µS]
IPPeak Current Rating [A, 8x20µS]
Cap 
0603 DISCRETE DIMENSIONS mm (inches)
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
0402 1.00±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60
(0.024)
0.25±0.15
(0.010±0.006)
0603 1.60±0.15
(0.063±0.006)
0.80±0.15
(0.031±0.006)
0.90
(0.035)
0.35±0.15
(0.014±0.006)
LW
T
t
080216
68
Controlled Capacitance
Multilayer Varistor
V-I Curve
0
10
20
30
40
50
60
70
80
1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03
Current (A)
Volt (V)
VCAC060322A470N VCAC060326C820M
S21
-40
-35
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000 10000
Frequency (MHz)
Insertion Loss (dB)
VCAC060322A470N VCAC060326C820M
080216
69
Miniature AC Varistor – MAV
Low Power AC and Low Capacitance DC Circuit Protection
GENERAL DESCRIPTION
AVX Miniature AC Varistors are designed for use in low power AC circuit protection. MAV series
devices are an ideal solution to transient suppression in LC resonant circuits intended for signal
& power transfer. The AVX part provides low loss in the resonant circuit yet is able to clamp large
amounts of transients in a bi-directional manner.
The ability to handle large transients makes the MAV series useful in low power AC circuit protection

Low capacitance makes these parts useful also for higher DC voltage data lines and other
capacitance sensitive applications.
FEATURES
110 Pk-Pk @ 125kHz capability

ESD rated to 25kV (HBM ESD Level 6)
EMI/RFI attenuation in off state
Bi-Directional protection
GENERAL
CHARACTERISTICS
Operating Temperature: -55 to +125ºC
Working Voltage: 70Vdc / 52Vac
Case Size: 0402, 0603, 0405 2xArray
APPLICATIONS
LC resonant circuits
AC sampling circuitry
Transformer secondaries
GFI modules
Immobilizers
Keyless entry
Data lines
Capacitance sensitive
applications and more
MAV W P002 0
Series Size
001 = 0603
002 = 0405
004 = 0402
Capacitance
0 = Low
Packaging
D = 7” reel (1,000 pcs)
R = 7” reel (4,000 pcs)
T = 13” reel (10,000 pcs)
W = 7” Reel (10,000 pcs 0402 only)
Termination
P = Plated Sn over Ni barrier
HOW TO ORDER
AVX Part Number VW (DC) VW (AC) VB VC IVC ET IP IL Cap Elements
MAV0010_P 70 52 120 ±15% 225 1 0.015 2 10 22pF Max 1
MAV0020_P 70 52 120 ±15% 225 1 0.020 3 10 8pF Max 2
MAV0040_P 70 52 120 ± 15% 225 1 0.020 1 10 6pF Max 1
ANTENNAGUARD CATALOG PART NUMBERS/ELECTRICAL VALUES
Packaging Code
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBBreakdown Votage [V @ 1mADC]
VCClamping Voltage [V @ IVC]
ILMaximum leakage current at the working voltage [µA]
ETTransient Energy Rating [J, 10x100µS]
IPPeak Current Rating [A, 8x10µS]
Cap Maximum capacitance @ 1MHz and 0.5VRMS
70
Miniature AC Varistor – MAV
Low Power AC and Low Capacitance DC Circuit Protection
TYPICAL PERFORMANCE CURVES
Voltage/Current Characteristics
Impact of AC Voltage on Breakdown Voltage
Parallel 110VPP @ 125 kHz
Impact of AC Voltage on Breakdown Voltage
Series 110VPP @ 125 kHz
Transmission Characteristics
50
100
150
200
250
300
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03
Current
MAV0010 MAV0020 MAV0040
-30
-23
-15
-8
0
1 10 100 1000 10000
MAV0010 MAV0020 MAV0040
Frequency (MHz)
10 min 60 min 120 min 10 min 60 min 120 min
Max0.3% 0.6% 0.4% 0.3%0.5% 0.3%
Min 0.2% 0.2% 0.2% 0.2%0.1% 0.0%
Average
0.3% 0.3% 0.3% 0.2% 0.2% 0.2%
-10.0%
-7.5%
-5.0%
-2.5%
0.0%
2.5%
5.0%
7.5%
10.0%
Breakdown Voltage
+ Vb Change - Vb Change
Apply 110V pp
125KHz Sine wave
(Parallel)
10 min 60 min 120 min 10 min 60 min 120 min
0.3% 0.3%0.3% 0.3% 0.3%0.3%
0.2% 0.2%0.2% -0.2% 0.2% 0.2%
0.3% 0.3%0.3% 0.2% 0.3%0.2%
-10.0%
-7.5%
-5.0%
-2.5%
0.0%
2.5%
5.0%
7.5%
10.0%
Breakdown Voltage
+ Vb Chan ge - Vb Chan ge
Max
Min
Average
Apply 110V pp
125KHz Sine wave
(Series)
TYPICAL PERFORMANCE CURVES
71
Miniature AC Varistor – MAV
Low Power AC and Low Capacitance DC Circuit Protection
IMPACT OF AC VOLTAGE ON LEAKAGE CURRENT
PHYSICAL DIMENSIONS AND RECOMMENDED PAD LAYOUT
L W T BW BL P A B C D E
MAV0010
1.60 ± 0.15
(0.063±0.006)
0.80 ± 0.15
(0.032±0.006)
0.90 Max
(0.035) Max N/A 0.35 ± 0.15
(0.014±0.006) N/A 0.89
(0.035)
0.76
(0.030)
2.54
(0.100)
0.76
(0.030) N/A
MAV0020
1.00 ± 0.15
(0.039±0.006)
1.37 ± 0.15
(0.054±0.006)
0.66 Max
(0.026) Max
0.36 ± 0.10
(0.014±0.004)
0.20 ± 0.10
(0.008±0.004)
0.64 REF
(0.025)REF
0.46
(0.018)
0.74
(0.029)
1.20
(0.047)
0.30
(0.012)
0.64
(0.025)
MAV0040
1.00±0.10
(0.040±0.004)
0.50±0.10
(0.020±0.004)
0.60 Max
(0.024) Max N/A 0.25±0.15
(0.010±0.006) N/A 0.61
(0.024)
0.51
(0.020)
1.70
(0.067)
0.51
(0.020) N/A
-60
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-40 -20 0 20 40
Temperature (ºC)
120 V Peak to Peak165 V Peak to Peak
60 80 100 120 140
% Average Change in Leakage Current
T
W
BL
L
A
B
D
C
W
P
T
BW
BL L
E
A
B
C
D
72
Glass Encapsulated TransGuard®
Multilayer Varistors
GENERAL DESCRIPTION
The Glass Encapsulated TransGuard® multilayer varistors are zinc oxide
(ZnO) based ceramic semiconductor devices with non-linear, bi-directional V-I
characteristics.
They have the advantage of offering bi-directional overvoltage protection as well
as EMI/RFI attenuation in a single SMT package.
These large case size parts extend TransGuard range into high energy applications.
In addition the glass encapsulation provides enhanced resistance against harsh

FEATURES
Bi-Directional protection
EMI/RFI attenuation in off-state
Multi-strike capability
Sub 1nS response to ESD strike
High energy / High current
Glass Encapsulated
GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to 125ºC
Case Size: 1206-2200
Working Voltage: 16-85Vdc
Energy: 0.7-12J
Peak Current: 200-2000A
APPLICATIONS
Proffesional / Industrial / Commercial Applications
IC Protection, DC motor protection
Relays, Controllers, Sensors
Smart Grids
Alarms
Various Applications where Glass Encapsulation is
Needed for Harsh Environment / Acid-Resistance
and more
V
Varistor
G
Glass
Encapsulated
Chip
1812
Chip Size
1206
1210
1812
2220
3220
16
Working
Voltage
16 = 16Vdc
18 = 18Vdc
22 = 22Vdc
26 = 26Vdc
30 = 30Vdc
31 = 31Vdc
38 = 38Vdc
45 = 45Vdc
48 = 48Vdc
56 = 56Vdc
60 = 60Vdc
65 = 65Vdc
85 = 85Vdc
101 = 100Vdc
P
Energy
Rating
D = 0.4J
F = 0.7J
H = 1.2J
J = 1.5-1.6J
K = 0.6J
N = 1.1J
R = 1.7J
S = 2.0J
P = 2.5-3.7J
U = 4.0-5.0J
W = 5.1-6.0J
Y = 6.5-12J
R
Package
D = 7” reel
R = 7” reel
T = 13” reel
P
Termination
P = Ni/Sn plated
HOW TO ORDER
400
Clamping
Voltage
380 = 38V
390 = 40V
400 = 42V
440 = 44V
490 = 49V
540 = 54V
560 = 60V
570 = 57V
620 = 67V
650 = 65V
770 = 77V
900 = 90V
101 = 100V
111 = 110V
121 = 120V
131 = 135V
161 = 165V
201 = 200V
251 = 250V
PHYSICAL DIMENSIONS: MM (INCHES)
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
1206 3.20±0.20
(0.126±0.008)
1.60±0.20
(0.063±0.008) 1.70 (0.067) 0.94 max.
(0.037 max.)
1210 3.20±0.20
(0.126±0.008)
2.49±0.20
(0.098±0.008) 1.70 (0.067) 0.14 max.
(0.045 max.)
1812 4.50±0.30
(0.177±0.012)
3.20±0.30
(0.126±0.012)
2.00 (0.079)
2.50 (0.098)1)
1.00 max.
(0.040 max.)
2220 5.70±0.40
(0.224±0.016)
5.00.40
(0.197±0.016) 2.50 (0.098) 1.00 max.
(0.040 max.)
3220 8.20±0.40
(0.323±0.016)
5.00.40
(0.197±0.016)
2.50 max.
(0.098 max.)
1.30 max.
(0.051 max.)
1) Applicable for: VG181285W201, VG1812101W251, VG1812125U271
012317
73
Glass Encapsulated TransGuard®
Multilayer Varistors
ELECTRICAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq
VG120616K390 16 11 24.5±10% 40 115 0.6 200 900 K
VG120616N390 16 11 24.5±10% 40 115 1.1 300 1300 K
VG181216P390 16 11 24.5±10% 40 515 2.9 1000 7000 K
VG181216P400 16 11 24.5±10% 42 510 2.9 1000 5000 K
VG222016Y400 16 11 24.5±10% 42 10 10 7.2 1500 13000 K
VG120618D400 18 13 25.5±10% 42 115 0.4 150 1200 K
VG120618E380 18 14 22±10% 38 1.0 15 0.5 200 1000 K
VG121018J380 18 14 22±10% 38 2.5 15 1.5 400 2300 K
VG121018J400 18 13 25.5±10% 42 510 1.6 500 3100 K
VG181218P380 18 14 22±10% 38 5.0 15 2.3 800 5000 K
VG181218P440 18 14 27.5±10% 44 515 2.9 800 5000 K
VG222018W380 18 14 22±10% 38 10 15 5.8 1200 18000 K
VG121022R440 22 17 27±10% 44 2.5 15 1.7 400 1600 K
VG222022Y440 22 17 27±10% 44 10 15 7.2 1200 18000 K
VG222022Y490 22 17 30±10% 49 10 15 6.8 1200 12000 K
VG120626F540 26 18 33.0±10% 54 115 0.7 200 600 K
VG121026H560 26 18 34.5±10% 60 515 1.2 300 1200 K
VG121026S540 26 20 33±10% 54 2.5 15 1.9 400 1600 K
VG181226P540 26 20 35±10% 54 515 3.0 800 3000 K
VG181226P570 26 23 35±10% 57 515 2.5 600 3000 K
VG222026Y540 26 20 33±10% 54 10 15 7.8 1200 11000 K
VG222026Y570 26 23 35.0±10% 57 10 15 6.8 1100 7000 K
VG322026N570 26 20 33±10% 57 10 15 1.1 400 5500 K
VG121030H620 30 21 41.0±10% 67 515 1.2 280 1850 K
VG181230Y650 30 21 39±10% 65 550 6.5 800 3500 K
VG181230Y770 30 21 47.5±10% 77 550 6.5 800 3300 K
VG120631M650 31 25 39±10% 65 1.0 15 1.0 200 700 K
VG121031R650 31 25 39±10% 65 2.5 15 1.7 300 1200 K
VG181231P650 31 25 39±10% 65 515 3.7 800 2600 K
VG222031Y650 31 25 39.0±10% 65 10 15 9.6 1200 6100 K
VG120638N770 38 30 47±10% 77 1.0 15 1.1 200 500 K
VG121038S770 38 30 47.0±10% 77 2.5 15 2400 1000 K
VG181238U770 38 30 47.0±10% 77 515 4.2 800 1300 K
VG222038Y770 38 30 47.0±10% 77 10 15 12 2000 4200 K
VG322038J920 38 30 47±10% 92 10.0 15 1.5 400 2600 K
VG121045S900 45 35 56±10% 90 2.5 15 2300 800 K
VG181245U900 45 35 56.0±10% 90 515 4.0 500 1200 K
VG222045Y900 45 35 56±10% 90 10 15 12 1000 5000 K
VG121048H101 48 34 62.0±10% 100 515 1.2 250 500 K
VG121056P110 56 40 68±10% 110 2.5 15 2.3 250 500 K
VG181256U111 56 40 68.0±10% 110 515 4.8 500 800 K
VG222056Y111 56 40 68.0±10% 110 10 15 91000 2000 K
VG121060J121 60 42 76.0±10% 120 515 1.5 250 400 K
VG120665L131 65 50 82±10% 135 1.0 15 0.8 200 250 K
VG121065P131 65 50 82.0±10% 135 2.5 15 2.7 350 600 K
VG181265U131 65 50 82.0±10% 135 515 4.5 400 600 K
VG222065Y131 65 50 82.0±10% 135 10 15 6.5 1100 3000 K
VG181285U161 85 60 100±10% 165 515 4.5 400 500 K
VG222085Y161 85 60 100±10% 165 10 15 6.8 800 1500 K
TELECOM APPLICATIONS

AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq CCITT
VG181285W201 85 60 110±10% 200 45 15 6.0 400 800 K45
VG1812101W251 100 75 120±10% 250 45 15 6.0 400 500 K45
VG1812125U271 125 95 150±10% 270 45 15 5250 250 K45
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VB Typical Breakdown Votage [V @ 1mADC, 25°C]
VC Clamping Voltage [V @ IIVC]
IVC 
IL 
ET 
IP 
       
0.5VRMS, 25°C, M = 1MHz, K = 1kHz
 
012317
74
Glass Encapsulated TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
GENERAL DESCRIPTION
The Glass Encapsulated TransGuard® Automotive Series are zinc oxide
(ZnO) based ceramic semiconductor devices with non-linear, bi-directional
voltage-current characteristics.
They have the advantage of offering bi-directional overvoltage protection as
well as EMI/RFI attenuation in a single SMT package. The Automotive Series
high current and high energy handling capability make them well suited for
protection against automotive related transients.
These large case size parts extend TransGuard range into high energy
applications. In addition the glass encapsulation provides enhanced
resistance against harsh environment or process such as acidic environment,

FEATURES
High Reliability
High Energy Absorption (Load Dump)
High Current Handling
Bi-Directional protection
EMI/RFI attenuation in off-state
Multi-strike capability
Sub 1nS response to ESD strike

GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to 125ºC
Case Size: 1206-2200
Working Voltage: 16-65Vdc
Energy: 07-12J
Peak Current: 200-2000A
APPLICATIONS
Various Automotive Applications
Internal Combustion Engine (ICE) Vehicles
Hybrid Electric Vehicles (HEV)
Plug-in Hybrid Electric Vehicles (PHEV)
Commercial Vehicles
Sensors • DC Motor
LIN BUS • Relays
ECU • and more
Applications where Glass Encapsulation is
needed for Harsh Environment/Acid-Resistance
V G AG 400 R P1812 16 P
Varistor Glass
Encapsulated
Chip
Automotive
Series
Chip Size
1206
1210
1812
2220
3220
Working
Voltage
16 = 16Vdc
18 = 18Vdc
22 = 22Vdc
26 = 26Vdc
30 = 30Vdc
31 = 31Vdc
34 = 34Vdc
42 = 42Vdc
48 = 48Vdc
60 = 60Vdc
65 = 65Vdc
Energy
Rating
D= 0.4J
F= 0.7J
H= 1.2J
J = 1.6J
K = 0.6J
N = 1.1J
S = 2.0J
P = 2.5-3.7J
U = 4.0-5.0J
Y = 6.5-12J
Clamping
Voltage
390 = 40V
400 = 42V
440 = 44V
490 = 49V
540 = 54V
560 = 60V
570 = 57V
650 = 65V
770 = 77V
900 = 90V
101 = 100V
121 = 120V
131 = 135V
Package
D = 7” reel
R = 7” reel
T = 13” reel
Termination
P = Ni/Sn plated
HOW TO ORDER
PHYSICAL DIMENSIONS: mm (inches)
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
1206 3.20±0.20
(0.126±0.008)
1.60±0.20
(0.063±0.008)
1.70
(0.067)
0.94 max.
(0.037 max.)
1210 3.20±0.20
(0.126±0.008)
2.49±0.20
(0.098±0.008)
1.70
(0.067)
0.14 max.
(0.045 max.)
1812 4.50±0.30
(0.177±0.012)
3.20±0.30
(0.126±0.012)
2.00
(0.079)
1.00 max.
(0.040 max.)
2220 5.70±0.40
(0.224±0.016)
5.00.40
(0.197±0.016)
2.50
(0.098)
1.00 max.
(0.040 max.)
3220 8.20±0.40
(0.323±0.016)
5.00.40
(0.197±0.016)
2.50 max.
(0.098 max.)
1.30 max.
(0.051 max.)
012317
75
Glass Encapsulated TransGuard® Automotive Series
Multilayer Varistors for Automotive Applications
ELECTRICAL CHARACTERISTICS
AVX PN VW (DC) VW (AC) VBVCIVC ILETELD IPCap Freq VJump PDiss, MAX
VGAS120616K390 16 11 24.5±10% 40 115 0.6 1.5 200 900 K27.5 0.01
VGAS120616N390 16 11 24.5±10% 40 115 1.1 2200 1300 K27.5 0.01
VGAS121016S390 16 14 24.5±10% 40 2.5 15 2.0 5.00 500 3000 K27.5 0.01
VGAS121016J400 16 13 25.5±10% 42 510 1.6 3500 3100 K27.5 0.03
VGAS181216P390 16 11 24.5±10% 40 515 2.9 10 1000 7000 K27.5 0.07
VGAS181216P400 16 11 24.5±10% 42 510 2.9 10 1000 5000 K27.5 0.07
VGAS222016Y390 16 11 24.5±10% 40 10 15 10.2 45 1500 20000 K27.5 0.08
VGAS222016Y400 16 11 24.5±10% 42 10 10 7.2 25 1500 13000 K27.5 0.10
VGAS120618D400 18 13 25.5±10% 42 115 0.4 1.5 150 1200 K27.5 0.008
VGAS121018J400 18 13 25.5±10% 42 515 1.6 3.0 500 2300 K27.5 0.03
VGAS181218P440 18 14 27.5±10% 44 515 2.9 6800 5000 K27.5 0.05
VGAS222022Y490 22 17 30.0±10% 49 10 15 6.8 25 1200 12000 K27.5 0.03
VGAS120626F540 26 18 33.0±10% 54 115 0.7 1.5 200 600 K27.5 0.008
VGAS121026H560 26 18 34.5±10% 60 515 1.2 3300 1200 K27.5 0.018
VGAS181226P570 26 23 35.0±10% 57 515 2.5 8600 3000 K30 0.015
VGAS222026Y570 26 23 35.0±10% 57 10 15 6.8 25 1100 7000 K30 0.03
VGAS322026Z570 26 23 35.0±10% 57 10 15 13.0 50 1800 15000 K30 0.04
VGAS121030H620 30 21 41.0±10% 67 515 1.2 3280 1850 K30 0.018
VGAS120631M650 31 25 39.0±10% 65 115 12.5 200 700 K30 0.03
VGAS121031R650 31 25 39.0±10% 65 2.5 15 1.7 4.5 300 1200 K30 0.05
VGAS181231P650 31 25 39.0±10% 65 515 3.7 8800 2600 K30 0.06
VGAS222031Y650 31 25 39.0±10% 65 10 15 9.6 23 1200 6100 K30 0.03
VGAS120634N770 34 30 47.0±10% 77 1.0 15 1.1 1.50 200 500 K47 0.02
VGAS121034S770 34 30 47.0±10% 77 2.5 15 2 3 400 1000 K48 0.04
VGAS181234U770 34 30 47.0±10% 77 515 56.1 800 1500 K48 0.08
VGAS222034Y770 34 30 47.0±10% 77 10 15 12 25 2000 6300 K48 0.24
VGAS181242U900 42 35 56.0±10% 90 515 4.0 6500 1200 K48 0.015
VGAS222042Y900 42 37 56.0±10% 90 10 15 12 24 1000 5000 K48 0.06
VGAS121048H101 48 34 62.0±10% 100 515 1.2 -250 500 K48 0.022
VGAS181256U111 56 40 68.0±10% 110 5.0 15 4.8 -500 1100 K48 0.04
VGAS121060J121 60 42 76.0±10% 120 515 1.5 -250 400 K48 0.03
VGAS121065P131 65 50 82.0±10% 135 2.5 15 2.7 -350 600 K48 0.05
VGAS181265U131 65 50 82.0±10% 135 5.0 15 4.5 -400 800 K48 0.03
VGAS222065Y131 65 50 82.0±10% 135 10 15 6.5 -1100 3000 K48 0.06
VGAS181285U161 85 60 100±10% 165 5.0 15 4.5 -400 500 K48 0.04
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VB Typical Breakdown Votage [V @ 1mADC, 25°C]
VC Clamping Voltage [V @ IIVC]
IVC 
IL Maximum leakage current at the working

