2N4338-2N4876 Numerical Index ale MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS || REPLACE- | PAGE P Blu y y = fee @ | Vi @l Bl a cd D J CE PE FE c CESAT ic = -_ 5 Tee 2) | nent | numper | USE 3 ce = g| Koom@le) 4, 5 ale == @ 25C | B| C | (volts) | (volts) |S | (min) (max) 5] (volts) 5 3 5/2 2N4338 thru Field Effect Transistors, see Table on Page 1-166 2N4343 2N4346 LPA 5.0W]A 60} 0 2N4347 S|N LPA 100W | c 140} 120] 0 15 60 2.0A 2N4348 S}N LPA 120W ) Cc 140} 120] 0 15 60 5.0A 2N4350 S|[N LPA 7.0W]C 65 40 }0 10 |] 200 | 0.35A 300M } T pu Field Effect Transistors, see Table on Page 1+166 2N4354 S| P LNA 350M } A 125 60! 69) 0 25 O.1M 500M 7 T 2N4355 s|P LNA 350M | A 125 60 60,0 60 0.1M 500M | T 2N4356 | S| P LNA} 350M]A] 125] so} 80}0] 25 0.1M 500M | T 2N4359 S| P LNA 360M {A 200 45 4510 50 | 600 1.0M 0,25 LOM 50 j,E 2N4360 Field Effect Transistor, see Table on Page 1-166 2N4361 thru Thyristors, see Table on Page 1-154 2N4380 Breet) Field Effect Transistors, see Table on Page 1-166 2N4383 S|N RFA 800M | A 200 40 3010 1000 |E 120M | T 2N4384 S|N RFA 500M | A 200 40 3040 1000 | E 120M | T 2N4385 S|[N RFA 800M {A 200 40 30 | 0 1000 |E 120M [T 2N4.386 S|N RFA 500M FA 200) 40 30 | 0 1000 | E 120M | T 2N4387 S|] P 20W | A 200 40 40 | 0 25 | 100 500M 2N4388 S|] P 20W | A 200 60 6040 25 | 100 500M 2N4389 S|P HSS 200M 1A 125! 12 12 10 30 | 180 LOM Q.15 10M 4 4.0 JE 2N4390 S{N MSS 500M [A 175 120) 120 ]/0 20 2.0M 50M | T 2N4391 thru Field Effect Transistors, see Table on Page 1-166 2N4393 2N4395 S|N 2N3715 | 7-125 LPA | 62.5W }C 60 40 |0 50 | 170 2.0A 4M |T 2N4396 S|N 2N3715 | 7-125 LPA | 62.5W | C 80 60/0 40 1170 2,0A 4M |T 2N4398 S|P 7-167 LPA 200W | C 200 40 40 |0 15 60 154A 1.0 15A 40 /E AM |T 2N4399 S| P 7-167 LPA 200W | C 200 60 60/0 15 60 15A 1.0 15A 40 ]E 4M [T 2n4400 S|N 5-34 HSA 310M FA 135 66 40 40 50 | 150 150M 0.4 150M 20 |E 200M |T 2N4401 SIN 5-34 HSA 310M | A 135 60 40 | 0 |100 | 300 150M 0.4 150M 40 /E 250M | T 2N4402 S|P 5-39 HSA 310M | A 135 40 40/0 50 | 150 150M 0.4 150M 30 |E 150M |T 2N4403 S| P 5-39 HSA 310M |A 135 40 40 10 |100 | 300 150M 0.4 150M 60 |E 200M | T 2N4409 S}N 5-45 MSS 310M TA 135 80 50 [0 60 | 400 1.0M 0.2 1.0M 2N4410 S|N 5-45 MSS 310M | A 135 120 80 | 0 60 | 400 1.0M. 0.2 1.0M 2N4411 |S] P 8-302 | MSA| 150M ]A | 200 15} 12 ]0 | 40 0.5M 400M | T 2N4412 S|N RFA 600M | A 200 40 30 |0 1000 JE LOOM | T 2N4412A |S] P RFA 600M }A 200) 60 60 )0 120 |E 20M |T 2N4413 S|P RFA 400M FA 200 40 30 |0 1000 |E 100M /T 2N4413A |S | P RFA 400M }A 200 60 60 ]0 120 JE 20M |T 2N4414 S|]P RFA 600M |A 200 40 30 |0 1000 JE 100M |T 2N4414A |S | P REA 600M 1A 200 60 60 1O 100 JE 20M )T 2N4415 S| P RFA 400M FA 200 40 30/0 1000 | E 100M jT 2N4415A |S | P RFA 400M | A 200 60 60 |O 100 JE 20M | T pune Field Effect Transistors, see Table on Page 1-166 2N4418 S|N 2N4 264 | 5-29 MSA 250M 4A 125 40 40 |s 40 | 120 10M 500M {T 2N4419 SIN 2N4264 | 5-29 MSA 250M [A 125 30 30 {4S 30 LOM 400M 1 T 2N4420 S|N MPS3646] 5-95 MSA 250M |A 125 40 40/5 30 | 120 30M 350M }T 2N4421 SIN MPS 3646] 5-95 MSA 250M [A 125 30 30 1S 25 30M 300M )T 2N4422 |S |N | MPS3646] 5-95 MSA | 250M {A | 125 40] 40 |s { 30 ]120 30M 350M |T 2N4423 SIN MPS3640] 5-93 MSA 250M | A 125 12 1248 40 1150 30M 400M | T 2N4424 SIN MPS 3711) 5-100 MSA 360M |A 150 40 40 |0 180 |E 2N4425 SUN MSA 560M [A 150 40 40 |O {180 2M 2N4427 S|N LPA 3.5W ]C 40 20 |0 10 | 200 O.1A 500M | T 2N44 28 S]N LPA 3.5W [C 55 35 |0 20 | 200 |0.05A 700M |T 2N4429 S JN LPA 5.0W |C 55 35 |0 20 | 200 |0.05A 700M | T 2N4430 S[N LPA 10W 1c 55 40 |0 20 | 200 Q.,1A 600M |T 2N4431 S|N LPA 18w | Cc 55 40 ]0 20 | 200 O.1A 600M | T 2N4432 S|N RFA 600M ;A 50 30 10 40 {130 6.0M 45 }E 2N4432A 1S [N RFA 600M |A 50 30 |0 80 1150 6.0M 90 JE 2N4440 SIN LPA | 11.6W |C 65 40 |0 10 | 200 |0.1254 400M |T 2N4441 thru Thyristors, see Table on Page 1-154 2N4444 2n4576 [Ss |N | 2N3716 ]7-125 | HPA | 150W |c | 200| 100] 80 ]o | 50/150] 1.0A | 0.8] 5.0A | 25 |B | 30K JE 2N4851 they Unijunction Transistors, see Table on Page 1-174 2N4853 2N4854 c 1 aa HSS 300M JA 200 60 40 |o 50 1.0M 200M |T 2N4855 omplementary Pair Hss | 300M JA | 200] 60] 40 jo } 25 1.0M 200M |T 2N4856 thru Field Effect Transistors, see Table on Page 1-166 2N4861 ane Unijunction Transistors, see Table on Page 1+174 2N4872 S |P HSS 700M |C 200 12 12 |0 50 |120 10M 0.13 1L.OM | 9.0 {E 2N4873 SIN HSS 360M 1A 200 40 15 {oO {110 {150 10M 0.2 10M 7.0 1E 2N4874 SIN RFA 720M |A 175 30 20 [0 200 |E 900M [T 2N4875 Ss |N RFA 720M |A 175 40 25 |0 200 JE 800M |T 2N4876 S {N RFA 720M {A 175 40 30 10 200 |E 650M |T 1-148Economy Transistors Uj Y PLASTIC SILICON SMALL-SIGNAL TRANSISTORS Z CURRENT