ET 
ELD Load Dump Energy (x10) [J]
IP 
 
0.5VRMS, 25°C, M = 1MHz, K = 1kHz
VJump Jump Start [V, 5 min]
PDISS Power Dissipation [W]
AUTOMOTIVE SERIES LOAD DUMP TEST
ACCORDING TO ISO DP7637 REV 2 PULSE 5
Automotive Load Dump Pulse
(According to ISO 7637 Pulse 5) When using the test method indicated below, the amount of Energy
dissipated by the varistor must not exceed the Load Dump Energy value

12V SYSTEMS
VGAS181216P400   
100ms 46 52 72
200ms 37 41 59
400ms 32 35 51
VGAS222016Y400   
100ms 53 60 77
200ms 50 55 73
400ms 47 50 66
Voltage (V)
Energy (Joules)
Time (msec)
012317
76
High Temp. Automotive Varistors
150ºC Rated Varistors
GENERAL DESCRIPTION
AVX High Temperature Multi-Layer Varistors are designed for underhood applications. Products have been

allows designers the ability to combine the circuit protection and EMI/RFI attenuation function into a single
highly reliable device.
FEATURES
Operating Temperature:
-55ºC to +150ºC

ESD rating to 25kV contact
EMI/RFI attenuation in off state
Excellent current and energy handling
APPLICATIONS
Under hood
Down Hole Drilling
High temperature applications
Communication Bus
Sensors
RF Circuits
Capacitance sensitive applications and more
CAN HIGH TEMPERATURE SERIES
ANTENNAGUARD HIGH TEMPERATURE SERIES
HOW TO ORDER
HOW TO ORDER
CAN WP
AT 01
Type
Controlled Area
Network Varistor
VCAT
Type
High Temperature
Varistor
06
Case Size
04 = 0402
06 = 0603
AG
Varistor Series
AntennaGuard
18
Working
Voltage
18 = 18Vdc
1
Reel
Size
1 = 7
3 = 13”
T
Termination
Finish
P = Ni Barrier/
100% Sn
A
Reel Quantity
A = 4000 or
10,000
120
Cap
Y
Non-Std.
Cap Tolerance
A
N/A
Series
Automotive
High Temperature
Case Size
01 = 0603
02 = 0405 2-Element
04 = 0612 4-Element
Packaging
D = 7” (1000 pcs)
R = 7” (4,000 pcs)
T = 13” (10,000pcs)
Termination
P = Ni Barrier/
100% Sn (matte)
AVX Part Number VW (DC) VW (AC) VBILETIPCap Case Size Elements
CANAT01--   120 10 0.015 4 22 0603 1
CANAT02--   70 10 0.015 4 22 0405 2
CANAT04--   100 10 0.015 4 22 0612 4
AVX Part Number VW (DC) VW (AC) ILCap Cap
Tolerance Case Size
VCAT06AG18120YAT--   10 12 +4, -2pF 0603
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBBreakdown Votage [V @ 1mADC]
VCClamping Voltage [V @ IVC]
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
IL
ETTransient Energy Rating [J, 10x1000µS]
IPPeak Current Rating [A, 8x20µS]
Cap RMS
IL
Cap RMS
050316
77
High Temp. Automotive Varistors
150ºC Rated Varistors
PHYSICAL DIMENSIONS
T
W
L
BL
W
P
T
BW
L
BL
T
BW
P
W
L
BL
0603 DISCRETE DIMENSIONS mm (inches)
L W T BW BL P
1.60±0.15
(0.063±0.006)
0.80±0.15
(0.032±0.006)
0.90 MAX
(0.035 MAX) N/A 0.35±0.15
(0.014±0.006) N/A
0405 2 ELEMENTS ARRAY DIMENSIONS mm (inches)
L W T BW BL P
1.00±0.15
(0.039±0.006)
1.37±0.15
(0.054±0.006)
0.66 MAX
(0.026 MAX)
0.36±0.10
(0.014±0.004)
0.20±0.10
(0.000.004)
0.64 REF
(0.025 REF)
0612 4 ELEMENTS ARRAY DIMENSIONS mm (inches)
L W T BW BL P
1.60±0.20
(0.063±0.008)
3.20±0.20
(0.126±0.008)
1.22 MAX
(0.048 MAX)
0.41±0.10
(0.016±0.004)
0.18 +0.25
-0.08
(0.008 +0.10
-0.03)
0.76 REF
(0.030 REF)
050316
78
High Temp. Low Leakage Automotive Varistors
150ºC Rated Low Leakage Automotive Varistors
GENERAL DESCRIPTION
AVX High Temperature Low Leakage Multi-Layer Varistors are designed for underhood and high temperature

The MLV advantage is EMI/RFI attenuation in the off state. This allows designers the ability to to combine
the circuit protection and EMI/RFI attenuation function into a single highly reliable device.
FEATURES
Rated at 150°C

ESD rating to 25kV
(HBM ESD Level 6)
EMI/RFI attenuation in
off state
Very Low Leakage
GENERAL
CHARACTERISTICS
Operating Temperature:
-55ºC to +150ºC
APPLICATIONS
Under hood
High temperature
applications
Bus Interface Protection
CAN Bus
BCM, TCU
Capacitance sensitive
applications
and more
COMMUNICATION BUS - HIGH TEMPERATURE LOW LEAKAGE VARISTOR
HOW TO ORDER
CAN RP
ATL 07
Type
Controlled Area
Network Varistor
Series
Automotive
High Temperature
Low Leakage
Case Size
07 = 0603
Packaging
D = 7” (1000 pcs)
R = 7” (4,000 pcs)
T = 13” (10,000pcs)
Termination
P = Ni Barrier/100% Sn
VW(DC) DC Working Voltage [V]
V(AC) AC Working Voltage [V]
VBBreakdown Votage [V @ 1mADC, 25ºC]
VCClamping Voltage [V @ IVC]
IVC 
IL
ET
IP
Cap RMS
VJump Jump Start [V, 5 min]
PDISS Max Power Dissipation [W]
PN VW
(DC)
VW
(AC) VB VC IVC IL ET IP Typ Cap Cap Tol Freq VJump PDiss
max
CANATL07 32 25 61±15% 120 1 <1 0.05 510 ±50% M27.5 0.003
050316
79
High Temp. Low Leakage Automotive Varistors
150ºC Rated Low Leakage Automotive Varistors
S21 CHARACTERISTICS
PHYSICAL DIMENSIONS AND RECOMMENDED PAD LAYOUT
0603 DISCRETE DIMENSIONS mm (inches)
0603 SOLDERING PAD mm (inches)
L W T BL
1.60±0.15
(0.063±0.006)
0.80±0.15
(0.032±0.006)
0.90 MAX
(0.035 MAX)
0.35±0.15
(0.014±0.006)
A B C D
0.89
(0.035)
0.76
(0.030)
2.54
(0.100)
0.76
(0.030)
5
0
-5
-10
-15
-20
-25
-30
Insertion Loss (dB)
Frequency (MHz)
0.1 1 10 100 1000 10000
CANATL07
T
W
BL
L
A
B
D
C
050316
80
Radial Leaded Automotive TransGuard®
Radial Leaded Varistors
GENERAL DESCRIPTION
              
environments or applications where leaded component is prefered. The MLV advantage is bi-directional
transient voltage protection and EMI/RFI attenuation in the off state. This allows designers to combine the
circuit protection and EMI/RFI attenuation function into a single highly reliable device.
FEATURES

ESD rated to 25kV (HBM ESD Level 6)
EMI/RFI attenuation in off state
Excellent current and energy handling
GENERAL
CHARACTERISTICS
Operating Temperatures:
-55ºC to +125ºC
Working Voltage:
18-48Vdc
APPLICATIONS
Harsh environment
Inductive switching
DC Motors
Water pump
Fuel pump
Relays and more
HOW TO ORDER
VR20
AVX Style
VR20
AS
Series
AS = Automotive
18
Voltage
18 = 18V
26 = 26V
48 = 48V
390
Clamping
Voltage
390 = 42V
540 = 54V
560 = 60V
101 = 100V
F
Energy
F = 0.7J
H = 1.2J
J = 1.6J
R
Leads
R = RoHS
Compliant
TR2
Packaging
Blank = Bulk
TR1 = T&R Standard 1
TR2 = T&R Standard 2
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBTypical Breakdown Votage [V @ 1mADC]
VClamping Voltage [V @ IIV]
IVC Test Current for VC
IL
Et
ELD Load Dump Energy (x10) [J]
IP
Cap RMS
VJump Jump Start (V)
PDISS Power Dissipation (W)
AVX Part Number VW DC VW AC VBVCIVC ILETELD IPCap Freq VJUMP PDISS
VR20AS18J390 18.0 13.0 25.5±10% 42 510 1.6 3500 3100 K27.5 0.030
VR20AS26F540 26.0 18.0 33.0±10% 54 115 0.7 1.5 200 600 K27.5 0.008
VR20AS26H560 26.0 18.0 34.5±10% 60 510 1.2 3300 1200 K27.5 0.018
VR20AS48H101 48.0 34.0 62.0±10% 100 110 1.2 250 500 K48 0.022
ELECTRICAL CHARACTERISTICS
PHYSICAL DIMENSIONS
mm (inches)
AVX Style Width
(W)
Height
(H)
Thickness
(T)
Lead
Spacing
Lead
Diameter
VR20 5.59 Max
(0.220)
5.08 Max
(0.200)
3.175 Max
(0.125)
2.54
(0.100)
0.508)
(0.020
W
H
.100 (2.54)±.030
1.0 (25.4)
Min.
.060 (1.52)
Max.
81
Radial Leaded Automotive TransGuard®
Radial Leaded Varistors
TYPICAL PERFORMANCE CURVES
Typical Voltage Current Characteristics
TAPE & REEL PACKAGING OPTIONS
TR1
Tape & Reel Standard 1
TR2
Tape & Reel Standard 2
0
20
40
60
80
100
120
140
160
180
200
30+E.1 00+E.1 30-E.1 60-E.1 90-E.1
Voltage (V)
Current (Amps)
VR20AS18J390
VR20AS26F540
VR20AS26H560
VR20AS48H101
0.630 (16.0)
Min.
0.748 (19.0)
Min.
82
Radial Leaded High Temp. Automotive TransGuard®
150ºC Rated Radial Leaded Varistors
GENERAL DESCRIPTION
AVX High Temperature Multi-Layer Varistors are designed for underhood applications. Products have

environments. The MLV advantage is EMI/RFI attenuation in the off state. This allows designers to combine
the circuit protection and EMI/RFI attenuation function into a single highly reliable device.
FEATURES
Rated at 150ºC

ESD rated to 25kV (HBM ESD Level 6)
EMI/RFI attenuation in off state
Excellent current and energy handling
GENERAL
CHARACTERISTICS
Operating Temperatures:
-55ºC to +150ºC
Working Voltage:
14-48Vdc
APPLICATIONS
Under hood
Down Hole Drilling
DC Motors
Relays
Inductive Loads
High Temperature/
Harsh environment
and more
HOW TO ORDER
VR15
AVX Style
VR15
VR20
AT
Series
AT = 150ºC
Automotive
18
Voltage
14 = 14V
18 = 18V
26 = 26V
48 = 48V
650
Clamping
Voltage
580 = 60V
650 = 67V
101 = 100V
151 = 150V
A
Energy
A = 0.1J
D = 0.4J
S = 2.0J
R
Leads
R = RoHS
Compliant
TR2
Packaging
Blank = Bulk
TR1 = T&R Standard 1
TR2 = T&R Standard 2
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBTypical Breakdown Votage [V @ 1mADC]
VCClamping Voltage [V @ IIV]
IVC Test Current for VC
IL
Et
ELD Load Dump Energy (x10) [J]
IP
Cap RMS
VJump Jump Start (V)
PDISS Power Dissipation (W)
AVX Part Number VW DC VW AC VBVCIVC ILETELD IPCap Freq VJUMP PDISS
VR15AT14A580 14.0 10.0 34.5±10% 60 110 0.1 0.15 30 120 K27.5 0.002
VR15AT18A650 18.0 13.0 41.0±10% 67 110 0.1 0.15 30 90 M29 0.002
VR20AT26D101 26.0 18.0 62.0±10% 100 110 0.4 1.5 100 225 K48 0.008
VR20AT48S151 48.0 34.0 100.0±10% 150 110 2.0 3.5 250 275 K48 0.040
ELECTRICAL CHARACTERISTICS
PHYSICAL DIMENSIONS
mm (inches)
AVX Style Width
(W)
Height
(H)
Thickness
(T)
Lead
Spacing
Lead
Diameter
VR15 4.32 Max.
(0.170)
3.81 Max.
(0.150)
2.54 Max.
(0.100)
2.54
(0.100)
0.508
(0.020)
VR20 5.59 Max
(0.220)
5.08 Max
(0.200)
3.175 Max
(0.125)
2.54
(0.100)
0.508)
(0.020
W
H
.100 (2.54)±.030
1.0 (25.4)
Min.
.060 (1.52)
Max.
83
Radial Leaded High Temp. TransGuard®
150ºC Rated Radial Leaded Varistors
TYPICAL PERFORMANCE CURVES
Typical Voltage Current Characteristics
AEC-Q200-002 ESD Characteristics ESD Wave Absorption Characteristics
TAPE & REEL PACKAGING OPTIONS
TR1
Tape & Reel Standard 1
TR2
Tape & Reel Standard 2
0.630 (16.0)
Min.
0.748 (19.0)
Min.
0
20
40
60
80
100
120
140
160
180
1.E-09 1.E-06 1.E-03 1.E+00 1.E+03
Voltage (V)
Current (A)
VR20AT48S151
VR20AT26D101
VR15AT18A650
VR15AT14A580
-10%
-5%
0%
5%
10%
kV Pulse
% V b Ch ang e
6 12 16 25
0
500
1000
1500
2000
2500
0 20 40 60 80 100 120 140
VOLTAGE (V)
TIME (nsec)
No Suppression 8kV 150 pF 330 Ohm
VR20AT48S151
VR20AT26D101
VR15AT18A650
VR15AT14A580
8 kV ESD Vc
(150pF/330ohm IEC Network)
84
Radial Leaded CapGuard™
Varistor/Capacitor Combination for EMI/Surge Suppression
GENERAL DESCRIPTION
AVX’s radial leaded CapGuard™ products are designed to provide both transient voltage protection and EMI/

switch mode power supplies or motors on DC lines or I/O lines in electronic circuits. With multilayer varistor
(MLV) utilized in CapGuard product, effective transient voltage protection is achieved to protect sensitive
electronics from high voltage transients. The capacitor, on the other hand, absorbs high frequency noise on the
line. The MLCC capacitors are designed with temperature stable X7R dielectric, allowing for wide temperature
use with good capacitance stability.
FEATURES
High Capacitance / EMI Filtering
Bi-Directional Protection

Multiple Strike Capability
Radial, epoxy encapsulated
GENERAL
CHARACTERISTICS
Operating Temperature:
-55 to +125ºC
Working Voltage:
26Vdc, 45Vdc

APPLICATIONS

DC motors
Inductive switching
Relays
Power supplies
I/O Ports
and more
HOW TO ORDER
CG TR121 AS F M26 474 R
Series Size
21
Automotive
Series
Energy
K = 0.6J
F = 0.7J
Tolerance
M = ±20%
Working
Voltage
26 = 26Vdc
45 = 45Vdc
Capacitance


Leads
R = RoHS
Compliant
Packaging
Blank = Bulk
TR1 = T&R Standard 1
TR2 = T&R Standard 2
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VBTypical Breakdown Votage [V @ 1mADC]
VCClamping Voltage [V @ IIV]
IVC Test Current for VC
IL
Et
ELD Load Dump Energy (x10) [J]
IP
Cap RMS
Tol Capacitance tolerance [%] from Typ value
VJump Jump Start (V)
AVX Part Number VW DC VW AC VBVCIVC ILETELD IPCap Tol VJUMP
CG21AS26F474MR 26.0 18.0 33.0±10% 54 115 0.7 1.5 200 0.47 ±20% 27.5
CG21AS26F105MR 26.0 18.0 33.0±10% 54 115 0.7 1.5 200 1±20% 27.5
CG21AS45K474MR 45.0 35.0 56.0±10% 90 115 0.6 1.25 200 0.47 ±20% 48
CG21AS45K105MR 45.0 35.0 56.0±10% 90 115 0.6 1.25 200 1±20% 48
ELECTRICAL CHARACTERISTICS
012317
85
Radial Leaded CapGuard™
Varistor/Capacitor Combination for EMI/Surge Suppression
PHYSICAL DIMENSIONS
mm (inches)
AVX Style Width
(W)
Height
(H)
Thickness
(T) Lead Spacing Lead
Diameter
CG21 6.35 Max
(0.250)
8.25 Max
(0.325)
5.08 Max
(0.200)
5.08±0.76
(0.200±0.030)
0.508 nom.
(0.020)
Drawings are for illustrative purposes only.
Actual lead form shape could vary within stated tolerances based on body size.
Schematic Diagram
TAPE & REEL PACKAGING OPTIONS
TR1
Tape & Reel Standard 1
TR2
Tape & Reel Standard 2
Max.
W
H Max.
LD
Nom. T
Max.
1.0" Min.
See Note
L.S.
.762 (0.030)
Note: Coating clean .784 (0.031) min. above seating plane
32.0 (1.260)
max.
16.0±0.50
(0.630±0.020)
CG21
32.0 (1.260)
max.
19.0 (0.748)
min.
CG21
Lead 1
Lead 2
C
V
012317
86
Surface Mount CapGuard
Varistor/Capacitor Combination for EMI/Surge Suppression
AVX’s surface mount CapGuardTM products are designed to provide both transient voltage
protection and EMI/RFI suppression for electronic circuits. CapGuards are ideally suited to

I/O lines in electronic circuits. With multilayer varistor (MLV) utilized in CapGuard product,
effective transient voltage protection is achieved to protect sensitive electronics from high
voltage transients. The capacitor, on the other hand, absorbs high frequency noise on the
line. The MLCC capacitors are designed with temperature stable X7R dielectric, allowing for
wide temperature use with good capacitance stability. The surface mount CapGuards are
characterized with a very small form factor to minimize board space. The parts are assembled


HOW TO ORDER
PRODUCT OFFERING
MV 10 18 M A A 1J 104
Product
Designation
MLCC/Varistor
(MLV)
Component
Style
1210
Working
Voltage
18 = 18V
26 = 26V
48 = 48V
60 = 60V
Tolerance
M = ±20%

Code
A = Standard
Termination
HMP
Packaging
T&R
Transient
Energy Rating
J = 1.5 - 1.6J
H = 1.2J
Capacitance Code

no. of zeros)
Examples:



Operating
Voltage (V)
Nominal
Breakdown
Voltage
(V)
Breakdown
Voltage
Range
(V)
Clamping
Voltage (V)
Current for
Clamping
Voltage
(Amp)
Transient
Energy (J)
Peak Current
(Amp)
Typical
Capacitance
(uF)
MV1018J123MAA1 18 25 23 - 28 42 51.6 500 0.012
MV1018J473MAA1 18 25 23 - 28 42 51.6 500 0.047
MV1018J104MAA1 18 25 23 - 28 42 51.6 500 0.1
MV1026H123MAA1 26 34.5 31 - 38 60 51.2 300 0.012
MV1026H473MAA1 26 34.5 31 - 38 60 51.2 300 0.047
MV1026H104MAA1 26 34.5 31 - 38 60 51.2 300 0.1
MV1048H123MAA1 48 62 55 - 69 100 51.2 250 0.012
MV1048H473MAA1 48 62 55 - 69 100 51.2 250 0.047
MV1048H104MAA1 48 62 55 - 69 100 51.2 250 0.1
MV1060J123MAA1 60 76 68 - 84 120 51.5 250 0.012
MV1060J473MAA1 60 76 68 - 84 120 51.5 250 0.047
MV1060J104MAA1 60 76 68 - 84 120 51.5 250 0.1
87
Surface Mount CapGuard
Varistor/Capacitor Combination for EMI/Surge Suppression
FEATURES
High Capacitance / EMI Filtering
Bi-Directional Protection
Fast Turn-On Time
Multiple Strike Capability
HMP Solder Termination
1210 EIA Case Size
TARGET APPLICATIONS
Avionics, Military, I/O port protection

TYPICAL VOLTAGE CURRENT RESPONSE
TYPICAL HIGH FREQUENCY CHARACTERISTICS DIMENSIONS
TYPICAL PULSE POWER DURATION
0
50
100
150
200
250
00011100.0100000.0
Voltage
Current (Amps)
MV1018J123MAA
MV1026H123MAA
MV1048H123MAA
MV1060J123MAA
10
100
1000
10000
100000
00001000100101
Power
Time (uS)
MV1018J123MAA
MV1026H123MAA
MV1048H123MAA
MV1060J123MAA
-70
-60
-50
-40
-30
-20
-10
0
0.1 1 10 100 1000 10000
Insertion Loss (dB)
Frequency (MHz)
MV1018J123
MV1018J104
MV1060J123
MV1060J104
MV1026H104
T
MB (2 PLACES)
HIGH TEMPERATURE
SOLDER 10/88/2 (Sn/Pb/Ag)
CAPACITOR
TRANSIENT VOLTAGE
SUPPRESSOR
L
W
millimeters (inches)
Lenght (L) Width (W) Thickness (T) Metallized
Bands (MB)
3.302 ± 0.381
(0.130) ± (0.015)
2.540 ± 0.381
(0.100) ± (0.015)
2.794 (0.110)
Max.
0.5 ± 0.25
(0.02) ± (0.01)
GENERAL CHARACTERISTICS
Storage Temperature: -55ºC to +125ºC
Operating Temperature: -55ºC to +125ºC
88
Axial TransGuard® and StaticGuard
AVX Axial Multilayer Ceramic Transient Voltage Suppressors
GENERAL DESCRIPTION
Axial TransGuard® multilayer varistors are zinc oxide (ZnO) based ceramic semiconductor devices with non-
linear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes. They have the added
advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation.
Axial StaticGuard is low capacitance version of the TransGuard and are designed for general ESD protection of
CMOS, Bi-Polar, and SiGe based systems.
AVX Axial varistors are designed for applications where leaded component is prefered and for durability in
harsh environment.
FEATURES
Axial leaded, epoxy encapsulated
Fast Response

Multiple strikes capability
GENERAL CHARACTERISTICS
Operating Temperatures: -55ºC to +125ºC
Working Voltage: 3.3 - 60Vdc
Case Size: Axial
Energy: 0.1 - 2.0J
Peak Current: 30 - 300A
APPLICATIONS
White Goods
Industrial Equipment
Sensors
Relays
DC Motors
and more
HOW TO ORDER - AXIAL TRANSGUARD®
HOW TO ORDER - AXIAL STATICGUARD
VA 1000 D R26 400 L
Varistor
Axial
VA
Varistor
Axial
Case
Size
1000
2000
10
Case
Size
10 = 1000
LC
Low
Capacitance
Energy
Rating
A = 0.1J
D = 0.4J
K = 0.6J
A
Energy
Rating
A = 0.1J
Packaging
D = 7” reel
R = 7” reel
T = 13” reel
R
Packaging
D = 7” reel
R = 7” reel
T = 13” reel
Voltage
03 = 3.3Vdc
05 = 5.6Vdc
14 = 14Vdc
18 = 18Vdc
26 = 26Vdc
30 = 30Vdc
48 = 48Vdc
60 = 60Vdc
18
Voltage
18 = 18Vdc
Clamping
Voltage
100 = 12V
150 = 18V
300 = 32V
400 = 42V
580 = 60V
650 = 67V
101 = 100V
121 = 120V
500
Clamping
Voltage
500 = 50V
Termination
L = Ni/Sn plated
L
Termination
L = Ni/Sn plated
Packaging (Pcs/Reel:
STYLE D R T
VA1000 1,000 3,000 7,500
VA2000 1,000 2,500 5,000
89
Axial TransGuard® and StaticGuard
AVX Axial Multilayer Ceramic Transient Voltage Suppressors
VW(DC) DC Working Voltage [V]
VW(AC) AC Working Voltage [V]
VB Typical Breakdown Votage (V @ 1mADC)
VB Tol VB Tolerance is ± from Typical Value
VC Clamping Voltage (V @ IVC )
IVC Test Current for VC
IL 
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq Case
VA100003A100 3.3 2.3 5.0±20% 12 1100 0.1 40 1500 K1000
VA100003D100 3.3 2.3 5.0±20% 12 1100 0.4 150 4700 K 1000
VA100005A150 5.6 4.0 8.5±20% 18 135 0.1 40 1000 K1000
VA100005D150 5.6 4.0 8.5±20% 18 135 0.4 150 2800 K1000
VA100014A300 14.0 10.0 18.5±12% 32 115 0.1 40 325 K1000
VA100014D300 14.0 10.0 18.5±12% 32 115 0.4 150 1100 K1000
VA100018A400 18.0 13.0 25.5±10% 42 110 0.1 40 350 K1000
VA100018D400 18.0 13.0 25.5±10% 42 110 0.4 150 900 K1000
VA100026D580 26.0 18.0 34.5±10% 60 110 0.4 120 650 K1000
VA100030D650 30.0 21.0 41.0±10% 67 110 0.4 120 550 K1000
VA100048D101 48.0 34.0 62.0±10% 100 110 0.4 100 200 K1000
VA200060K121 60.0 42.0 76.0±10% 120 110 2.0 300 400 K2000
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq Case
VA10LC18A500   25-40 50 1 10 0.1 30 200 K 1000
AXIAL TRANSGUARD®
AXIAL STATICGUARD
ET 
IP 
 RMS
Freq Frequency at which capacitance is measured
(K = 1kHz, M = 1MHz)
DIMENSIONS: mm (inches)
AVX Style VA1000 VA2000
(L) Max Length mm
(in.)
4.32
(0.170)
4.83
(0.190)
(D) Max Diameter mm
(in.)
2.54
(0.100)
3.56
(0.140)
Lead Finish: Copper Clad Steel, Solder Coated
Dimensions: Millimeters
(Inches)
D
Max.
0.51 ±0.05
(0.020" ±0.002")
L
Max.
25.4 (1.0")
Min. Lead Length
90
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
GENERAL DESCRIPTION
AVX has combined the best electrical characteristics of its TransGuard®
Transient Voltage Suppressors (TVS) and its Feedthru Capacitors into
a single chip for state-of-the-art overvoltage circuit protection and EMI
reduction over a broad range of frequencies. This unique combination of

designer a single 0805 chip that responds to transient events faster than any

when in the off-state.
The reduction in parallel inductance, typical of the feedthru chip construction
when compared to the construction of standard TVS or ceramic capacitor
chips, gives the TransFeed product two very important electrical advantages:
(1) faster “turn-on” time. Calculated response times of <200 pSec are not
unusual with this device, and measured response times range from 200 –
250 pSec. The TransFeed “turn-on” characteristic is less than half that of an
equivalent TransGuard®® clamp transient voltages
faster than any other bipolar TVS solution such as diodes; (2) the second
electrical advantage of lower parallel inductance, coupled with optimal series
inductance, is the enhanced attenuation characteristics of the TransFeed

 

      
Interface I/O Lines, Power Line Conditioning and Power Regulation.
Schematic Diagram
Electrical Model
IN OUT
IN LSLS
RVCRP
RON
LP
OUT
TYPICAL APPLICATIONS
Fingerprint ID Circuit
Magnetic Field Circuit
LCD Dashboard Driver
Where designers are concerned with both transient
voltage protection and EMI attenuation, either due
to the electrical performance of their circuits or due

the TransFeed product is an ideal choice.
GENERAL
CHARACTERISTICS
Operating Teperature:
-55°C to +125°C
Working Voltage: 5.6Vdc - 26 Vdc
Case Size: 0805
Energy Rating: 0.05 - 0.3J
Current: 20 - 120A
Max Feedthru Current: 0.5 - 1A
APPLICATIONS
Bi-directional TVS

EMI Filtering over broader frequency range
Fastest Response Time to ESD Strikes
080216
91
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
V 2 F 1 A EY 2 PD05 150
Varistor
Chip Size
2 = 0805
No. of
Elements
Feedthru
Capacitor
Energy
Rating
X = 0.05J
A = 0.1J
C = 0.3J
Feedthru
Current
D = 500 mA
E = 750 mA
F = 1.0 Amp
Capacitance
Tolerance
Y = +100/-50%
DC
Resistance
1 = 0.150 Ohms
2 = 0.200 Ohms
3 = 0.250 Ohms
Termination Finish
P = Ni/Sn (Plated)
Packaging Code
Pcs./Reel
D = 1,000
R = 4,000
T = 10,000
Voltage
05 = 5.6VDC
09 = 9.0VDC
14 = 14.0VDC
18 = 18.0VDC
26 = 26.0VDC
Varistor
Clamping
Voltage
150 = 18V
200 = 22V
300 = 32V
400 = 42V
500 = 50V
600 = 60V
HOW TO ORDER
TRANSFEED ELECTRICAL SPECIFICATIONS
AVX
Part Number
Working
Voltage
(DC)
Working
Voltage
(AC)
Breakdown
Voltage
Clamping
Voltage
Maximum
Leakage
Current
Transient
Energy
Rating
Peak
Current
Rating
Typical
Cap
DC
Resistance
Maximum
Feedthru
Current
V2F105A150Y2E _ _ 5.6 4.0 8.5±20% 18 35 0.10 30 800 0.200 0.75
V2F105C150Y1F _ _ 5.6 4.0 8.5±20% 18 35 0.30 120 2500 0.150 1.00
V2F109A200Y2E _ _ 9.0 6.4 12.7±15% 22 25 0.10 30 575 0.200 0.75
V2F109C200Y1F _ _ 9.0 6.4 12.7±15% 22 25 0.30 120 1800 0.150 1.00
V2F114A300Y2E _ _ 14.0 10.0 18.5±12% 32 15 0.10 30 300 0.200 0.75
V2F114C300Y1F _ _ 14.0 10.0 18.5±12% 32 15 0.30 120 900 0.150 1.00
V2F118A400Y2E _ _ 18.0 13.0 25.5±10% 42 10 0.10 30 200 0.200 0.75
V2F118C400Y1F _ _ 18.0 13.0 25.5±10% 42 10 0.30 120 500 0.150 1.00
V2F118X500Y3D _ _ 18.0 13.0 25.5±10% 50 10 0.05 20 75 0.250 0.50
V2F126C600Y2E _ _ 26.0 18.0 34.5±10% 60 10 0.3 80 250 0.2 0.75
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VB Typical Breakdown Voltage (V @ 1mADC)
VB Tol VB Tolerance is ± from Typical Value
VC 
IL 
ET 
IP 
Cap Typical Capacitance (pF) @ 1MHz and 0.5 V
DCR DC Resistance (Ohms)
IFT Maximum Feedthru Current (A)
080216
92
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
dB Attenuation vs Frequency
DIMENSIONS mm (inches)
RECOMMENDED SOLDER PAD LAYOUT (Typical Dimensions) mm (inches)
L W T BW BL EW X S
0805 2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
1.143 Max.
(0.045 Max.)
0.46 ± 0.10
(0.018 ± 0.004)
0.18 + 0.25 -0.08
(0.007 + 0.010 -0.003)
0.25 ± 0.13
(0.010 ± 0.005)
1.02 ± 0.10
(0.040 ± 0.004)
0.23 ± 0.05
(0.009 ± 0.002)
T P S W L C
0805 3.45 (0.136) 0.51 (0.020) 0.76 (0.030) 1.27 (0.050) 1.02 (0.040) 0.46 (0.018)
18LC
18A
14A
9A
5A
0
-10
-20
-30
-40
-50
-60
-70
11.010.0
Frequency (GHz)
(dB)
10
TransFeed 0.1J
18C
5C
14C
9C
0
-10
-20
-30
-40
-50
-60
-70
11.010.0
Frequency (GHz)
(dB)
10
TransFeed 0.3J
BW
T
SX
L
C
L
EW
W
BL
T
P
TUPTUOTUPNI
LC
P
SW
4 Pad Layout
080216
93
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
INSERTION LOSS COMPARISON
(TRANSFEED VS TRANSGUARD®)
0805 DB VS FREQUENCY
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F105A150Y2E
VC080505A150
5.6V, 0.1J 0
-10
-20
-30
-40
-50
-60
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F114A300Y2E
VC080514A300
14V, 0.1J
0
-10
-20
-30
-40
-50
-60
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118A400Y2E
VC080518A400
18V, 0.1J 0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118X500Y3D
VC08LC18A500
18V, 0.05J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F105C150Y1F
VC080505C150
5.6V, 0.3J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118C400Y1F
VC080518C400
18V, 0.3J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F114C300Y1F
VC080514C300
14V, 0.3J
080216
94
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
CURRENT VS TEMPERATURE
0805 0.1 JOULE
CURRENT VS TEMPERATURE
0805 0.3 JOULE
18LC
18V
14V
5V
9V
30
25
Note:
Dashed
Portions
Not Guaranteed
20 0.3 0.5 0.75
Current (Amps)
Component Temperature (°C)
1
18V
14V
5V
30
25
20
0.25 57.05.00
Current (Amps)
Component Temperature (°C)
1
080216
95
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
FEEDTHRU VARISTORS
AVX Multilayer Feedthru Varistors (MLVF) are an ideal choice for system
designers with transient strike and broadband EMI/RFI concerns.
Feedthru Varistors utilize a ZnO varistor material and the electrode pattern
of a feedthru capacitor. This combination allows the package advantage of
the feedthru and material advantages of the ZnO dielectric to be optimized.
ZnO MLV Feedthrus exhibit electrical and physical advantages over standard
ZnO MLVs. Among them are:
1. Faster Turn on Time
2. Broadband EMI attenuation
3. 
The electrical model for a ZnO MLV and a ZnO Feedthru MLV are shown
below. The key difference in the model for the Feedthru is a transformation
in parallel to series inductance. The added series inductance helps lower the

lower clamping voltage. The lowered parallel inductance decreases the turn
on time for the varistor to <250ps.
Where: RV = Voltage Variable resistance
(per VI curve)
Rp12

Ron = turn on resistance
Lp = parallel body inductance
Where: RV = Voltage Variable resistance
(per VI curve)
Rp

Ron = turn on resistance
Lp = minimized parallel body inductance
LS = series body inductance
Discrete MLV Model
PCB
Trace
To Device
Requiring
Protection
RVCRP
Ron
LP
Solder Pad
Discrete MLVF Model
LSLS
RVCRP
Ron
LP
To Device
Requiring
Protection
Solder Pad Solder Pad
Solder Pad
080216
96
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
APPLICATIONS
EMI Suppression
Broadband I/O Filtering
Vcc Line Conditioning
FEATURES
Small Size
Low ESR
Ultra-fast Response Time
Broad S21 Characteristics
MARKET SEGMENTS
Computers
Automotive
Power Supplies
Multimedia Add-On Cards
Bar Code Scanners
Remote Terminals
Medical Instrumentation
Test Equipment
Transceivers
Cellular Phones / Pagers
TYPICAL CIRCUITS REQUIRING
TRANSIENT VOLTAGE
PROTECTION AND EMI FILTERING
The following applications and schematic diagrams

be used:
System Board Level Interfaces: (Fig. 1)
Digital to RF
Analog to Digital
Digital to Analog
Voltage Regulation (Fig. 2)
Power Conversion Circuits (Fig. 3)
GaAs FET Protection (Fig. 4)
REGULATOR +
CHIP
ASIC
CARDPOWER
+3.3V
+5V
+12V
+3.3V
+1.8V
Fig. 2 – Voltage Regulators
Fig. 3 – Power Conversion Circuits/Power Switching Circuits
BOARD
BOARD
RF BOARD
Sensor/Keyboard/
Touchscreen Input
By X Bus
BOARD
BOARD
Sensor Input Display
BOARD
Keyboard
Fig. 1 – System Interface
INPUT OUTPUT
Fig. 4 – GaAs FET Protection
SPECIFICATION COMPARISON
MLVF
0805
PARAMETER MLV
0805
5ph Ls typical N/A
<600nh Lp typical <1.5nh
 Ron typical 
100pf to 2.5nf Ctypical 100pf to 5.5nf
see VI curves Rv typical see VI curves
 Rp typical 
<250ps Typical turn on time
Typical frequency response
<500ps
A comparison table showing typical element parameters and resulting
performance features for MLV and MLVF is shown above.
080216
97
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
GENERAL DESCRIPTION
AVX has combined the best electrical characteristics of its TransGuard®
Transient Voltage Suppressors (TVS) and its Feedthru Capacitors into
a single chip for state-of-the-art overvoltage circuit protection and EMI
reduction over a broad range of frequencies. This unique combination
        
the circuit designer a single 0805 chip that responds to transient
events faster than any TVS device on the market today, and provides

Automotive TransFeeds are designed for automotive applications and

The reduction in parallel inductance, typical of the feedthru chip
construction when compared to the construction of standard TVS
or ceramic capacitor chips, gives the TransFeed product two very
important electrical advantages: (1) faster “turn-on” time. Calculated
response times of <200 pSec are not unusual with this device, and
measured response times range from 200 – 250 pSec. The TransFeed
“turn-on” characteristic is less than half that of an equivalent
TransGuard®® clamp transient voltages faster
than any other bipolar TVS solution such as diodes; (2) the second
electrical advantage of lower parallel inductance, coupled with optimal
series inductance, is the enhanced attenuation characteristics of the

at a higher self-resonance frequency, but the roll-off characteristic

  
on Microcontroller I/O Lines, Interface I/O Lines, Power Line
Conditioning and Power Regulation.
Schematic Diagram
Electrical Model
IN OUT
IN LSLS
RVCRP
RON
LP
OUT
TYPICAL APPLICATIONS
Drive by Wire
Dimming Mirror Circuit
Filtering/protection on Microcontroller I/O lines
Filtering/protection on Interface I/O lines
Power Line Conditioning
Power Regulation
LCD Dashboard driver
Where designers are concerned with both transient
voltage protection and EMI attenuation, either due to the
electrical performance of their circuits or due to required

product is an ideal choice.
GENERAL
CHARACTERISTICS
Operting Teperature: -55°C to +125°C
Working Voltage: 5.6Vdc - 26Vdc
Case Size: 0805
Energy Rating: 0.05 - 0.3J
Current: 20 - 120A
Max Feedthru Current: 0.5 - 1A
FEATURES
Bi-directional TVS
Narrow band, high attenuation

EMI Filtering over broader
frequency range
Fastest Response Time to
ESD Strikes

080216
98
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
V 2 AF 1 A EY 2 PD05 150
Varistor
Chip Size
2 = 0805
No. of
Elements
Automotive
Feedthru
Capacitor
Energy
Rating
X = 0.05J
A = 0.1J
C = 0.3J
Feedthru
Current
D = 500 mA
E = 750 mA
F = 1.0 Amp
Capacitance
Tolerance
Y = +100/-50%
DC
Resistance
1 = 0.150 Ohms
2 = 0.200 Ohms
3 = 0.250 Ohms
Termination Finish
P = Ni/Sn (Plated)
Packaging Code
Pcs./Reel
D = 1,000
R = 4,000
T = 10,000
Voltage
05 = 5.6VDC
09 = 9.0VDC
14 = 14.0VDC
18 = 18.0VDC
26 = 26.0VDC
Varistor
Clamping
Voltage
150 = 18V
200 = 22V
300 = 32V
400 = 42V
500 = 50V
600 = 60V
HOW TO ORDER
TRANSFEED ELECTRICAL SPECIFICATIONS
AVX
Part Number
Working
Voltage
(DC)
Working
Voltage
(AC)
Breakdown
Voltage
Clamping
Voltage
Maximum
Leakage
Current
Transient
Energy
Rating
Peak
Current
Rating
Typical
Cap
DC
Resistance
Maximum
Feedthru
Current
Jump
Start
Voltage
V2AF105A150Y2E _ _ 5.6 4.0 8.5±20% 18 35 0.10 30 800 0.200 0.75
V2AF105C150Y1F _ _ 5.6 4.0 8.5±20% 18 35 0.30 120 2500 0.150 1.00
V2AF109A200Y2E _ _ 9.0 6.4 12.7±15% 22 25 0.10 30 575 0.200 0.75
V2AF109C200Y1F _ _ 9.0 6.4 12.7±15% 22 25 0.30 120 1800 0.150 1.00
V2AF114A300Y2E _ _ 14.0 10.0 18.5±12% 32 15 0.10 30 300 0.200 0.75 27.5
V2AF114C300Y1F _ _ 14.0 10.0 18.5±12% 32 15 0.30 120 900 0.150 1.00 27.5
V2AF118A400Y2E _ _ 18.0 13.0 25.5±10% 42 10 0.10 30 200 0.200 0.75 27.5
V2AF118C400Y1F _ _ 18.0 13.0 25.5±10% 42 10 0.30 120 500 0.150 1.00 27.5
V2AF118X500Y3D _ _ 18.0 13.0 25.5±10% 50 10 0.05 20 75 0.250 0.50 27.5
V2AF126C600Y2E_ _ 26.0 18.0 34.5±10% 60 10 0.3 80 250 0.2 0.75 27.5
Termination Finish Code
Packaging Code
VW (DC) DC Working Voltage (V)
VW (AC) AC Working Voltage (V)
VB Typical Breakdown Voltage (V @ 1mADC)
VB Tol VB Tolerance is ± from Typical Value
VC 
 
ET 
IP 
Cap Typical Capacitance (pF) @ 1MHz and 0.5 V
DCR DC Resistance (Ohms)
IFT Maximum Feedthru Current (A)
VJUMP Jump Start Voltage (V, 5 min)
080216
99
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
DIMENSIONS mm (inches)
RECOMMENDED SOLDER PAD LAYOUT (TYPICAL DIMENSIONS) mm (inches)
L W T BW BL EW X S
0805 2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
1.143 Max.
(0.045 Max.)
0.46 ± 0.10
(0.018 ± 0.004)
0.18 + 0.25 -0.08
(0.007 + 0.010 -0.003)
0.25 ± 0.13
(0.010 ± 0.005)
1.02 ± 0.10
(0.040 ± 0.004)
0.23 ± 0.05
(0.009 ± 0.002)
T P S W L C
0805 3.45 (0.136) 0.51 (0.020) 0.76 (0.030) 1.27 (0.050) 1.02 (0.040) 0.46 (0.018)
BW
T
SX
L
C
L
EW
W
BL
T
P
TUPTUOTUPNI
LC
P
SW
4 Pad Layout
080216
100
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
FEEDTHRU VARISTORS
AVX Multilayer Feedthru Varistors (MLVF) are an ideal choice for system
designers with transient strike and broadband EMI/RFI concerns.
Feedthru Varistors utilize a ZnO varistor material and the electrode pattern
of a feedthru capacitor. This combination allows the package advantage of
the feedthru and material advantages of the ZnO dielectric to be optimized.
ZnO MLV Feedthrus exhibit electrical and physical advantages over standard
ZnO MLVs. Among them are:
1. Faster Turn on Time
2. Broadband EMI attenuation
3. 
The electrical model for a ZnO MLV and a ZnO Feedthru MLV are shown
below. The key difference in the model for the Feedthru is a transformation
in parallel to series inductance. The added series inductance helps lower the

a lower clamping voltage. The lowered parallel inductance decreases the
turn on time for the varistor to <250ps.
Discrete MLV Model
PCB
Trace
To Device
Requiring
Protection
RVCRP
Ron
LP
Solder Pad
Discrete MLVF Model
LSLS
RVCRP
Ron
LP
To Device
Requiring
Protection
Solder Pad Solder Pad
Solder Pad
Where: Rv=Voltage Variable resistance
(per VI curve)
Rp 
C = 
Ron = turn on resistance
Lp= parallel body inductance
Where: Rv=Voltage Variable resistance
(per VI curve)
RpBody IR
C = 
Ron = turn on resistance
Lp= minimized parallel body inductance
Ls= series body inductance
080216
101
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
APPLICATIONS
EMI Suppression
Broadband I/O Filtering
Vcc Line Conditioning
FEATURES
Small Size
Low ESR
Ultra-fast Response Time
Broad S21 Characteristics
MARKET SEGMENTS
Computers
Automotive
Power Supplies
Multimedia Add-On Cards
Bar Code Scanners
Remote Terminals
Medical Instrumentation
Test Equipment
Transceivers
Cellular Phones / Pagers
TYPICAL CIRCUITS REQUIRING TRANSIENT
VOLTAGE PROTECTION AND EMI FILTERING
The following applications and schematic diagrams show where

System Board Level Interfaces: (Fig. 1)
Digital to RF
Analog to Digital
Digital to Analog
Voltage Regulation (Fig. 2)
Power Conversion Circuits (Fig. 3)
GaAs FET Protection (Fig. 4)
REGULATOR +
CHIP
ASIC
CARDPOWER
+3.3V
+5V
+12V
+3.3V
+1.8V
Fig. 2 – Voltage Regulators
Fig. 3 – Power Conversion Circuits/Power Switching Circuits
BOARD
BOARD
RF BOARD
Sensor/Keyboard/
Touchscreen Input
By X Bus
BOARD
BOARD
Sensor Input Display
BOARD
Keyboard
Fig. 1 – System Interface
INPUT OUTPUT
Fig. 4 – GaAs FET Protection
SPECIFICATION COMPARISON
MLVF
0805
PARAMETER MLV
0805
5ph Ls typical N/A
<600nh Lp typical <1.5nh
 Ron typical 
100pf to 2.5nf C typical 100pf to 5.5nf
see VI curves Rv typical see VI curves
 Rp typical 
<250ps Typical turn on time
Typical frequency response <500ps
A comparison table showing typical element parameters and resulting
performance features for MLV and MLVF is shown above.
THROTTLE
DRIVE
THROTTLE
ECU
ACCELERATOR
SENSOR
SENSOR
Fig. 5 – Automotive TransFeed - Throttle by Wire
080216
102
SnPb Multilayer Varistors
Multilayer Varistors with Tin/Lead Termination
HOW TO ORDER STATIC GUARD
HOW TO ORDER – TRANSGUARD®
VCLD 06
VCLD 1206 R B18 400D
LC X R18 500 B
Varistor
Leaded
Termination
(Sn/Pb)
Case
Size
06 = 0603
08 = 0805
12 = 1206
Varistor
Leaded
Termination
(Sn/Pb)
Case
Size
0603
0805
1206
1210
Packaging
D = 7” (1000)
R = 7” (4000 or
2000)
T = 13” (10,000)
Termination
B = Sn/Pb
(5% Pb Min)
Energy
Rating
Clamping
Voltage
Energy
Rating
Low Cap
Design
Energy
Rating
X = 0.05J
A = 0.1J
Packaging
D = 7” (1000)
R = 7” (4000)
T = 13” (10,000)
Working
Voltage
18 = 18Vdc
Clamping
Voltage
500 = 50V
Termination
B = Sn/Pb
(5% Pb Min)
GENERAL DESCRIPTION
   ® and StaticGuard VCLD series with Sn/Pb termination (5% Pb
Min) to support customers that cannot accept pure tin components in their applications. They have
the advantage of offering bi-directional overvoltage protection against transient events such as ESD,
inductive switching, lightning, NEMP as well as EMI/RFI attenuation in a single SMT package.
GENERAL
CHARACTERISTICS
Operating Temperature:
-55°C to +125°C
FEATURES
Sn/Pb termination (5% Pb min)
Bi-Directional protection
Very fast response to ESD strikes
Multi-strike capability
Reliability
EMI/RFI Filtering in the off-state
Radiation resistant
APPLICATIONS
IC Protection
Micro Controllers
Relays
I/O Ports
Keyboard Protection
Portable devices
Radios and more
05 = 5.6Vdc
09 = 9Vdc
12 = 12Vdc
14 = 14Vdc
18 = 18Vdc
26 = 26Vdc
30 = 30Vdc
31 = 31Vdc
150 = 18V
200 = 22V
250 = 27V
300 = 32V
390 = 42V
400 = 42V
540 = 54V
560 = 60V
580 = 60V
620 = 67V
X = 0.05J
A = 0.1J
C = 0.3J
D = 0.4J
G = 0.9J
F = 0.7J
H = 1.2J
38 = 38Vdc
42 = 42Vdc
45 = 45Vdc
48 = 48Vdc
56 = 56Vdc
60 = 60Vdc
65 = 65Vdc
85 = 85Vdc
650 = 67V
770 = 77V
800 = 80V
900 = 90V
101 = 100V
111 = 110V
121 = 120V
131 = 135V
151 = 150V
J = 1.5J
K = 0.6J
L = 0.8J
M = 1J
N = 1.1J
S = 1.9-2.0J
Not RoHS Compliant
Sn/Pb termination
Please contact AVX for availability of other varitstors with SnPb termination.
PHYSICAL DIMENSIONS: mm (inches)
SOLDER PAD DIMENSIONS: mm (inches)
Size (EIA) Length (L) Width (W) Max Thickness (T) Land Length (t)
0603 1.60±0.15
(0.063±0.006) 0.80±0.15
(0.031±0.006) 0.90
(0.035) 0.35±0.15
(0.014±0.006)
0805 2.00.20
(0.079±0.008) 1.25±0.20
(0.049±0.008) 1.02
(0.040) 0.71 max.
(0.028 max.)
1206 3.20±0.20
(0.126±0.008) 1.60±0.20
(0.063±0.008) 1.02
(0.040) 0.94 max.
(0.037 max.)
1210 3.20±0.20
(0.126±0.008) 2.49±0.20
(0.098±0.008) 1.70
(0.067) 0.14 max.
(0.045 max.)
Size (EIA) D1 D2 D3 D4 D5
0603 2.54
(0.100) 0.89
(0.035) 0.76
(0.030) 0.89
(0.035) 0.76
(0.030)
0805 3.05
(0.120) 1.02
(0.040) 1.02
(0.040) 1.02
(0.040) 1.27
(0.050)
1206 4.06
(0.160) 1.02
(0.040) 2.03
(0.080) 1.02
(0.040) 1.65
(0.065)
1210 4.06
(0.160) 1.02
(0.040) 2.03
(0.080) 1.02
(0.040) 2.54
(0.100)
L
W
T
t t
D2
D3
D1
D5
D4
103
SnPb Multilayer Varistors
Multilayer Varistors with Tin/Lead Termination
ELECTRICAL CHARACTERISTICS TRANSGUARD®
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Freq
VCLD060305A150_B 5.6 4.0 8.5±20% 18 135 0.1 30 750 K
VCLD080505A150_B 5.6 4.0 8.5±20% 18 135 0.1 40 1100 K
VCLD080505C150_B 5.6 4.0 8.5±20% 18 135 0.3 120 3000 K
VCLD120605A150_B 5.6 4.0 8.5±20% 18 135 0.1 40 1200 K
VCLD120605D150_B 5.6 4.0 8.5±20% 18 135 0.4 150 3000 K
VCLD060309A200_B 9.0 6.4 12.7±15% 22 125 0.1 30 550 K
VCLD080509A200_B 9.0 6.4 12.7±15% 22 125 0.1 40 750 K
VCLD080512A250_B 12.0 8.5 16.0±15% 27 125 0.1 40 525 K
VCLD060314A300_B 14.0 10.0 18.5±12% 32 115 0.1 30 350 K
VCLD080514A300_B 14.0 10.0 18.5±12% 32 115 0.1 40 325 K
VCLD080514C300_B 14.0 10.0 18.5±12% 32 115 0.3 120 900 K
VCLD120614A300_B 14.0 10.0 18.5±12% 32 115 0.1 40 600 K
VCLD120614D300_B 14.0 10.0 18.5±12% 32 115 0.4 150 1050 K
VCLD060318A400_B 18.0 13.0 25.5±10% 42 110 0.1 30 150 K
VCLD080518A400_B 18.0 13.0 25.5±10% 42 110 0.1 30 225 K
VCLD080518C400_B 18.0 13.0 25.5±10% 42 110 0.3 100 550 K
VCLD120618A400_B 18.0 13.0 25.5±10% 42 110 0.1 30 350 K
VCLD120618D400_B 18.0 13.0 25.5±10% 42 110 0.4 150 900 K
VCLD121018J390_B 18.0 13.0 25.5±10% 42 510 1.5 500 3100 K
VCLD060326A580_B 26.0 18.0 34.5±10% 60 110 0.1 30 155 K
VCLD080526A580_B 26.0 18.0 34.5±10% 60 110 0.1 30 120 K
VCLD080526C580_B 26.0 18.0 34.5±10% 60 110 0.3 100 250 K
VCLD120626D580_B 26.0 18.0 34.5±10% 60 110 0.4 120 500 K
VCLD120626F540_B 26.0 20.0 33.0±10% 54 115 0.7 200 600 K
VCLD121026H560_B 26.0 18.0 34.5±10% 60 510 1.2 300 2150 K
VCLD060330A650_B 30.0 21.0 41.0±10% 67 110 0.1 30 125 K
VCLD080530A650_B 30.0 21.0 41.0±10% 67 110 0.1 30 90 M
VCLD080530C650_B 30.0 21.0 41.0±10% 67 110 0.3 80 250 K
VCLD120630D650_B 30.0 21.0 41.0±10% 67 110 0.4 120 400 K
VCLD121030G620_B 30.0 21.0 41.0±10% 67 510 0.9 220 1750 K
VCLD121030H620_B 30.0 21.0 41.0±10% 67 510 1.2 280 1850 K
VCLD080531C650_B 31.0 25.0 39.0±10% 65 110 0.3 80 250 K
VCLD120631M650_B 31.0 25.0 39.0±10% 65 115 1.0 200 500 K
VCLD080538C770_B 38.0 30.0 47.0±10% 77 110 0.3 80 200 K
VCLD120638N770_B 38.0 30.0 47.0±10% 77 115 1.1 200 400 K
VCLD120642L800_B 42.0 32.0 51.0±10% 80 115 0.8 180 600 K
VCLD120645K900_B 45.0 35.0 56.0±10% 90 115 0.6 200 260 K
VCLD120648D101_B 48.0 34.0 62.0±10% 100 110 0.4 100 225 K
VCLD121048G101_B 48.0 34.0 62.0±10% 100 510 0.9 220 450 K
VCLD121048H101_B 48.0 34.0 62.0±10% 100 510 1.2 250 500 K
VCLD120656F111_B 56.0 40.0 68.0±10% 110 115 0.7 100 180 K
VCLD121060J121_B 60.0 42.0 76.0±10% 120 510 1.5 250 400 K
VCLD120665M131_B 65.0 50.0 82.0±10% 135 115 1.0 150 250 K
VCLD121085S151_B 85.0 60.0 100±10% 150 135 2.0 250 275 K
AVX PN VW (DC) VW (AC) VBVCIVC ILETIPCap Case
VCLD06LC18X500_B   25-40 50 110 0.05 30 50M 0603
VCLD08LC18A500_B   25-45 50 110 0.1 30 80M 0805
VCLD12LC18A500_B   25-45 50 110 0.1 30 200K 1206
ELECTRICAL CHARACTERISTICS STATICGUARD
VW(DC) DC Working Voltage (V)
VW(AC) AC Working Voltage (V)
VBMin-Max Breakdown Votage (V @ 1mADC, 25ºC)
VCClamping Voltage (V @ IVC )
IVC Test Current for VC
IL
ET
IP
Cap RMS,
25°C, K = 1kHz,M = 1MHz
104
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
Transient Voltage Suppression, ESD Protection Devices & EMI Devices
GENERAL DESCRIPTION
AVX’s Professional Multilayer Varistors include 3 series of glass coated products
as listed below:
Standard M0/MC/PC Series
Telecom MT Series
Automotive MA/PA/QA Series
The glass encapsulation process ensures high insulation resistance values after


TYPICAL APPLICATIONS
Mainly used to reduce transient over-voltages in a very wide
range of electronic products. Some example applications are:
1) Telecom, 2) Automotive, 3) Consumer Electronics, and

PHYSICAL CHARACTERISTICS
1. Zinc varistor
2. Glass lead-free encapsulation
3. Silver termination
4. Nickel barrier
5. Tin 100%
PHYSICAL DIMENSIONS: mm (inches)
LW
T
t
Type IEC Size L W T Land Length t
VJ12 0805 2.01±0.20
(0.079±0.008)
1.25±0.15
(0.049±0.006)
1.3 max.
(0.051 max.)
0.15...0.55
(0.006...0.022)
VJ20 1206 3.20±0.20
(0.126±0.008)
1.60±0.20
(0.063±0.008)
1.7 max.
(0.067 max.)
0.25...0.75
(0.010...0.030)
VJ13 1210 3.20±0.30
(0.126±0.012)
2.50±0.25
(0.098±0.010)
1.7 max.
(0.067 max.)
0.25...0.75
(0.010...0.030)
VJ14 1812 4.50±0.30
(0.177±0.012)
3.20±0.30
(0.126±0.012)
2.0 max.
(0.079 max.)
0.25...1.00
(0.010...0.039)
VJ15 2220 5.70±0.40
(0.224±0.016)
5.00±0.40
(0.197±0.016)
2.5max.
(0.098 max.)
0.25...1.00
(0.010...0.039)
VJ32 3220 8.20±0.40
(0.323±0.016)
5.00±0.40
(0.197±0.016)
2.5 max.
(0.098 max.)
0.35...1.30
(0.014...0.051)
PART NUMBERING
VJ 14 MT KBA0950
Varistor Termination
VJ = Plated Ni/Sn100%
VU = Plated Ni/SnPb
VC = Hybrid AgPdPt
Chip Size
12 = 0805
20 = 1206
13 = 1210
14 = 1812
15 = 2220
32 = 3220
Series Code
M0,MC/QC = Industrial
MT = Telecom
MA/PA/QA = Automotive
1mA Voltage
Tolerance
K = ±10%
Packaging
BA = Tape & Reel
VJ12 = 4000 pcs/reel
VJ20 = 3000 pcs/reel
VJ13 = 2000 pcs/reel
VJ14 = 1250 pcs/reel
VJ15 = 1250 pcs/reel
VJ32 = 1000 pcs/reel
Operating
Voltage
AC or DC
080216
105
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
Automotive MLV Range – MA, PA and QA Series
AUTOMOTIVE SERIES VJ12, 20, 13, 14, 15, 32 MA AND PA SERIES
FEATURES
Well suited to protect against automotive related transients
Response time <1ns
Load Dump capability 1J to 50J according to ISO standard
DP7637 pulse 5
Jump start capability
Complying to AEC-Q 200
VJ: Nickel and Tin (100%) plated Termination suitable for lead
free soldering
VC: PdPtAg termination for hybrid assembly without glass
coating
RoHS Compliant, IMDS Registration upon request
GENERAL CHARACTERISTICS
Storage Temperature: -55ºC to +150ºC
Operating Temperature: -55ºC to +125ºC*
* 150°C upon request
Available in case size 0805 to 3220
Working voltage from 16Vdc to 85Vdc
APPLICATIONS
Protection of various semiconductor elements from overvoltage.
Absorption of switching surge and electrostatic surge for relays and motors.
Protection of electronic equipment for automobiles from induced lightning surge.
PART NUMBERS
Case
Size
EIA
Working
Voltage
Breakdown
Voltage at 1mA
Vclamp
(8x20µs)
Max.
Peak
current
(8x20µs)
Max.
leakage
current
at Vdc
Energy
(10x
1000µs)
Energy
Load-
Dump
(x10**)
Jump
Start
(5mn)
Mean
Power
Dissipation
Typical
Cap
1KHz/
.5Vrms
T
max.
Vrms Vdc min Nom max VpIp (A) Amp. µA J J max. V W pF mm
12-16 V Power Supply
*VJ12PA0160K- - 0805 14 16 22 24.5 27 40 1120 15 0.3 124.5 0.005 500 1.3
VJ20MA0160K-- 1206 14 16 22 24.5 27 40 1200 15 0.6 1.5 24.5 0.008 800 1.7
VJ20PA0160K-- 1206 14 16 22 24.5 27 40 1300 15 1.1 224.5 0.008 1 100 1.7
VJ13MA0160K-- 1210 14 16 22 24.5 27 40 2.5 400 15 1.6 324.5 0.010 1 800 1.7
VJ13PA0160K-- 1210 14 16 22 24.5 27 40 2.5 500 15 2 5 24.5 0.010 2 300 1.7
VJ14MA0160K-- 1812 14 16 22 24.5 27 40 5800 15 2.4 624.5 0.015 5 400 2.0
VJ14PA0160K-- 1812 14 16 22 24.5 27 40 51000 15 2.9 10 24.5 0.015 6 200 2.0
VJ15MA0160K-- 2220 14 16 22 24.5 27 40 10 1200 15 5.8 12 24.5 0.030 11 000 2.0
VJ15PA0160K- - 2220 14 16 22 24.5 27 40 10 1500 15 7.2 25 24.5 0.030 16 000 2.0
VJ15QA0160K- - 2220 14 16 22 24.5 27 40 10 2000 15 7.5 35 24.5 0.030 25 000 2.0
VJ32PA0160K-- 3220 14 16 22 24.5 27 40 10 3000 15 13.8 50 24.5 0.040 30 000 2.5
12-22 V Power Supply
VJ20PA0220K-- 1206 17 22 27 30 33 49 1250 15 1 2 26 0.008 1 000 1.7
VJ13PA0220K- - 1210 17 22 27 30 33 49 2.5 400 15 1.7 526 0.010 2 000 1.7
VJ14PA0220K-- 1812 17 22 27 30 33 49 5700 15 2.5 10 26 0.015 6 000 2.0
VJ15PA0220K- - 2220 17 22 27 30 33 49 10 1500 15 6.8 25 26 0.030 15 000 2.0
VJ32PA0220K-- 3220 17 22 27 30 33 49 10 3000 15 13 50 26 0.040 25 000 2.5
12-26 V Power Supply
VJ20PA0260K-- 1206 23 26 31.5 35 38.5 57 1200 15 1 2 30 0.008 600 1.7
VJ13PA0260K- - 1210 23 26 31.5 35 38.5 57 2.5 300 15 1.7 530 0.010 1 200 1.7
VJ14PA0260K-- 1812 23 26 31.5 35 38.5 57 5600 15 2.5 10 30 0.015 3 000 2.0
VJ15PA0260K-- 2220 23 26 31.5 35 38.5 57 10 1500 15 6.8 25 30 0.030 7 000 2.0
VJ32PA0260K-- 3220 23 26 31.5 35 38.5 57 10 3000 15 13 50 30 0.040 15 000 2.5
24-34 V Power Supply
VJ20PA0340K-- 1206 30 34 42.3 47 51.7 77 1200 15 1.5 1.5 47 0.008 300 1.7
VJ13PA0340K-- 1210 30 34 42.3 47 51.7 77 2.5 350 15 3.5 3 47 0.010 650 1.7
VJ14PA0340K-- 1812 30 34 42.3 47 51.7 77 5600 15 5 6 47 0.015 1 800 2.0
VJ15MA0340K-- 2220 30 34 42.3 47 51.7 77 10 1200 15 10 12 47 0.030 4 000 2.0
VJ15PA0340K-- 2220 30 34 42.3 47 51.7 77 10 1500 15 12 25 47 0.030 7 000 2.0
VJ32PA0340K-- 3220 30 34 42.3 47 51.7 77 10 3000 15 13 50 47 0.040 10 000 2.5
24-42 V Power Supply
*VJ20PA0420K-- 1206 37 42 50.4 56 61.6 91 1 150 15 1.5 1.5 47 0.008 140 1.7
*VJ13PA0420K- - 1210 37 42 50.4 56 61.6 91 2.5 250 15 3.5 3 47 0.010 300 1.7
*VJ14PA0420K-- 1812 37 42 50.4 56 61.6 91 5 500 15 5 6 47 0.015 800 2.0
*VJ15PA0420K-- 2220 37 42 50.4 56 61.6 91 10 1500 15 12 12 47 0.030 1 800 2.0
*VJ32PA0420K-- 3220 37 42 50.4 56 61.6 91 10 3000 15 13 50 47 0.040 2 800 2.5
* under development
** time interval between pulses: 60s min.
VC with hybrid solderable termination same electrical characteristics
Other voltage or energy values available upon request
080216
106
Automotive MLV Range – MA, PA and QA Series
Case
Size
EIA
Working
Voltage
Breakdown
Voltage at 1mA
Vclamp
(8x20µs)
Max.
Peak
current
(8x20µs)
Max.
leakage
current
at Vdc
Energy
(10x
1000µs)
Energy
Load-
Dump
(x10**)
Jump
Start
(5mn)
Mean Power
Dissipation
Typical
Cap
1KHz/
.5Vrms
T
max.
Vrms Vdc min Nom max VpIp (A) Amp. µA J J max. V W pF mm
24-65 V Power Supply
*VJ20MA0650K-- 1206 50 65 76.5 85 93.5 135 1150 15 1.5 1.5 70 0.008 200 1.7
*VJ13MA0650K-- 1210 50 65 76.5 85 93.5 135 2.5 250 15 3.5 370 0.010 200 1.7
*VJ14MA0650K-- 1812 50 65 76.5 85 93.5 135 5500 15 5 6 70 0.015 400 2.0
*VJ15MA0650K-- 2220 50 65 76.5 85 93.5 135 10 1000 15 12 12 70 0.030 800 2.0
*VJ32MA0650K-- 3220 50 65 76.5 85 93.5 135 10 1500 15 13 50 70 0.040 3500 2.5
24-85 V Power Supply
*VJ20MA0850K-- 1206 60 85 99 110 121 165 1120 15 1.5 1.5 90 0.008 120 1.7
*VJ13MA0850K-- 1210 60 85 99 110 121 165 2.5 200 15 3.5 390 0.010 200 1.7
*VJ14MA0850K-- 1812 60 85 99 110 121 165 5500 15 5 6 90 0.015 400 2.0
*VJ15MA0850K-- 2220 60 85 99 110 121 165 10 1000 15 12 12 90 0.030 800 2.0
*VJ32MA0850K-- 3220 60 85 99 110 121 165 10 1500 15 13 50 90 0.040 2500 2.5
* under development
** time interval between pulses: 60s min.
VC with hybrid solderable termination same electrical characteristics
Other voltage or energy values available upon request
TEMPERATURE CHARACTERISTICS
For Current, Energy and Power
IMPEDANCE CHARACTERISTICS
100
120
80
60
40
20
0
-55 -25 0 25
Ambient Temperature (°C)
Percent of Rating Value
50 75 100 125 150
VJ15PA0160K
VJ15MA0160K
VJ14MA0160K
VJ13MA0160K
VJ20MA0160K
VJ15MA0340K
100
10
1
0.1
0.01
1,000 10,000 100,000
Frequency (kHz)
Z (Ohms)
1,000,000
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
107
Automotive MLV Range – MA and PA Series
AUTOMOTIVE SERIES VJ12, 20, 13, 14, 15, 32 MA AND PA SERIES
V / I CHARACTERISTICS PULSE RATING
V / I Characteristics : Automotive Parts
0
50
100
150
200
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
I (A)
V (V)
VJ20MA0160K
VJ13MA0160K
VJ14MA0160K
VJ14PA0160K
VJ15MA0160K
VJ15PA0160K
VJ15PA0340K
VJ32PA0160K
1E-06
Pulse Rating
0.10%
1.00%
10.00%
100.00%
10 100 1000 10000
Pulse Duration (µs)
% of peak current rating
1 Repetition (Top)
2 Repetitions
10 Repetitions
10E2 Repetitions
10E3 Repetitions
10E4 Repetitions
10E5 Repetitions
10E6 Repetitions
Innite (bottom)
TA% max
TEMPERATURE DEPENDENCE OF V/I CHARACTERISTICS
VJ20MA0160K
10
100
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02
Current (A)
-40°C
+25°C
+85°C
+125°C
V/V1mA (%) VJ13MA0160K
10
100
Current (A)
V/V1mA (%)
1E-06 1E-05 1E-04 1E-03 1E-02
-40°C
+25°C
+85°C
+125°C
VJ14MA0160K
10
100
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02
Current (A)
-40°C
+25°C
+85°C
+125°C
V/V1mA (%)
VJ15MA0160K
10
100
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01
-40°C
+25°C
+85°C
+125°C
Current (A)
V/V1mA (%)
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
108
Automotive MLV Range – MA and PA Series
AUTOMOTIVE SERIES VJ12, 20, 13, 14, 15, 32 MA AND PA SERIES
PULSE DEGRADATION
VJ14PA0160
10
100
1,000
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01
Current (A)
Voltage as a percent of
breakdown voltage
+25°C
+25°Cinter (%)
+25°Cnal (%)
+85°C
+125°C
VJ15PA0160K
10
100
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02
-40°C
+25°C
+85°C
+125°C
C t (A)
V/V1mA (%)
VJ15MA0340K
10
100
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02
Current (A)
-40°C
+25°C
+85°C
+125°C
Repetitive Peak Current Strikes
0%
2%
4%
6%
8%
10%
12%
14%
16%
0 100 200 300 400 500 600
Number of strikes
Change in breakdown
voltage (%)
VJ20MA0160K @200A
VJ13MA0160K @400A
VJ14MA0160K @800A
VJ15PA0160K @1200A
VJ15MA0160K @1200A
VJ15MA0340K @1200A
VJ14PA0160K @1000A
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
109
Automotive MLV Range – MA and PA Series
AUTOMOTIVE SERIES VJ12, 20, 13, 14, 15, 32 MA AND PA SERIES
AUTOMOTIVE LOAD DUMP TEST
(According to ISO DP7637/2 Pulse 5)
V
z
V
i
0V
Tr
Td
10%
90%
t
When using the test method indicated below, the amount of
Energy dissipated by the varistor must not exceed the Load Dump

Voltage Pulse applied to the varistor:
12V Network
Vi = 13.5V
Td = 100 to 350ms
Ri = 2 Ohms (Internal Resistance)
Vz - 70 to 200V
Number of Pulses = 10 Pulses
Other Load Dump Simulations can be achieved
24V Network
Vi = 27V
Td = 100 to 350ms
Ri = 2 Ohms (Internal Resistance)
Vz - 70 to 200V
Number of Pulses = 10 Pulses
Pulse 5: Typical Vz max versus Pulse duration and Rs
VJ20PA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
50ms 33 34 39 49
100ms 31 31 34 43
200ms 27 28 33 43
400ms 28 30 34 42
VJ13PA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
50ms 44 48 57 75
100ms 36 39 46 60
200ms 33 33 39 50
400ms 28 28 34 46
VJ14PA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
50ms 60 68 85 125
100ms 46 52 62 77
200ms 37 41 50 63
400ms 32 35 43 54
VJ15PA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
50ms 80 116 145 188
100ms 61 80 104 140
200ms 47 60 78 100
400ms 39 47 58 74
VJ15QA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
100ms 65 78 91 117
200ms 54 60 73 92
400ms 44 51 60 75
VJ15MA0340K 0.5 Ω 1 Ω 2 Ω 4 Ω
100ms 66 78 91 117
200ms 55 60 73 92
400ms 49 53 60 75
VJ15PA0340K 0.5 Ω 1 Ω 2 Ω 4 Ω
100ms 80 90 108 134
200ms 60 67 80 106
400ms 58 62 69 85
VJ32PA0160K 0.5 Ω 1 Ω 2 Ω 4 Ω
100ms 102 120 175 200
200ms 72 85 120 158
400ms 53 62 78 105
VJ32PA0340K 0.5 Ω 1 Ω 2 Ω 4 Ω
100ms 90 105 133 170
200ms 70 79 98 132
400ms 62 70 83 106
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
110
Industrial MLV Range – M0 Series
INDUSTRIAL MLV RANGE VJ12, 20, 13, 14, 15 M0 SERIES
FEATURES
Glass encapsulation device with very low leakage current
under DC operating conditions
Device available in case size 1206, 1210, 1812, 2220
(3220)
Nickel and Tin (100%) plated Termination (Hybrid AgPdPt
termination available upon request)
Bi-Directional protection. Fast Turn-On Time.
Excellent transient clamping characteristics up to
1200amps peak current
Multi strike capability. Provide EMC Capacitance
RoHS Compliant
GENERAL CHARACTERISTICS
Storage Temperature: -55ºC to +150ºC
Operating Temperature: -55ºC to +125ºC
TYPICAL APPLICATIONS
Many uses to reduce transient over-voltage in the very wide range of electronic
products in the Professional, Industrial and Consumer Applications.
Type Case Size Vrms VDC Breakdown
Voltage
Max.
Clamping
Voltage
Maximum
Leakage
Current
Energy
10*1000μs
Max. Peak
Current
8*20μs
Cap. Typical
(1KHz/0.5V)
(V) (V) (V) Vp (V) lp (A) μA (J) (A) (pF)
VJ20M00140K--- 1206 14 18 22±10% 38 115 0.5 200 800
VJ13M00140K--- 1210 14 18 22±10% 38 2.5 15 1.5 400 1800
VJ14M00140K- -- 1812 14 18 22±10% 38 515 2.3 800 4200
VJ15M00140K--- 2220 14 18 22±10% 38 10 15 5.8 1200 9600
VJ20M00170K--- 1206 17 22 27±10% 44 115 0.6 200 800
VJ13M00170K--- 1210 17 22 27±10% 44 2.5 15 1.7 500 1600
VJ14M00170K--- 1812 17 22 27±10% 44 515 2.7 800 3700
VJ15M00170K--- 2220 17 22 27±10% 44 10 15 7.2 1200 8600
VJ20M00200K--- 1206 20 26 33±10% 54 115 0.7 200 600
VJ13M00200K--- 1210 20 26 33±10% 54 2.5 15 1.9 400 1200
VJ14M00200K--- 1812 20 26 33±10% 54 515 3800 3000
VJ15M00200K--- 2220 20 26 33±10% 54 10 15 7.8 1200 6400
VJ20M00250K--- 1206 25 31 39±10% 65 115 1200 400
VJ13M00250K--- 1210 25 31 39±10% 65 2.5 15 1.7 300 1100
VJ14M00250K--- 1812 25 31 39±10% 65 515 3.7 800 2400
VJ15M00250K--- 2220 25 31 39±10% 65 10 15 9.6 1200 5500
VJ20M00300K--- 1206 30 38 47±10% 77 115 1.1 200 350
VJ13M00300K--- 1210 30 38 47±10% 77 2.5 15 2300 750
VJ14M00300K--- 1812 30 38 47±10% 77 515 4.2 800 1900
VJ15M00300K--- 2220 30 38 47±10% 77 10 15 12 1200 4200
VJ20M00350K--- 1206 35 45 56±10% 90 115 0.6 200 260
VJ13M00350K--- 1210 35 45 56±10% 90 2.5 15 1.5 300 530
VJ14M00350K--- 1812 35 45 56±10% 90 515 4500 1400
VJ15M00350K--- 2220 35 45 56±10% 90 10 15 7.7 1000 2800
VJ20M00400K--- 1206 40 56 68±10% 110 115 0.7 200 180
VJ13M00400K--- 1210 40 56 68±10% 110 2.5 15 2.3 250 380
VJ14M00400K--- 1812 40 56 68±10% 110 515 4.8 500 800
VJ15M00400K--- 2220 40 56 68±10% 110 10 15 91000 2000
VJ20M00500K--- 1206 50 65 82±10% 135 115 0.8 200 160
VJ13M00500K--- 1210 50 65 82±10% 135 2.5 15 1.6 200 300
VJ14M00500K--- 1812 50 65 82±10% 135 515 4.5 400 800
VJ15M00500K--- 2220 50 65 82±10% 135 10 15 5.6 800 1400
VJ20M00600K--- 1206 60 85 100±10% 165 115 0.9 120 100
VJ13M00600K--- 1210 60 85 100±10% 165 2.5 15 2.0 200 210
VJ14M00600K--- 1812 60 85 100±10% 165 515 5.8 400 600
VJ15M00600K--- 2220 60 85 100±10% 165 10 15 6.8 800 1100
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
111
Industrial MLV Range – M0 Series
INDUSTRIAL MLV RANGE VJ12, 20, 13, 14, 15 M0 SERIES
V/I CHARACTERISTIC
VI Curves 18V, 22V, and 26V
0
50
100
150
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000
Current (A)
Voltage (V)
1E-06
18V, 1.6J
22V, 1.6J
26V, 1.9J
26V, 3J
VI Curves 31V, 38V, and 45V
50
0
100
150
200
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000
Current (A)
Voltage (V)
1E-06
31V, 1.7J
38V, 1.1J
38V, 2J
38V, 4.2J
45V, 1.5J
Current (A)
0
50
100
150
200
250
1E-06 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000
Voltage (V)
56V
65V, 1.6J
85V, 1.5J
VI Curves 56V, 65V, and 85V
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
112
Industrial MLV Range – MC/PC Series
INDUSTRIAL MLV RANGE VJ13 MC/PC SERIES
FEATURES
Glass encapsulation device with very low leakage current under
DC operating conditions
Device available in 1210 case size
Bi-Directional protection. Fast Turn-On Time.
Nickel and Tin (100%) plated Termination (Hybrid AgPdPt
termination available upon request)
Excellent transient clamping characteristics up to 500amps peak
current
Multi strike capability. Provide EMC Capacitance
RoHS Compliant
GENERAL CHARACTERISTICS
Storage Temperature: -55ºC to +150ºC
Operating Temperature: -55ºC to +125ºC
Working Voltage: 18Vdc to 60Vdc
TYPICAL APPLICATIONS
Protection of various semiconductor elements from overvoltage
Industrial equipment
Consumer Electronics
Plug-in cards, remote controls
Home automation
Part Number
Working
Voltage
Breakdown Voltage
Voltage at 1mA
Vclamp
(8x20µs)
max.
peak current
(8x20µs)
Energy
(10x1000µs)
CAP
(1KHz/.5Vrms)
Vdc min Nom max Vp Ip(A) Amp. J pF
VJ13MC0180K-- 18 21.6 24 26.5 45 10 500 1.5 2200
VJ13MC0260K-- 26 29.7 33 36.3 62 10 300 1.2 1200
VJ13MC0300K-- 30 35.1 39 42.9 73 10 220 0.9 1000
VJ13PC0300K-- 30 35.1 39 42.9 73 10 280 1.2 1000
VJ13MC0480K-- 48 54.5 60.5 66.5 110 10 220 0.9 530
VJ13PC0480K-- 48 54.5 60.5 66.5 110 10 250 1.2 500
VJ13MC0600K-- 60 67 75 83 126 10 250 1.5 400
VC with hybrid solderable termination same electrical characteristics
Other voltage values available upon request
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
113
Telecom MLV Range – MT Series
TELECOM MLV RANGE - VJ14 MT SERIES
FEATURES
Effective alternative to leaded MOVs between 60 and
90 Vrsm
High Energy Ratings up to 6 Joules with 1812 case size
Nickel barrier or hybrid AgPdPt terminations
Multiple Strike Capability
Provide EMC Capacitance

RoHS Compliant and IMDS Registration

          
often used to check the interference immunity of Telecom equipment.
The curves show that the 60Vrms Varistor can reduce the interference of the
equipment from 2KV to less than 200V.
TARGET APPLICATIONS
Phone Lines, ADSL Lines, and other Telecom Circuits
Consumer Products
GENERAL CHARACTERISTICS
Storage Temperature: -55ºC to +125ºC
Operating Temperature: -55ºC to +125ºC


The curves show the V1mA drift when more than 10 pulses are applied.
Part Number Case Size Operating
Voltage
Breakdown
Voltage
Max. Clamping
Voltage
CCITT
10 Pulses
10*700μs
l max.
8*20μs
Energy
10*1000μs
Mean Power
Dissipation
Typical
Cap.
EIA Vac Vdc V(1mA) V Amp. Amp. Amp. Joules WpF
VJ14MT0600--- 1812 60 85 107 200 45 45 400 60.015 400
VJ14MT0750--- 1812 75 100 120 250 45 45 400 60.015 400
VJ14MT0950--- 1812 95 125 150 270 45 45 250 50.015 280
PART NUMBERS
Hybrid termination AgPdPt (VC Range) upon request
60Vrms
95Vrms
10%
8%
6%
4%
2%
0%
1 10 100
Pulses
dV/V1mA
1000
10/700 Pulse Test Capability
Typical V1mA Drift
With a 60Vrms Telecom Varistor
(Protection level <200V)
Without Varistor
(Open-circuit voltage)
2000
1500
1000
500
00 0.2 0.4 0.6 0.8
Time (ms)
Voltage
1 1.2 1.4 1.6
10/700 Telecom Test Pulse Wave-Form
Glass Encapsulated MLV
SMD Varistor (VJ12, 20, 13, 14, 15, 32)
080216
114
Glass Encapsulated MLV
SMD Varistor (VJ32/VC32)
GENERAL DESCRIPTION
The VJ32/VC32M0 Series offers the designer a surface mount
solution with higher voltage ratings and transient energy ratings.
This Multilayer Layer Surface Mount Varistor replaces the
traditional radial-lead Varistors with reduced size and weight. The
glass encapsulation ensures the high performances in voltage up to
300Vrms reliability and acid-resistance against harsh environment

LEAD-FREE COMPATIBLE
COMPONENT
FEATURES
Lead less surface mount chip 3220 Case Size
Voltage Ratings from 175Vrms to 300 Vrms
VJ32 with Ni barrier/100% Sn Termination (for lead free
soldering applications)
VC32 with hybrid PdPtAg Termination (not suitable for
lead free soldering)
Operating temperature from -55°C to +85°C
RoHS Compliant
APPLICATIONS
MOV (Radial) Replacement
Suppression of transient on line voltage
Electric Meters
Industrial Equipment
Mains PSUs
Telecommunications
Consumer Electronics
PART NUMBERS
VC32 Series with solderable hybrid termination. Glass encapsulation from 115Vrms to 300Vrms.
Other voltage values available upon request
AVX Part Number Case
Size
Operating
voltage
Breakdown Voltage
Voltage at 1mA
Max. Clamping
Voltage 8*20μs
Max.
Leakage
Current
Energy
10*1000μs
Max. Peak
Current
8*20μs
1 Pulse
Cap.
Typical
(1KHz,0.5V)
Vrms Vdc Min. Average Max. V A μA Joule ApF
VJ32M00140K-- 3220 14 18 19.8 22 24.2 47 10 15 0.7 1500 15000
VJ32M00170K-- 3220 17 22 24.3 27 29.7 57 10 15 0.9 1500 15000
VJ32M00200K-- 3220 20 26 29.7 33 36.3 68 10 15 1.1 1500 15000
VJ32M00250K-- 3220 25 31 35.1 39 42.9 79 10 15 1.2 1500 15000
VJ32M00300K-- 3220 30 38 42.3 47 51.7 92 10 15 1.5 1500 15000
VJ32M00350K-- 3220 35 45 50.4 56 61.6 107 10 15 1.8 1200 5000
VJ32M00400K-- 3220 40 56 61.2 68 74.8 127 10 15 2.2 1200 5000
VJ32M00500K-- 3220 50 66 73.8 82 90.2 135 10 15 2.5 1000 3500
VJ32M00600K-- 3220 60 85 90.0 100 110 165 10 15 31000 2500
VJ32M00750K-- 3220 75 102 108 120 132 200 10 15 3.5 600 2000
VJ32M00900K-- 3220 95 127 135 150 165 250 10 15 6600 1500
VJ 32 M0115 0K- - 3220 115 153 162 180 198 295 10 15 6.5 300 350
VJ32M00131K- - 3220 130 175 180 200 220 340 10 15 7300 170
VJ32M00141K-- 3220 140 180 198 220 242 360 10 15 7.5 300 140
VJ32M00151K-- 3220 150 200 216 240 264 395 10 15 9300 130
VJ32M01750K-- 3220 175 225 243 270 297 455 10 15 9.5 300 120
VJ32M00231K-- 3220 230 300 324 360 396 595 10 15 10 300 80
VJ32M00251K-- 3220 250 330 351 390 429 650 10 15 11 300 75
VJ32M02750K-- 3220 275 369 387 430 473 710 10 15 13 300 70
VJ32M00301K-- 3220 300 385 423 470 517 775 10 15 15 300 65
080216
115
Glass Encapsulated MLV
SMD Varistor (VJ13, 14, 15, 20)
Surface Mounting Guide
SURFACE MOUNTING GUIDE (VJ13, 14, 15, 20, 32)
APPLICATIONS NOTES
SOLDERABILITY/LEACHING
Terminations to be well soldered after immersion in a 60/40 tin/lead solder
bath at 235±5ºC for 2±1 seconds. Terminations will resist leaching for at
least the immersion times and conditions recommendations shown below.
P/N Termination Type Solder
Tin/Lead
Solder
Temp. ºC
Immersion
Time (sec)
VJ
Plated MLV
Nickel and Matte Tin
Plating Termination
60/40 260±5 30±1
Unplated MLV Plated MLV
Electrodes
Ceramic
Thick
Film
Material
Electrodes
Solder Layer
Nickel Layer
Ceramic
Thick
Film
Material
RECOMMENDED SOLDERING PROFILES
VJ products are compatible with a wide range of soldering conditions
consistent with good manufacturing practice for surface mount components.

          
reference.
VC products are recommended for lead soldering application
or gluing techniques.
Temperature (ºC)
300
250
200
150
100
50
0
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
MAXIMUM TEMPERATURE 260ºC
20 - 40 SECONDS WITH 5ºC
RAMP RATE
< 3ºC/s
PREHEAT ZONE
60 - 150 SEC
> 217ºC
VJ Products Lead-Free Reflow Profile
The visual standards used for evaluation of solder joints will need to be


Lead-free solder pastes do not allow the same self alignment as lead
containing systems. Standard mounting pads are acceptable, but machine

RECOMMENDED
SOLDER PAD
LAYOUT
REFLOW SOLDERING Dimensions in mm (inches)
WAVE SOLDERING Dimensions in mm (inches)
Case Size D1 D2 D3 D4 D5
1206 4.00
(0.157)
1.00
(0.039)
2.00
(0.079)
1.00
(0.039)
1.06
(0.042)
1210 4.00
(0.157)
1.00
(0.039)
2.00
(0.079)
1.00
(0.039)
2.05
(0.081)
1812 5.60
(0.220)
1.00
(0.039)
3.60
(0.142)
1.00
(0.039)
3.00
(0.118)
2220 6.60
(0.260)
1.00
(0.039)
4.60
(0.181)
1.00
(0.039)
5.00
(0.197)
3220 10.21
(0.402)
2.21
(0.087)
5.79
(0.228)
2.21
(0.087)
5.50
(0.217)
Case
Size D1 D2 D3 D4 D5
1206 5.00
(0.197)
1.50
(0.059)
2.00
(0.079)
1.50
(0.059)
1.06
(0.042)
1210 5.00
(0.197)
1.50
(0.059)
2.00
(0.079)
1.50
(0.059)
2.05
(0.081)
1812 6.60
(0.260)
1.50
(0.059)
3.60
(0.142)
1.50
(0.059)
3.00
(0.118)
2220 7.60
(0.299)
1.50
(0.059)
4.60
(0.181)
1.50
(0.059)
5.00
(0.197)
3220 11.21
(0.441)
1.50
(0.059)
5.79
(0.228)
1.50
(0.059)
5.50
(0.217)
D1
D2
D3
D4
D5
080216
116
Application Guide
Typical Circuits
Requiring Protection
The following applications and schematic diagrams show where
TransGuards® might be used to suppress various transient voltages:
ASIC Reset & Vcc Protection
Micro Controllers, Relays, DC Motors
I/O Port Protection
Keyboard Protection
Modem Protection
Sensor Protection

Audio Circuit Protection
LCD Protection
Optics Protection
117
ASIC RESET & V PROTECTION
MICRO CONTROLLERS RELAYS, DC MOTORS
TRANSGUARD® CHARACTERISTICS

ENERGY RATING TYPICALLY > 0.3J
CAPACITANCE IS OF NO CONCERN
1 µf 0.1 µf0.01 µf
5.6V 0.1-0.4J
5.6V 0.1J
IOCK S
IOCS16 1
IRQSETO
IRQSET1
Vcc
RADO-7
AO-23
BHE
NPBUSY
CPUCLK
GND
DPH
DRQIN
NPERR
HLDA
ICHRDY
RESET
MASTER
MNIO
RDYIN
PCUIN
DO-15
PDREF
BCLK2
CLK14
IOR
IOW
LA20
CASH0
CASLO0
CASH1
CASL1
CASH2
CASL2
CASH3
CASL3
RAS0
RAS1
RAS2
RAS3
RAS4
VCC
RELAY
18V 0.4J
IN 1
IN 2
1/2 MM74C908 MM74C918
+5V +28V
RELAY
30V 0.4J
IN 1
IN 2
1/2 LM319
REVIRD YALER 913MLREVIRD YALER SOMC
= TransGuard®
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Typical Circuits Requiring Protection
118
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Typical Circuits Requiring Protection
I/O PORT PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE TYPICALLY 14V - 18V
ENERGY RATING TYPICALLY 0.05J - 0.1J
CAPACITANCE SHOULD BE MINIMIZED
KEYBOARD PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE >5.6V
ENERGY RATING TYPICALLY <0.4J
CAPACITANCE PREFERRED TO BE MINIMUM
= TransGuard®
IOCS16
HDCS1
IDED7
HDCSO
IDEENLO
IDEENHI
AVCC
SETCUR
AVSS
RVI
FILTER
FGND250
FGND500
DO-D9
TC
DACK
IRQ3
IRQ4
PINTR
FINTR
IOR
AEN
FDRQ
RESET
PWRGD
INDEX
MTRO
DRV1
DRVO
MTR1
DIR
STEP
WDATA
WG ATE
TRKO
WRPRT
D C D T
T T S D
R S R X
22 2 2
R H D AO
D D S
A S K
T E C -
A L H
G A9
RXD2
DCD2
R12
DTR1
CTS1
RTS1
DSR1
TXD1
RXD1
DCD1
RI1
Vcc
STROBE
AUTOF
ERROR
INIT
SLCTIN
PARALLEL
OUTPUT
0 TO 7
ACK
BUSY
PE
SLCT
X2
X1/CLK
PREN
DRVTYP
R
R
R
R
R
D
D
D
D
MAX 211
DRVR/RCVR
NOITATS KROW & KOOBETONSADP & KOOBETON BUS
74AHCT05 FERRITE
BEAD
DATA
14V - 18V 0.1J
74AHCT05 FERRITE
BEAD
CLOCK
14V - 18V 0.1J
KEYBOARD
CONTROLLER
119
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Typical Circuits Requiring Protection
MODEM PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE <26V

SENSOR PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE TYPICALLY >14V
ENERGY RATING > 0.4J
CAPACITANCE IS NO CONCERN
= TransGuard®
+5V
330 pf 2/5/9
14
1
4
10
7
3
6
8
P1/8
P1/4
P1/2
P1/1
P1/3
P1/6
P1/5
S1-5
+12V
-12V
3
6
8
14 1 7
2
4
5
9
10
1489
1488
Am7910
1 megohm
+5V -5V
249/22
RD
CTS
CD
DTR
RTS
TD
MC0
MC1
MC2
MC3
MC4
RC
TC
24
23
RES
RING
BRTS
10K ohm
0.68 µf
0.68 µf
15 pf
22 pf
2000 pf
100 ohm
1 megohm
33 nf
1.2K ohm
1.2K ohm
+5V
+5V
1 µf 180 ohm 1N4004 1N4004
120V MOV 1N4004 14V 0.4J 0.01 µf32
120
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Typical Circuits Requiring Protection
ANTENNA AND PREAMPLIFIER PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE TYPICALLY 18V - 26V
ENERGY RATING 0.05J - 0.9J
CAPACITANCE OF CONCERN ON MANY DESIGNS
AUDIO CIRCUIT PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE TYPICALLY 14V - 18V
ENERGY RATING 0.1J
= TransGuard®
PREAMPLIFIER PROTECTION
PAGER AUDIO PROTECTION NOTEBOOK, WORK STATION AUDIO PROTECTION
+5V
10 µh
15 pf
RF
INPUT 0.01 µf
1.8K ohm
MPF102
26V 0.1J 1 megohm
100 ohm
180 pf
0.01 µf
NEXT
STAGE
Vcc
INPUT FROM
up OR DRIVER IC 2N2907
14V 0.1J
14V 0.1J
2N2222
IN
IN
68 ohm 68 ohm
1K ohm
121
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Typical Circuits Requiring Protection
LCD PROTECTION
TRANSGUARD® CHARACTERISTICS
WORKING VOLTAGE < 5.6V
ENERGY RATING < 0.1J
OPTICS PROTECTION
TRANSGUARD® CHARACTERISTICS

ENERGY RATING 0.1J
CAPACITANCE SHOULD BE MINIMIZED
= TransGuard®
OPTO ISOLATER PROTECTION LASER DIODE PROTECTION
D0-D7
WR
RD
CE
C/D
FS
RESET
VC06LC18X500
StaticGuard
4.91 MHz TRANSGUARD®
OPTIONAL
8
12
8
4
3
64
240
3
LSI
CONTROLLER
COM.
DRIVER
x1
LCD
240 x 64
SEG
DRIVER
x3
S - RAM
MICRO
CONTROLLER
OPTO
TRIAC
TRIAC
5V
330 ohm
330 ohm
OUTPUT
SIGNAL
OUTPUT
SIGNAL
5.6V 0.1J
3.9K ohm
3.9K ohm
330 ohm
2N2222
1N4148
1N4148
0.1 µf
1 ohm
100 ohm
2N4400
2N4400
2N6659
2N6659
18V 0.1J
VN64GA
LASER
DIODE
100 pf
1K ohm
122
General Applications (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
AUTOMOTIVE TRANSIENTS
Todays automobiles are using new technologies based on electronics
systems connected by wide variety of networks to provide increased safety,
convenience and comfort, to reduce emissions, increase

During the lifetime these systems are subjected to many overvoltage
transient surges. To ensure safe and reliable function it is necessary to
protect these sensitive systems against overvoltage surges.
AUTOMOTIVE POWER RAIL TRANSIENTS
The transients on automotive power rails are usually medium to high energy
transients and are caused by engine start such as Jump start (connecting
other cars battery to jump start the engine), Load Dump (sudden load
disconnect from alternator) or inductive switching (caused by DC motors
on/off switching - e.g. window lifter, wipers, adaptive headlights). These
transients are typically bi-directional.
±25kV Air Discharge
±8kV HBM 800V Machine
Model
2kV Charge
Device Model
0V
Nominal Voltage
AUTOMOTIVE DATA LINE TRANSIENTS
Data lines connecting the automotive systems need to be protected against
varisous ESD pulses to ensure sensitive electronics protection. These
transients are mainly caused by human interaction with the electronics
systems (controls, buttons, ports) or by interaction between systems due to
different charge build up. These transients are typically
bi- directional and very fast.
Load Dump
87V
Voltage Spikes
+100/-150V
+/-25kV ESD
Spikes
24V Jump Start
Reverse Battery
0V
Nominal Voltage
DIODE PROTECTION METHOD
THREE COMPONENT SOLUTION
TVS + EMI
XCVR
TVS DiodesMultiLayer Varistors (MLVs)
BUS
EMC
CAP
MLV PROTECTION METHOD
SINGLE COMPONENT SOLUTION
TVS & EMI
XCVR BUS
AVX MULTILAYER VARISTORS

for the use of AVX MultiLayer Varistors (MLVs).
AVX AUTOMOTIVE VARISTORS ADVANTAGES

Bi-directional protection
Compact footprint
Very fast response - sub ns

Multiple strikes capability
No derating over operating temperature range
(-55°C to +125°C, 150°C available)
RoHS compliant
Optional hybrid termination (Pd/Ag) available
AVX Automotive Series Varistors provide reliable protection against
automotive related transients - such as Load Dump, Jump Start and ESD
to protect the growing number of electronics systems used in automotive
applications. Transient examples:
Load dump (ISO 7637-2-5)
Jump Start
ISO 7637 Pulse 1-3
IEC 61000-4-2, etc.
AEC-Q200-002
ISO 10605
ISO 16750-2
CI-220
CI-260
The parts offer fast turn on time, bi-directional protection, excellent multiple

can improve overall system EMC performance.
High power MLV designs have been revised and miniaturized to allow

When used in communication bus designs, MLVs can save approximately
90% of the board area involved with diode/EMC cap solutions. In addition,
MLVs offer a FIT rate <0.1, an ability to be used at temperatures up to 150°C
and a fast turn on time.
123
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
MLVs have traditionally been used in inductively generated automotive
transient suppression applications such as motors, relays and latches.
MLVs offer a large in rush current capability in a small package, high-

capacitance. These, coupled with an extremely low FIT rate and excellent
process capability makes MLVs a common device in today’s intermediate to
high power automotive circuit protection.
AUTOMOTIVE COMMUNICATION BUS
AVX varistors are indeal choice for automotive circuit protection thanks to

from low capacitance components for high speed data lines/RF circuits up
to high energy varistors for load dump and jump start requirements on power
lines or low speed data lines such as LIN Bus. AVX also offers automotive

EMC system performance.
Automotive electronic systems are connected by various network systems
depending on the data speed requirements. Most common networks include:
LIN (LOCAL INTERCONNECT NETWORK)
LIN Bus operates at slower data speeds up to 20kbps and provides reliable
low cost automotive networking. Typical applications are e.g. window lifter,
door lock, seat controls, mirror controls, wipers, rain sensors etc.
CAN (CONTROLLER AREA NETWORK)
CAN Bus is is a vehicle bus standard designed to allow microcontrollers
and devices to communicate with each other within a vehicle without a host
computer. CAN Bus supports data speeds up to 1Mbps. Typical applications
are ECU connection to transmission, door locks, adaptive headlights, climate
control, etc.
MOST (MEDIA ORIENTED SYSTEMS
TRANSPORT)
MOST is standard for high-bandwidth automotive multimedia networking.
This network provides excellent Quality of Service and seamless connectivity
for audio/video streaming through variety of multimedia interfaces such as
DVD player, head set, voice control.
FLEXRAY
FlexRay is an automotive network communications protocol to govern on-
board automotive computing. It is designed to be faster and more reliable
than CAN and TTP intended for drive-by-wire applications.
Example of suitable AVX series based on data speed and line type is shown
below:
SERIES BUS DATA SPEED
Sub pF AntennaGuard
Automotive Series
HDMI
1394a
3.2 Gbps High Speed
400 Mbps
AG/Sub pF AG Automotive Series, MOST 45 Mbps
Miniature AC TTP 25 Mbps
FlexRay FlexRay 10 Mbps Data
CAN, FlexRay, AG Series TTCAN 1 Mbps
CAN 1 Mbps - 50 Kbps
TransGuard® Automotive Series,
StaticGuard Automotive Series,
Safe-by-Wire 150 Kbps
Radial Varistor LIN <20 Kbps Low Speed
TransGuard® Automotive Series,
StaticGuard Automotive Series,
Radial Varistor, Miniature MAC,
TransFeed Automotive Series
ALL Power Line
TransFeed Automotive Series,
Controlled Capacitance 10-100 Mbps Cutoff Frequency
124
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
LIN BUS
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS080518C400RP 0805, 18Vdc, 0.3J, 120A, 550pF typ
Car Battery
Voltage
Regulator
NCV8502
1N4001
V
IN
Ignition
V
BAT
V
OUT
Reset
10k
C1
C2
µP
GND
C4
GND
2.7k
C3
V
CC
RxD
TxD
V
S
BUS
LIN BUS
C5
C6
ECU Connector
to Single Wire
LIN BUS
Slave
ECU
NCV7360
+
V1
125
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
CAN BUS
CAN BUS
Component Product AVX Part number Specication
V1, V2 Multilayer Varistor CAN0001RP 0603, 18Vdc, 0.015J, 4A, 22pF max
(V1+V2) Multilayer Varistor CAN0002RP 0405 Dual Array, 0.015J, 4A, 22pF max
Component Product AVX Part number Specication
V1, V2 Multilayer Varistor FLX0005WP 0402, 18Vdc, 0.02J, 4A, 17pF max
TX
D
Vcc
Module
Connector
V2V1
C1
Transceiver
V
CC
TxD
RxD
CAN_H
CAN_L
Split
R1
R2
C2
ECU
BP
BM
V2V1
V
CC
126
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
ELECTRIC POWER STEERING
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS121018J390RP 1210, 18Vdc, 1.5J, 500A, 3100pF typ
OUT
VPWR
OUT
GND
CSNS
TEMP
BN
INHS
FS
INLS
CONF
OCLS
DLS
GLS
SR
C3 47F
+ V1
C1
C2
VPWR_F
PS_PWR_OUT
PS_PWR_RTN PS
PS
PS
BAS21 D4
33k
TF1001L-2 D3
L1
127
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
SEAT MOTOR CIRCUIT
LED DOOR LAMP
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS040218X400WP 0402, 18Vdc, 0.05J, 20A, 65pF typ
V2 Multilayer Varistor VCAS121018J390RP 1210, 18Vdc, 1.5J, 500A, 3100 pF typ
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS120618D400RP 1206, 18Vdc, 0.4J, 150A, 900pF typ
M
V2
V1
2Q1Q
Q3 Q4
ROT_1
ROT_2
SEAT
MOTOR
CONTROLLER
USER
+
C1
FEEDBACK
SENSOR
DIR_1
DIR_2
EN_1
EN_2
FB
V
CC
V1
128
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
DRIVE BY WIRE THROTTLE
Component Product AVX Part number Specication
V1, V2 Multilayer Varistor VCAS080518C400DP 0805, 18Vdc, 0.3J, 120A, 550pF typ
V3, V4 TransFeed V2AF118X500Y3DDP 0805, 18Vdc, 0.05J, 20A, 75pF typ
XTAL 13MHz
C5
V4
Accelerator
Sensor
C4
V3
Throttle
Drive
Throttle
Sensor
CLK+CLK-
VCC
VCC
PAAT
V1
Supply Voltage
PAAT
Power Control Chip
C1
VDD1
C2 C3
V2
C6 +
VDD2
Vreg
C7 C8
Supply
Voltage
ECU
129
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
KEYLESS ENTRY
VOLTAGE REGULATOR
Component Product AVX Part number Specication
V1, V2, V3, V4 Multilayer Varistor MAV0010DP 0603, 52Vac, 110 Pk-Pk @ 125kHz,
0.015J, 2A, 22pF Max
V5, V6 Multilayer Varistor VCAS04AG183R0YATWA 0402, 18Vdc, 3pF Max
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS080518C400DP 0805, 18Vdc, 0.3J, 120A, 550pF typ
125kHz
Inductive
Transmitter
µC
UHF Receiver
V1
V5
14V/24V
V2
VDD1
C1
V3 125kHz LF
Frontend
(3-dimensional)
V4
Up-link: wake-up
data (inductive)
Downlink: data
(UHF)
Vbat
VDD2
Vreg
V6
µC
UHF Transmitter
Vreg
Wake-up
pattern
detector
C2 Up to 2.5m
eciveD DIelciheV
C3
C4
+
+
78L05
OUT IN
GND
+12/14V
14mA
C1 C2
1N914 C3
V1
130
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
BLUETOOTH
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS080518C400DP 0805, 18Vdc, 0.3J, 120A, 550pF typ
V2, V3 Multilayer Varistor VCAS060314A300DP 0603, 14Vdc, 0.1J, 30A, 350pF typ
V4 Multilayer Varistor VCAS06AG183R0YAT3A 0603, 18Vdc, 3pF max
V5 Multilayer Varistor VCAS040218X400WP 0402, 18Vdc, 0.05J, 20A, 65pF typ
V1
Supply
Voltage
Power Control Chip
C1
BlueTooth
CORE
V4
V5
Speaker
MIC
V2 V3
VDD1
C2 C3
VCC
ANT
I/O
SPK_IN
MIC_IN KEYPAD
SWITCHES
I/O
CLK+CLK-
C4
XTAL 13MHz
131
Automotive Application (TransGuard®)
AVX Multilayer Transient Voltage Protection
Circuit Protection in Automotive Applications
Component Product AVX Part number Specication
V1 Multilayer Varistor VCAS120618E380 1206, 18Vdc, 0.5J, 200A, 930pF
V2 Multilayer Varistor VCAS060318A400 0603, 18Vdc, 0.1J, 30A, 150pF
V3 Multilayer Varistor VCAS06LC18X500 0603, 18Vdc, 0.05J, 30A, 50pF
LED DRIVER
MAX 16806
IN
EN
SCL
SDA
SW
D/M
SERIAL CLOCK
+12V
0.1µF
OUT
V5
CS+
CS-
0.1µF
R
SENSE
+5V REG
I
LED
V5
LEDs
SERIAL DATA
V1
V2
V3
132
Application Notes
IEC-61000-4 Requirements
Turn On Time Characteristics of AVX Multilayer Varistor
The Impact of ESD on Insulated Portable Equipment
AVX TransGuard Motor and Relay Application Study
AVX Multilayer Varistors in Automobile MUX Bus Applications
133
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: IEC 61000-4 Requirements
WHAT IS IEC 61000-4?
The International Electrotechnical Commission (IEC) has written a

of all electronic devices in a variety of transient and incident RF

move toward a single market structure and a desire to formalize and
harmonize current member countries’ requirements. As of January 1,
1996, all electronic and electrical items sold to Europe must meet IEC

WHY IS IEC 61000-4 REQUIRED BY
EUROPE?
The various regulatory agencies within Europe feel that the IEC
        

   
systems become more portable, and the transient susceptibility of
semiconductors increases, government regulations are essential to
maintain a minimum level of performance in all equipment. Europe
is so serious about the problem that they require that equipment be
         

HOW DO COMPANIES SELLING
ELECTRONIC SYSTEMS MEET
IEC 61000-4 PARTS 2-5 SPECIFICATIONS?
Companies and design engineers must now use protective circuits or
devices to meet these requirements. First, a description of IEC 61000-
4/2-6 is in order:
IEC 61000-4-2 ESD TESTING
REQUIREMENTS
All equipment destined for Europe must be able to withstand 10
strikes of ESD waveforms with Tr < 1ns in contact discharge mode
(preferred) at pre-selected points accessible during normal usage or
maintenance. Testing shall be performed at one or more of four (4)
severity levels, depending upon equipment category.
Level
Contact Discharge1 Mode
Test Voltage
kV
Air Discharge Mode Test
Voltage kV
1 2 2
2 4 4
3 6 8
4 8 15
61000-4-2 Test Conditions
1Preferred mode of testing due to repeatability.
WAVEFORM PARAMETERS
Level
Test
Voltage
Level kV
First Peak of
Discharge
Current Amps
± 10%
TR
nS
30 nS
Current
Amps ± 30%
60 nS
Current
Amps ± 30%
1 2 7.5 0.7
-1 4 2
2 4 15 0.7
-1 8 4
3 6 22.5 0.7
-1 12 6
4 8 30 0.7
-1 16 8
Upon completion of the test, the system must not experience upset (data
or processing errors) or permanent damage. The waveforms are to be
injected at or along the DUT’s body which is accessible in normal set-up and
operation.
IEC 61000-4-3 ELECTROMAGNETIC
COMPATIBILITY IMPACT TESTING (EMC)
This test is concerned with the susceptibility of equipment when subjected
to radio frequencies of 27 MHz to 500 MHz. The system must be able to
withstand three (3) incident radiation levels:
Level 1
Level 2
Level 3

The system must not experience upset (data or processing errors) or
permanent errors.
IEC 61000-4-4 ELECTRICAL FAST
TRANSIENT (EFT) TESTING
The EFT test is modeled to simulate interference from inductive loads, relay
contacts and switching sources. It consists of coupling EFT signals on I/O
parts, keyboard cables, communication lines and power source lines. The
system, depending upon appropriate severity level, must be able to withstand

Open Circuit Output Voltage/10%
On Power Supply On I/O, Signal, Data, Control lines
Level 1 0.5kV 0.25kV
Level 2 1kV 0.5kV
Level 3 2kV 1kV
Level 4 4kV 2kV
134
TransGuar d®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: IEC 61000-4 Requirements
IEC 61000-4-5 UNIDIRECTIONAL POWER LINE
SURGE TEST
          
addressed in several drafts under discussion within the EC at this time.
IEC 61000-4-6 CONDUCTED RF TEST FROM
9KHZ TO 80MHZ
           

Designers have the option of using AVX TransGuards®
to meet IEC 61000-4-2, 3 and 4.
In the case of IEC 61000-4-2 TransGuards® can be used to suppress the
incoming Transient just like a Zener diode would. TransGuards®, however,
exhibit bipolar characteristics, a faster turn-on-time (<1nS), a better repetitive
strike capability and superior thermal stability to the Zener suppression
device. Furthermore, TransGuards® are typically smaller and lighter when
placed on SMT circuit boards. See Figure 1 for data illustrating IEC 61000-4-2
repetitive strike capability.
The TransGuards® effective capacitance allows the device to be used to
meet IEC 61000-4-3 and 61000-4-4. The devices parallel capacitance can be
used as effectively as a capacitor to block low level incident and conducted
RF energy. If in the case of some levels of IEC 61000-4-3 and IEC 61000-4-4
when the intensity of pulse is greater than the devices breakdown capability
it will then turn on and suppress via MOV means rather than capacitance (as
in the small signal case). Effectiveness hinges upon the proper placement
of the device within the PCB (which is usually easily accomplished since
TransGuards® are so small).
SUMMARY
AVX TransGuards®
the IEC 61000-4 document. Experimentation is critical to proper choice and
selection of devices to suppress 61000-4-3/4. Samples are available from
your local sales representative.
25
20
15
10
5
0II
Pre Test
II
Post Test
25kV Direct Discharge, 25 hits
Leakage Current (A)
IEC 61000-4-2 ESD DEVICE TEST
25kV ESD STRIKES On VC080514C300
35
30
25
20
15
10 Vb
Pre Test
Vb
Post Test
Vc
Pre Test
Vc
Post Test
TransGuard® Parameters
25kV Direct Discharge, 25 hits
Voltage (v)
IEC 61000-4-2 ESD DEVICE TEST
25kV ESD STRIKES On VC080514C300
Figure 1
135
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes:
INTRODUCTION
Due to the growing importance of ESD immunity testing, as required
by the EMC Directive, proper selection of voltage suppressor devices
is critical. The proper selection is a function of the performance of
the device under transient conditions. An ideal transient voltage
suppressor would reach its “clamping voltage” in zero time. Under the
conditions imposed by the 1991 version of IEC 61000-4-2, the actual
turn-on-time must be less than one nanosecond to properly respond to

It has been found during testing of transient suppressors that the
response time is very closely dictated by the packaging of the device.
Inductance that is present in the connection between the silicon
die and the leads of the device creates an impedance in series with
the suppressor device; this impedance increases the overall device
response time, reducing the effectiveness of the suppressor device.
The purpose of this paper is to present the Turn on Time characteristics
of Multilayer Varistors (MLVs) and to compare the MLV Turn on Time to
that of various silicon transient voltage suppressors (SiTVs).
The Turn on Time of a transient voltage suppressor (TVS) is of growing
        
a rise time < 1 ns. Therefore, TVS’s must have a turn on time < 1
ns to effectively suppress ESD. In many, if not all, ESD suppression
applications, TVS turn on time can be of more importance than
absolute clamping voltage (Vc) of the TVS (assuming that the TVS
clamping voltage is less than the damage voltage of the circuit or IC).
To measure the turn on time of today’s TVS’s, a broad cross section
of MLVs and SiTVs were chosen. Only surface mount devices were
chosen in order to best represent today’s TVS current usage/trends
and to keep the test matrix to a reasonable level of simplicity. The
following devices were tested:
TEST PROCEDURE
            

provide an input region for an 8kV contact ESD discharge waveform

designed to provide low impedance connections to the DUTs.
Figure 1. DUT Test Fixture
The ESD pulse was injected to the PCB from a Keytek minizap ESD

oscilloscope to monitor the suppressor’s response. Six resistors were used
on the PCB to provide waveshaping and an attenuated voltage to the storage
scope (see Figure 2):
SMT MLV SiTVS
MA141WA
0603 BAV 99
0805 SOT 23 type
1206 SMB - 500W gull-wing SM device
1210 SMC - 1500W gull-wing SM device
MINI-ZAP with CONTACT DISCHARGE TIP
TEST
540 SCOPE
"LAUNCH AREA"
R3
1.6k
R5
1k
R1
1.6k
R2
1.6k
R4
1k
R6
200
Figure 2. Schematic of Test Set Up
Turn on Time Characteristics of AVX Multilayer Varistors
136
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: Turn on Time Characteristics of AVX Multilayer Varistors
The functions of the resistors are as follows: The resistor values were
adjusted in “open circuit” conditions to obtain best open circuit response.
R1, R2 (1.6K) - provide wave shaping during the ESD discharge event
R3 (1.6K), R4 (1K), R5 (1K) - Form a 60 dB Attenuator (1000:1 ratio) for input
of Tektronix TDS 540 1 giga sample/second
storage oscilloscope
              
oscilloscope.
           
ESD pulse is shown in Figure 3.
Figure 3. Open Circuit Response of Test Fixture
to an Injected ESD Waveform
The graph shows the voltage attenuated by a factor of 1000, with a 800ps
risetime for the ESD waveform (this agrees with typical data given by Keytek
for equipment performance). It should be noted that only the positive polarity
was tested. Prior testing showed turn on time was not dependent upon
waveform polarity (assuming that DUTs are bidirectional).
TEST RESULTS
MLV TURN ON TIME TRANSGUARDS®
The turn on time test results for AVX TransGuards® showed that all case
sizes were capable of a sub-nanosecond turn on response. This corresponds
            
performance data follows:
AVX TransGuard®
CASE SIZE TURN ON SPEED
0603 < 0.7 ns
0805 < 0.9 ns
1206 < 0.9 ns
1210 < 0.8 ns
SiTVS
CASE SIZE TURN ON SPEED
MA141WA 0.8ns
BAV 99 0.9ns to 1.2ns
SOT 23 Type 0.8ns
SMB 1.5ns to 2.2ns
SMC 1.5ns to 3ns
TVS TURN ON TIME
Test results for SiTVs varied widely depending upon the physical size and
          
several SiTVs manufacturers papers indicating that the absolute response
from the silicon die could be < 1 ns. However, when the die is placed in a
package, the turn on time delay increases dramatically. The reason for this
is the series inductance of the SiTVs packaging decreases the effective
response time of the device. Reports of 1-5 ns are frequently referred to
in SiTVs manufacturers publications. Further, the turn on times for SiTVs
vary dramatically from manufacturer to manufacturer and also vary within
a particular manufacturers lot. The data provided in the following table

SUMMARY
® have a true
sub-nanosecond turn on time. Although the silicon die of a SiTVs has a sub-
nanosecond response, the packaged SiTVs typically has a response time
much slower than a TransGuard®. If the two devices were directly compared
on a single graph (see Figure 4), it could be shown that the TransGuard®
         
Additionally, TransGuards® have a multiple strike capability, high peak inrush
current, high thermal stability and an EMI/RFI suppression capability which
diodes do not have.
TRANSGUARD®
TURN-ON TIME
DIODE TURN-ON RANGE
100
80
60
40
20
0
Ip (%)
0010111.0
Time (ns)
IEC 801-2 ESD WAVE
TRANSGUARD® vs SILICON TVS TURN ON COMPARISON
ESD WAVEFORM SHAPE
(1.2 - 5.0 N SEC)
(0.2 - 0.7 N SEC)
Figure 4.
Task Stopped: 74 Acquisitions
2.00 V M 20.0ns CH1 2.20 V
: 800ps
O: -1.2ns
CH1 Rise
800ps
CH1
1.0
137
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes:
The purpose of this discussion is to recap the impact ESD has on portable,
battery powered equipment. It will be shown that ESD can cause failures

failures can be caused by one or more of its complex components:
Predischarge - Corona Generated RF
Predischarge - E Field
Discharge - Collapsing E Field
Discharge - Collapsing H Field
Discharge - Current Injection...Voltage...Additional Fields
With this in mind it will be shown that the only way to insure equipment
survivability to ESD is to use a Transient Voltage Suppressor (in addition to
proper circuit layout, decoupling, and shielding).
In order to get a better understanding of what happens in an ESD event the

equivalent of the human body model is shown in Figure 1. Typically, the
charge developed on a person can be represented by a 150pF capacitor
in series with a resistance of 330 ohms. The energy of an ESD waveform
generated from this model is Q = 1/2 CV2 where Q = total energy in Joules, C
= capacitance of the human body model in farads and V = charging voltage
in volts.
Voltages can be as high as 25 kV, however typical voltages seen are in the 8
to 15 kV regions.
Figure 1. Human Body Model
PREDISCHARGE E FIELD FAILURES


Figure 2. Pre-Discharge Scenario
In the predischarge scenario (Figure 2) a human charged to –20 kV may
approach a battery powered “system” on a table. As the person reaches
toward the system electrostatics dictate that the system will have an equal
and opposite charge on the systems surface nearest to the person. SInce
the system we are approaching is isolated from ground, the charge is only
redistributed among the device. (If the system were grounded a current
would be generated by the loss of electrons to ground. The system would
then become positive relative to ground). The rate of approach of the human
body model affects the charging current to a small extent. However, most
          
developed across the equipment that cause the destruction of components
within the system. In general, unprotected IC’s (particularly CMOS) are
           
further complicated by the device type and complexity and the fact that
the breakdown voltage of a generic IC will vary greatly from manufacturer
to manufacturer (Figure 3). This brief discussion should be adequately

IC protection can be achieved by placing a transient suppressor on the most
susceptible pins of the sensitive IC’s (e.g., Vcc and I/O pins, etc.).
Figure 3. IC Type E Field Susceptibility
CONTACT DISCHARGE FAILURES
As the charged person gets closer to the system, the situation is more
complex. First a much more detailed human body model is needed to
represent the complex transmission line which will transport energy to the
system (see Figure 4). In this discussion we will only consider the case of a
single contact discharge. In the real world, however, multiple discharges will
likely occur (possibly caused by a persons hand reacting to an ESD spark
and then touching the system again, etc.).
In contact discharge, when a charged person approaches the system,
             
intensity becomes greater, eventually reaching a point large enough to draw
an arc between the person and the system. In contrast to the noncontrast
The Impact of ESD on Insulated Portable Equipment
10000
1000
100
10
VOLTS
TYPICAL MIN. TYPICAL MAX.
CMOS S.TTL M.FET B.P. ECL JFET EPROM GaAsFET
TECHNOLOGY
IC TYPE vs SUSCEPTIBILITY
POSITIVE INDUCED VOLTAGE
NEGATIVE 20 kV CHARGE
RESULTING NEGATIVE CHARGE
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+++
– 20 kV
CH
RH
Where:
CH = Human body
model capacitance
typically 150pF
RH = Human body
model resistance
typically 330
138
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: The Impact of ESD on Insulated Portable Equipment

discharge model. A fast approach causes a more intensive discharge and
faster current rise times and peaks.
The model shown on Figure 4 can be broken up into 4 sections for the sake of


Section 2 takes into account how the human body model gets the energy
to the system. This section considers the inductance, resistance and
      
ground and the system.
The third section is the inductance and resistance of the arc which is created
as section 2 approaches the system (Section 4).
Section four is the system itself.
The combination of the capacitances and inductances in these sections form
a complex network of LC tank circuits which will inject a variety of waveforms
(transients) into the system. These waveforms will range in frequency from
very high (5 GHz) to high (100 MHz) to low (20-50 MHz) plus a variety of
under damped and over damped waveforms.
Finally, in addition to current/voltage injection occurring as a result of the
           
frequency RF waveforms. Many times these waveforms propagate into
shielded equipment and cause system/device failures.
Where: CH = Lumped capacitance between the human body and earth
RH = Lumped resistance of the human body
LH = Lumped inductance of the human body
CA = Lumped capacitance between the persons arm and earth
CAK = Lumped capacitance between the persons arm (and near
portions of the body) and the keyboard
RA = Lumped resistance of the person’s arms discharge path
LA = Lumped inductance of the persons arms discharge path
CF
CK = Lumped capacitance keyboard to earth
RK = Lumped resistance of the keyboard earth ground path
LK = Lumped inductance of the keyboard earth ground path
Figure 4. Contact Discharge Model
SUMMARY
             
electrostatics (as in the person being close to the system but not touching
it) can be eliminated by shielding. This is usually not the case because it
           
      
shielding will likely have seams, ventilation holes, or I/O ports which represent

generated RF can be a problem. Finally, if the system has I/O connectors,
keyboards, antennas, etc., care must be taken to adequately protect them
from direct/and indirect transients. The most effective resolution is to place
a TransGuard® as close to the device in need of protection as possible.These
recommendations and comments are based upon case studies, customer
input and Warren Boxleitner’s book Electrostatic Discharge and Electronic
Equipment - A Practical Guide for Designing to Prevent ESD Problems.
Human Body Model Arm/Hand Model
Section 4
ARC
LHRHRA
LA
RS
R
LS
L
CF
CAK
CHCACK
139
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes:
PURPOSE

in and around low voltage relays and motors. Additionally, EMI problems have
been associated with running motors.
This study is aimed at evaluating how TransGuards® can reduce EMI from
running motors and clamp transients generated from relays and motors
during power off.
DESCRIPTION
Three different motors and two different relays were chosen to represent the
wide range of possible devices used by designers. Device choices were as
follows:
MOTORS
Cramer 8001 series Geared Motor
12V, 30rpm (4800 RPM armature speed) 170ma
Start/Run Torque 30oz
Comair Rotron DC Biscut Fan - 24V, 480ma
Comair Rotron DC Biscut Fan - 12V, 900ma
RELAYS




A Tektronix TDS 784A four channel 1GHz 4G S/s digitizing storage scope

A x10 probe was connected to the scope and one leg of the relay/motor coil;
the probes ground was connected to the other relay coil/motor wire. The
scope was triggered on the pulse and waveforms printed.
When suppression was introduced into the circuit, it was placed directly on
the relay coils/motor lead wires. The axial TransGuard® and capacitors had

it was determined that this was a fairly common lead length for such
applications.
SUMMARY
GEARED MOTOR
The Cramer geared motor was tested while running (under load) to
determine its “on state” noise as well as under loaded turn off conditions.
Both TransGuards® and ceramic capacitors were tested to determine the
level of protection they offer.
A 14V axial TransGuard® provided the best protection during running and
turn off. The VA100014D300 TransGuard® cut the 60V unprotected turn off
voltage spike to 30V. It also cut the on state noise to 4.0V pk-pk due to its
internal capacitance. The following is a summary of measured voltages
(scope traces are shown in Figures 1, 1A, 2, 2A).
Test Condition
Transient
without
Protection
Transient
with
.1μF cap
Transient
with
.01μF cap
Transient
with 14v
TransGuard®
Geared motor at
turn off 60V 32V 48V 30V
Geared motor
during running 12V pk-pk 4.0V pk-pk 4.0V pk-pk 4.0V pk-pk
Fig. 1. Geared Motor
Transient at Turnoff
without protection 60 V
Gear Motor 20
V/Division
Fig. 1A. Geared
Motor Transient at
Turnoff with 14 V
TransGuard® 30 V 10
V/Division
Fig. 2. Geared
Motor Running
noise without
protection 12
V pk-pk 2 V/
Division
Fig. 2A. Geared
Motor Running with
14 V TransGuard®
4 V pk-pk 2 V/
Division
T
1
Ch1
[T]
5.00MS/sTek Run: Sample
200 V M 100ns Ch1 364mV
5 Jul 1996 05:07:06
T
1
Stop:
Ch1
[T]
5.00MS/sTek 251 Acqs
2.00 V M 10.0µs Ch1 -3.68 V
5 Jul 1996 06:00:39
T
1
Stop:
Ch1
[T]
5.00MS/sTek 147 Acqs
200mV M 100ns Ch1 164mV
5 Jul 1996 05:43:56
T
1
Stop:
Ch1
[T]
5.00MS/sTek 64 Acqs
1.00 V M 10.0µs Ch1 -2.72 V
5 Jul 1996 06:07:57
Motor and Relay Application Study
140
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: Motor and Relay Application Study
Motor Type
Transient
without
Protection
Transient
with
.1μF cap
Transient
with
.01μF cap
Transient
with 14v
TransGuard®
24V Fan 165V 120V 140V 65V(1)
12V Fan 60V 52V 64V 30V(2)
Fig. 3A. 24 V Biscut Fan
with 30 V TransGuard®
65 V 50 V/Division
Fig. 4A. 12 V Biscut Fan
with 14 V TransGuard®
30 V 20 V/Division
Fig. 3. 24 V Biscut Fan
without protection
165 V Biscut 50 V/
Division
Fig. 4. 12 V Biscut Fan
without protection
60 V 20 V/Division
BISCUT FAN
The Comair 24V and 12V biscut fans were tested only for transients at
turn off. Results of those tests are shown in the table at the right (as well
as slope traces 3, 3A, 4, 4A).
(1) VA100030D650 TransGuard® / (2) VA100014D300 TransGuard®
T
1
Stop:
Ch1
[T]
5.00MS/sTek 482 Acqs
5.00 V M 10.0µs Ch1 -6.1 V
7 Jul 1996 04:03:28
T
1
Stop:
Ch1
[T]
5.00MS/sTek 58 Acqs
2.00 V M 10.0µs Ch1 -7.72 V
7 Jul 1996 04:22:06
T
1
Stop:
Ch1
[T]
5.00MS/sTek 506 Acqs
5.00 V M 10.0µs Ch1 -5.8 V
7 Jul 1996 04:06:48
T
1
Stop:
Ch1
[T]
5.00MS/sTek 265 Acqs
2.00 V M 10.0µs Ch1 -2.12 V
7 Jul 1996 04:27:56
141
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: Motor and Relay Application Study
Relay Type
Transient
without
Protection
Transient
with
.1μF cap
Transient
with
.01μF cap
Transient
with 14v
TransGuard®
24V 44V 24V 28V 28V(3)
12V 105V 63V 100V 30V(4)
Fig. 5A. 24 V Relay
Transient with 26 V
TransGuard®
10 V/Division
Fig. 6A. 12 V Relay
Transient with 14 V
TransGuard®
30 V 50 V/Division
Fig. 5. 24 V Relay
Transient without
protection
44 V 10 V/Division
Fig. 6. 12 V Relay
Transient without
protection
105 V 50 V/Division
RELAYS
The 12V and 24V relays were tested only for transients at turn
off. The results of those tests are shown in the table at the right
(as well as scope traces 5, 5A, 6, 6A).
(3) VA100026D580 TransGuard® / (4) VA100014D300 TransGuard®
T
1
Stop:
Ch1
[T]
5.00MS/sTek 75 Acqs
1.00 V M 10.0µs Ch1 -1.30 V
7 Jul 1996 03:21:47
Ch2 100mV
T
1
Stop:
Ch1
[T]
5.00MS/sTek 501 Acqs
5.00 V M 10.0µs Ch1 -3.6 V
7 Jul 1996 02:47:37
Ch2 100mV
T
1
Stop:
Ch1
[T]
5.00MS/sTek 6873 Acqs
1.00 V M 10.0µs Ch1 -520mV
7 Jul 1996 03:45:31
T
1
Stop:
Ch1
[T]
5.00MS/sTek 154 Acqs
5.00 V M 10.0µs Ch1 -3.0 V
7 Jul 1996 02:50:00
Ch2 100mV
CONCLUSIONS
TransGuards® can clamp the wide range of voltages coming from small/medium motors and relays due to inductive discharge. In addition, TransGuards®
capacitance can help reduce EMI/RFI. Proper selection of the TransGuards®
142
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes:
The current trend in automobiles is towards increased performance,
        
are incorporating an ever increasing array of electronics into cars. As the
electronic content within cars increases, auto manufacturers are utilizing
multiplex bus designs to network all the sensors to a central point (usually
the engine control unit [ECU]). Multiplex lines save wiring harness weight
and decrease the harness’ complexity, while allowing higher communication
speeds. However, the multiplex structure tends to increase the occurrence
and severity of Electromagnetic Interference (EMC) and Electrostatic
Discharge (ESD).
Multilayer varistors (MLVs) are a single component solution for auto
manufacturers to utilize on multiplex nodes to eliminate both ESD and EMC
problems. MLVs also offer improved reliability rates (FIT rates <1 failure/
billion hours) and smaller designs over traditional diode protection schemes.
TYPICAL MUX NODE APPLICATION
There are a variety of SAE recommended practices for vehicle multiplexing
(J-1850, J-1939, J-1708, J-1587, CAN). Given the number of multiplexing
          
considerably.
Each node has an interface circuit which typically consists of a terminating
resistor (or sometimes a series limiting resistor), back to back Zener diodes
(for over voltage protection) and an EMC capacitor. Such a method is
compared to that of a multilayer varistor in Figure 1.
Figure 1. Comparison of past node protection methods to
MLV node protection methods.
To more clearly understand the functional structure of a MLV, see the
equivalent electrical model shown in Figure 2.
Figure 2. TransGuard® Equivalent Model.
XCVR BUS XCVR BUS
EMC
CAP
MLV PROTECTION METHOD
SINGLE COMPONENT SOLUTION
DIODE PROTECTION METHOD
THREE COMPONENT SOLUTION
LBBODY INDUCTANCE
CEDEVICE CAPACITANCE
RVVOLTAGE VARIABLE RESISTOR
RIINSULATION RESISTANCE
LB
RV
CERI
MULTIPLE ELECTRODES YIELD A CAPACITANCE
THE CAPACITANCE CAN BE USED IN DECOUPLING
CAPACITANCE CAN BE SELECTED FROM 30pF TO 4700pF
As the schematic in Figure 1 illustrates, the implementation of MLV
 
improves system reliability. The MLV offers many additional electrical
improvements over the Zener/passive schemes. Among those advantages
are higher multiple strike capability, faster turn on time and larger transient

to the performance of Zener diodes follows.
CONSTRUCTION AND PHYSICAL
COMPARISON
The construction of Zinc Oxide (ZnO) varistors is a well known, relatively
straightforward process in which ZnO grains are doped with cobalt,
bismuth, manganese and other oxides. The resulting grains have a Schottky
barrier at the grain interface and a typical grain breakdown voltage (Vb) of
approximately 3.6V per grain.
Currently, there are two types of varistors. Single layer varistors (SLVs) – an
older technology referred to as “pressed pill,” typically are larger, radial leaded
       
(MLVs) are a relatively new technology packaged in true EIA SMT case sizes.
Beyond the ZnO material system and grain breakdown similarity, MLVs and
SLVs have little in common. That is, to design a low voltage SLV, the grains
must be grown as large as possible to achieve a physically large enough part
 
obtain a consistent grain size in a low voltage SLV process.
The electrical performance of SLV is affected by inconsistent grain size
in two ways. First, low voltage SLVs often exhibit an inconsistent Vb and
leakage current (IL) from device to device within a particular manufacturing
lot of a given rating. This contributes to early high voltage repetitive strike
wear out.
Secondly, SLVs with similar voltage and energy ratings as MLVs typically
exhibit a lower peak current capability due in part to increased resistance of
the long current path of the large grains. This contributes to early repetitive
high current wear out.
At higher voltages, the grain size variations within SLVs play a much smaller
percentage role in Vb and leakage current values. As a result, SLVs are the
          
(e.g., 115 VAC, 220 VAC).
Multilayer Varistors In Automobile MUX Bus Applications
143
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Application Notes: Multilayer Varistors In Automobile MUX Bus Applications
MLV MANUFACTURE
The construction of a MLV was made possible by employing a variety of
advanced multilayer chip capacitors (MLCC) manufacturing schemes
coupled with a variety of novel and proprietary ZnO manufacturing steps. In
the MLCC process, thin dielectrics are commonly employed to obtain very
large capacitance values. It is that capability to design and manufacture

to be easily made with operating/ working voltages (Vwm) as low as 3.3V
(for use in next generation silicon devices).
Once a particular working voltage has been determined (by altering the ZnO
dielectric thickness), the multilayer varistor’s transient energy capability
is determined by the number of layers of dielectric and electrodes. It is,
therefore, generally easy to control the grain size and uniformity within a MLV
due to the relative simplicity of this process.
MLVs exhibit capacitance due to their multiple electrode design and the
fact that ZnO is a ceramic dielectric. This capacitance can be utilized with
 
equivalent model of a MLV is shown in Figure 2.
MLVs are primarily used as transient voltage suppressors. In their “on” state,
they act as a back-to-back Zener, diverting to ground any excess, unwanted
energy above their clamping voltage. In their “off” state, they act as an EMC
capacitor (capacitance can be minimized for high speed applications). A
single MLV, therefore, can replace the diode, capacitor and resistor array on
multiplex node applications.
Any TVS will see a large number of transient strikes over its lifetime. These
transient strikes will result from different events such as well known ESD
          
random events. It is because of the repetitive strikes that all TVS suppressors
should be tested for multiple strike capability. Typically, a TVS will fail due to
high voltage, high current or over-energy strikes.
High voltage repetitive strikes are best represented by IEC 61000-4-2 8kV
waveforms. MLVs demonstrate a greatly superior capability to withstand
repetitive ESD high voltage discharge without degradation.

A comparison between MLVs, SLVs and SiTVS is shown in Figures 3A, B, C
respectively.
SILICON TVS MANUFACTURE
The construction of a silicon TVS departs dramatically from that of either
single layer varistor or multilayer varistor construction. Devices are generally
produced as Zener diodes with the exception that a larger junction area is
designed into the parts and additional testing was likely performed. After
the silicon die is processed in accordance to standard semi-conductor
manufacturing practice, the TVS die is connected to a heavy metal lead

MLVS COMPARED TO DIODES
The response time for a silicon diode die is truly sub-nanosecond. The lead
frame into which the die is placed and the wire bonds used for die connections

packaging causes a series impedance that slows the response time of
SiTVS devices. A best case response time of 8nS on SOT23 and a 1.5nS to
5nS response time on SMB and SMC products respectively are rather typical.
MLVs turn on time is <7nS. MLVs turn on time is faster than SiTVS and that
fast turn on time diverts more energy and current away from the IC than any
other protection device available.
CONCLUSION
The technology to manufacture MLVs exists and allows the manufacture of
miniature SMT surge suppressors. MLVs do not have the wear out failure

reliability numbers than that of TVS diodes. MLVs are a viable protection
device for auto multiplex bus applications.
Written by Ron Demcko
Originally printed in EDN PRODUCTS EDITION December 1997 by CAHNERS
PUBLISHING COMPANY
150 AMP Current Repetitive Strike Comparison
Figure 3A. Multilayer Varistor. Figure 3B. Single Layer Varistor Figure 3C. Silicon TVS.
60v
48v
30v
26v 18v
0.1 0.3 0.4 0.9 1.2 2.0
0
200
400
600
800
1000
1200
Repetitive Strike Performance
8X20 µS 150A
Energy (J) Vwm
56v
48v
28v
22v18v
14v
8v 5.5v
0.1 0.17 0.2 0.25 0.3 0.4 0.5 0.6 0.8 0.9 1.0 1.2
0
200
400
600
800
Energy (J)
Vwm
Repetitive Strike Performance
8X20 µS 150A
5.0v
11v
12v
13v
15v
18.8v
0.06
0.84
2.1
0
200
400
600
800
1000
Energy (J) Vwm
Repetitive Strike Performance
8X20 µS 150A
144
Soldering – Assembly Guidelines
145
TransGuard®
AVX Multilayer Varistors – Assembly Guidelines
TRANSGUARD® SURFACE MOUNT DEVICES
The move toward SMT assembly of Transient Voltage Suppressors (TVS)

transient voltage attenuation and size/functionality/cost issues.
TransGuards® are uniquely suited for wide-scale usage in SMT applications.
TransGuards® exhibit many advantages when used in SMT assemblies.
Among them are:
Available in standard EIA chip sizes 0402/0603/0805/ 1206/1210.
Placed with standard equipment (8mm tape and reel).
Processed with fewer guidelines than either ceramic chip or resistor
chip devices.
Exhibit the highest energy/volume ratio of any EIA size TVS.
This general guideline is aimed at familiarizing users with the characteristics
of soldering multilayer SMT ZnO TransGuards®. TransGuards® can
          
performance, EIA standard solder pads (land areas) shown in Figure 1 are

Dimensions: mm (inches)
STORAGE
Good solderability of plated components is maintained for at least twelve
months, provided the components are stored in their “as received” packaging
at less than 30°C and 85% RH.
SOLDERABILITY
Plated terminations will be well soldered after immersion in a 60/40 tin/lead
solder bath at 235°C ±5°C for 5 ±1 seconds.
LEACHING
Plated terminations will resist leaching for at least 30 seconds when
immersed in 60/40 tin/lead solder at 260°C ±5°C.
RECOMMENDED SOLDERING PROFILES
GENERAL
Surface mount multilayer varistors (MLVs) are designed for soldering
to printed circuit boards or other substrates. The construction of the


2.54
(0.100)
0.89
(0.035)
0.89
(0.035)
1.27
(0.050)
0.76
(0.030)
0.76
(0.030)
3.05
(0.120)
1.02
(0.040)
1.02
(0.040)
1.02
(0.040)
08050603
1.70 (0.067)
0.61
(0.024)
0.61
(0.024)
0.51
(0.020)
0.51
(0.020)
0402
4.06
(0.160)
4.06
(0.160)
1.02
(0.040)
1.02
(0.040)
1.02
(0.040)
1.02
(0.040)
1.65
(0.065)
2.54
(0.100)
2.03
(0.080) 2.03
(0.080)
12101206
Recommended Reflow Profiles
Time / secs
Component Temperature / ºC
25
50
75
100
125
150
175
200
225
250
275
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
Pb Free Recommended
Pb Free Max with care
Sn Pb Recommended
25
75
125
175
225
275
0 50 100 150 200 250 300 350 400
Preheat
Wave
Cool Down
Component Temperature / ºC
Time / seconds
Recommended Soldering Profiles
Figure 1: TransGuard® Solder Pad Dimensions
146
TransGuard®
AVX Multilayer Varistors – Assembly Guidelines
HANDLING
MLVs should be handled with care to avoid damage or contamination from
perspiration and skin oils. The use of tweezers or vacuum pickups is strongly
recommended for individual components. Bulk handling should ensure that
abrasion and mechanical shock are minimized. Taped and reeled components
provide the ideal medium for direct presentation to the placement machine.
PREHEAT
It is important to avoid the possibility of thermal shock during soldering and
carefully controlled preheat is therefore required. The rate of preheat should

SOLDERING

give a good joint should be used. Excessive solder can lead to damage from

solder, chip and substrate. AVX terminations are suitable for all wave and

technique is the utilization of hot air soldering tools.
COOLING
Natural cooling in air is preferred, as this minimizes stresses within the
soldered joint. When forced air cooling is used, cooling rate should not
exceed 4°C/second.
CLEANING
Flux residues may be hygroscopic or acidic and must be removed. AVX MLVs

MIL-STD-202 and EIA-RS-198. Alcohol-based solvents are acceptable and
properly controlled water cleaning systems are also acceptable. Many other
solvents have been proven successful, and most solvents that are acceptable
to other components on circuit assemblies are equally acceptable for use
with MLVs.
POST SOLDER HANDLING

PCB applies stresses to the soldered joints of the components. For leaded
devices, the stresses are absorbed by the compliancy of the metal leads
and generally don’t result in problems unless the stress is large enough to
fracture the soldered connection.
Surface mount devices are more susceptible to such stress because they
don’t have compliant leads and are brittle in nature. The most frequent failure

loss of capacitance due to severing of contact between sets of internal
electrodes may be observed.

take one of the following two general forms:
Type A:
Angled crack between bottom of device to top of solder joint.
Type B:
Fracture from top of device to bottom of device.
Mechanical cracks are often hidden underneath the termination and are

removal process from PCB, this is one indication that the cause of failure

COMMON CRACKS OF MECHANICAL
CRACKING
The most common source for mechanical stress is board depanelization
equipment, such as manual breakapart, v- cutters and shear presses.
Improperly aligned or dull cutters may cause torquing of the PCB resulting in


     
nearby components may be broken.
A third common source is board-to-board connections at the vertical
connectors where cables or other PCBs are connected to the PCB. If the

damage to nearby components.
Special care should also be taken when handling large (>6” on a side) PCBs

147
TransGuard®
AVX Multilayer Varistors – Assembly Guidelines
REWORKING ASSEMBLIES
Thermal shock is common in MLVs that are manually attached or reworked
with a soldering iron. AVX strongly recommends that any reworking of MLVs

Direct contact by the soldering iron tip often causes thermal cracks that may
fail at a later date. If rework by soldering iron is absolutely necessary, it is
recommended that the wattage of the iron be less than 30 watts and the tip
temperature be <300°C. Rework should be performed by applying the solder
iron tip to the pad and not directly contacting any part of the component.
VARISTOR SOLDERABILITY
Historically, the solderability of Multilayer Varistors (MLVs) has been a
problem for the electronics manufacturer. He was faced with a device
that either did not wet as well as other electronic components, or had its
termination material leached away during the assembly process. However,
by utilizing proprietary procedures, AVX Corporation provides the market
with a MLV that has solderability comparable to that of other electronic
components, and resists leaching during assembly.
BACKGROUND
The basic construction of an unplated MLV is presented in Figure 1. The
external termination is a metal that connects the internal electrodes to
the circuitry of the assembly using the MLV. The external electrode must

solder used in assembly to wet the end of the chip and make a reliable
connection to the traces on the circuit board. Second, it must be robust
enough to withstand the assembly process. This is particularly important
if wave soldering is used. Unfortunately these two goals are competing. In
order to achieve good solderability, an alloy high in silver content is chosen.
However, this alloy is prone to leaching during assembly, so an additional
metal is added to improve the leach resistance. While this improves the
leach resistance, this addition makes the termination less solderable. The
results are either terminations that leach away, or do not solder well (see the
photographs in Figure 2).
Clearly, a plated termination system (as seen in Figure 3) is desired. This
system, which is typical of other electronic components such as capacitors
and resistors, produces a much better assembled product.
Electrodes
Ceramic
Thick
Film
Material
Electrodes
Ceramic
Thick
Film
Material
Figure 1
Unplated MLV
Figure 2
Leaching of Unplated Terminations
Non-Wetting of Unplating Terminations
Solder Layer
Nickel Layer
Electrodes
Ceramic
Thick
Film
Material
Solder Layer
Nickel Layer
Electrodes
Ceramic
Thick
Film
Material
Figure 3
Plated MLV
148
TransGuard®
AVX Multilayer Varistors – Assembly Guidelines
In the plated termination, the base termination layer is still used (it
provides contact from the electrodes to the circuitry). On top of the base
termination is a layer of nickel. This is the surface to which the solder
bonds during assembly. It must be thick enough to stay intact during IR

away. It must also be thick enough to prevent the inter-metallic layer

the solderability.
In order to protect the nickel (i.e., maintain its solderability), a layer of
solder is plated on top of the nickel. The solder preserves the solderability
of the nickel layer. It must be thick and dense to keep oxygen and water
from reaching the nickel layer.
THE CHALLENGE
Zinc oxide varistors are semi-conductive in nature – that is what
allows them to “turn on” and divert a damaging transient away from
sensitive electronic circuitry and safely to ground. This semi-conduction
poses a major problem for the manufacturer that wants to plate the
terminations – the ceramic plates also! This condition, overplating,
must be controlled, as it is cosmetically undesirable and could result in
an unwanted path of conduction across the chip.
Early efforts in plating MLVs revolved around limiting the time that the
chip was in the plating bath. This helped prevent overplating, but also
produced chips with marginal solderability. The photographs in Figure
4 depict the problems that occur when the plated layers are not thick
enough.
THE SOLUTION
AVX has developed a proprietary process that passivates the ceramic
surface of the MLV. This allows us to plate the parts for a longer time

of nickel and alloy plated onto the base termination. These thicker
layers translate into bond strengths that are typically twice those of

solderability (as seen in Figure 5).
AVX: The solution for MLV assembly problems.
Figure 5
AVX Plated Parts
Figure 4
Problems when the Plated Layers are Too Thin
149
Packaging
Chips
Axial Leads
Radial Leads
150
Paper Carrier Conguration
8mm Tape Only
P0
B0
P1
P2
D0
T
TOP
COVER
TAPE
BOTTOM
COVER
TAPE
CENTER LINES
OF CAVITY
CAVITY SIZE
SEE NOTE 1
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.20mm (±0.008)
E1
F
G
User Direction of Feed
E2
W
T1
T1A0
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Component Lateral
8MM PAPER TAPE
METRIC DIMENSIONS WILL GOVERN
CONSTANT DIMENSIONS mm (inches)
VARIABLE DIMENSIONS mm (inches)
Tape Size D0E P0P2T1G. Min. R Min.
8mm 1.50
(0.059 )
1.75 ± 0.10
(0.069 ± 0.004)
4.00 ± 0.10
(0.157 ± 0.004)
2.00 ± 0.05
(0.079 ± 0.002)
0.10
(0.004)
Max.
0.75
(0.030)
Min.
25.0 (0.984)
See Note 2 Min.
+0.10
-0.0
+0.004
-0.0
Tape Size P1
See Note 4 E2 Min. F W A0 B0 T
8mm 4.00 ± 0.10
(0.157 ± 0.004)
6.25
(0.246)
3.50 ± 0.05
(0.138 ± 0.002) 8.00 +0.30
-0.10
(0.315 +0.012
-0.004 )See Note 1
1.10mm
(0.043) Max.
for Paper Base
Tape and
1.60mm
(0.063) Max.
for Non-Paper
Base Compositions
NOTES:
1.     0, B        
clearance surrounding the component so that:
the component does not protrude beyond either surface of the carrier tape;
the component can be removed from the cavity in a vertical direction
without mechanical restriction after the top cover tape has been removed;
rotation of the component is limited to 20º maximum (see Sketches A & B);
lateral movement of the component is restricted to 0.5mm maximum
(see Sketch C).
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket
holes. Refer to EIA-556.
4. If P1 = 2.0mm, the tape may not properly index in all tape feeders.
Bar Code Labeling Standard
AVX bar code labeling is available and follows latest version of EIA-556
151
Embossed Carrier Conguration
8 & 12mm Tape Only
8 & 12MM EMBOSSED TAPE
METRIC DIMENSIONS WILL GOVERN
CONSTANT DIMENSIONS mm (inches)
VARIABLE DIMENSIONS mm (inches)
Tape Size D0E P0P2S1 Min. T Max. T1
8mm and 12mm 1.50 +0.10
-0.0
(0.059 +0.004
-0.0 )
1.75 ± 0.10
(0.069 ± 0.004)
4.0 ± 0.10
(0.157 ± 0.004)
2.0 ± 0.05
(0.079 ± 0.002)
0.60
(0.024)
0.60
(0.024)
0.10
(0.004)
Max.
Tape Size B1
Max.
D1
Min.
E2
Min.
F P1
See Note 5
R
Min.
See Note 2
T2W
Max.
A0 B0 K0
8mm 4.35
(0.171)
1.00
(0.039)
6.25
(0.246)
3.50 ± 0.05
(0.138 ± 0.002)
4.00 ± 0.10
(0.157 ± 0.004)
25.0
(0.984)
2.50 Max.
(0.098)
8.30
(0.327) See Note 1
12mm 8.20
(0.323)
1.50
(0.059)
10.25
(0.404)
5.50 ± 0.05
(0.217 ± 0.002)
4.00 ± 0.10
(0.157 ± 0.004)
30.0
(1.181)
6.50 Max.
(0.256)
12.3
(0.484) See Note 1
NOTES:
1. 

the component does not protrude beyond the sealing plane of the cover tape.
the component can be removed from the cavity in a vertical direction without
mechanical restriction, after the cover tape has been removed.
rotation of the component is limited to 20º maximum (see Sketches D & E).
lateral movement of the component is restricted to 0.5mm maximum (see
Sketch F).
Tape with or without components shall pass around radius “R” without damage.
Bar code labeling (if required) shall be on the side of the reel opposite the round
sprocket holes. Refer to EIA-556.
B1 dimension is a reference dimension for tape feeder clearance only.
If P1 = 2.0mm, the tape may not properly index in all tape feeders.
P0
B0
P1
P2
D0
T2
T
TOP COVER
TAPE
DEFORMATION
BETWEEN
EMBOSSMENTS
CENTER LINES
OF CAVITY MAX. CAVITY
SIZE - SEE NOTE 1
D1 FOR COMPONENTS
2.00 mm x 1.20 mm AND
LARGER (0.079 x 0.047)
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.2mm (±0.008)
B1
E1
F
EMBOSSMENT
User Direction of Feed
E2
W
K0
T1
S1
A0
B1 IS FOR TAPE READER REFERENCE ONLY
INCLUDING DRAFT CONCENTRIC AROUND B0
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Component Lateral Movements
152
Packaging of Chip Components
Automatic Insertion Packaging
REEL DIMENSIONS
Tape
Size
A
Max. B* Min. C D* Min. N
Min. W1 W2
Max. W3
8mm
330
(12.992)
1.5
(0.059) 13.0 +0.50
-0.20
(0.512 +0.020
-0.008 )
20.2
(0.795)
50.0
(1.969)
8.40 +1.5
-0.0
(0.331 +0.059
-0.0 )
14.4
(0.567)
7.90 Min.
(0.311)
10.9 Max.
(0.429)
12mm 12.4 +2.0
-0.0
(0.488 +0.079
-0.0 )
18.4
(0.724)
11.9 Min.
(0.469)
15.4 Max.
(0.607)
Metric dimensions will govern.
English measurements rounded and for reference only.
mm (inches)
153
Axial (Leads/Packaging)
TRANSGUARD®
CLASS I / RS-296
A. 5mm ± 0.5mm
(0.200” ± 0.020”)
B*. 52.4mm ± 1.5mm
(2.063” ± 0.059”)
C. 6.35mm ± 0.4mm
(0.250” ± 0.016”)
D1-D2. 1.4mm
(0.055” MAX.)
E. 1.2mm
(0.047” MAX.)
F. 1.6mm
(0.063” MAX.)
G. 356mm
(14.00” MAX.)
H. 76mm
(3.000”)
I. 25.4mm
(1.000”)
J. 84mm
(3.300”)
K. 70mm
(2.750”)
D1D2
F
C
E
A
B
K
J
H
I
G
Optional
Design
Leader Tape: 300mm min. (12”)
Splicing: Tape Only
Missing Parts: 0.25% of component count max.- No
consecutive missing parts
154
Radial Leads/Packaging
REEL DIRECTION
Leads on top of
carrier strip,
body away
Unreel from
LEFT to RIGHT
OVER TOP of reel
G
A
D
F
E
CB
T
K
ED
B
A
L
Q
C
W
R
F
S
S
ON M X
QUANTITY PER REEL
PART PCS
VR15, VR20
CG20, CG21 3000
DESCRIPTION DIMENSIONS (MM)
A - Reel Diameter 304.80 - 355
B - Reel Outside Width 50.80 maximum
C - Reel Inside Width 38.10 - 46.02
D - Core Diameter (O.D.) 102.01 maximum
E - Hub Recess Diameter 86.36 maximum
F - Hub Recess Depth 9.50 minimum
G - Arbor Hole Diameter 25.40 - 30.48
DESCRIPTION DIMENSIONS (MM)
A. Feed Hole Pitch 12.70 ± .20
B. Feed Hole Diameter 3.99 ± .20
C. Feed Hole Location 9.02 ± .51
D. Component Lead Spacing 5.00 or 2.54
E. Component Lead Location 3.81 ±.51 or 5.00 ±.51
for 2.54 lead spacing
F. Component Lead Protrusion
(edge of carrier to cut end of lead) 2.00 maximum
K. Component Body Location 6.35 ±.41
L. Carrier Tape Width 18.01+1.02
-.51
M. Carrier Tape Assembly Thickness .71 ± .20
N. Carrier Tape Spliced Thickness 1.42 maximum
O. Carrier Tape Spliced Length 50.80 - 88.90
Q. Adhesive Tape Border 3.00 maximum
R. Component Bent Leads (either direction) .79 maximum
S. Component Misalignment .99 maximum
T. Component Pitch 12.70 ±.99
W. Adhesive Tape Width 5.00 minimum
X. Carrier Tape Thickness .51 ±.10
Y. Cumulative Pitch over 20 Pitches 254 ±2.00
+.79
-.20
+.79
-.20
North America
Tel: +1 864-967-2150
Central America
Tel: +55 11-46881960
Asia
Tel: +65 6286-7555
Japan
Tel: +81 740-321250
Europe
Tel: +44 1276-697000
VISIT US AT WWW.AVX.COM
FOLLOW US:
093019 -1