versus VOLTAGE SELECTOR GUIDE Y \e 50 pA -5.0mA 5.0 mA - 25 mA 25 mA- 75 mA 75 mA - 500 mA Vceo Y Volts (Min) PNP NPN PNP NPN PNP NPN Pne NPN Y <10 MPS3639 Y, 10 MPS918 |MPS3640 |2N4264 MPS3646 Yy MPS2711 2N4265 Y MPS2712 MPS706 Yy MPS2713 MPS2369 Y MPS2714 MPS3563 Y MPS2715 Y, MPS2716 Y ' MPS2926 Y 19 MP$3721 Y 20 2N4126 | 2N4124 |MPS3638 | MPS6511] MPS3702 | MPS3706| MPS6562 | MPS6560 Y MPS6519 | 2N5089 | MPS3638A| MPS2923 MPS6563 | MPS6561 Y MPS6579 | MPS2923 MPS6552 Y MPS6580 | MPS2924 MPS6553 Y MPS2925 MPS6554 Y MPS3392 MPS6555 Y MPS3393 MPS6541 Y MPS3394 MPS6543 Y MPS3395 MPS6548 Y MPS3396 MPS6568 Y MPS3397 MPS6569 Y MPS3398 MPS6570 Y MPS6507 Y MPS6514 Y MPS6515 Y, MPS6539 Y MPS6542 Y MPS6546 Y, ' MPS6547 Y 29 MPS6571 Y 30 2N4125 | 2N4123 MPS5834 | MPS3703 | MPs3704 |} MPS6535 | MPS6532 Y 2N5088 MPS3705 Y MPS3707 Y MPS3708 Y MPS3709 Y MPS3710 Y MPS3711 Y MPS3712 Y MPS3713 Y MPS6540 Yy ' MPS6573 Y 39 MPS6574 Y 40 MPs6516 | MPS6575 |2N3905 |2N3903 MpPs6544 | 2N4402 | 2N4400 Y MPS6517 | MPS6576 |2N3906 |2N3904 MPS6545 }2N4403 | 2N4401 Y MPS6518 MPS3693 MPS6533 | MPS6530 Y MPS3694 MpPS6534 | MPS6531 Y MPS3826 Y MPS3827 GY MPS6564 Y MPS6565 Y MPS6566 Y 49 MPS6567 Y >50 2N5086 | 2N4409 Y | 2N5087 | 2N4410 4Economy Transistors PLASTIC SILICON SMALL-SIGNAL TRANSISTORS SELECTOR GUIDES On the following pages the plastic silicon small-signal devices subsequently characterized by complete data sheets have been grouped by applications for which they merit first consideration. GENERAL PURPOSE SWITCHES & AMPLIFIERS All devices in Case 29 (1) QM WN WK WK OE WN MAXIMUM RATING ELECTRICAL CHARACTERISTICS (Ty = 26C unless otherwise noted} Min itching Ti Vceo Yee ceo Eye Veetat) & Vaca @ Ic tr @ tg | Coy | SMitchioa Times gel Type NPN @ Iglmad Volts Vetts PAM} Vettst imax) A ii A Fax) A PNP an a1] 107 207 10] so] 100] 160] seo : " . . re | ow Po] |] 4% m 2N3903 40 6.0 0.05 | 20 | 35 | - | 50}30] 15] - | - 0.20 0.85 10 250 10 4.0 38 [35 [175 |50 | 10/1.0 = | = |} 150) J 0. 30 0.95 50 2N3904 40 6.0 0.05 | 40 | 70 | - | 100}/60] 30) - | - 0. 20 0.85 10 300 10 4.0 38 |35 {200 |s0 | 10/1.0 Tol > |] 300) - |= I= 0.30 0.95 50 2N3905* 40 5.0 0.05 { 30] 40] - | 50} 30/15] -| - 0.25 0. 85 10 200 10 45 35 ]35}200 60 | 10/1.0 = | = [of top| [S| 040 0.95 50 2N3906* 40 5.0 0.05 | 60 | 80 | - | 100/60] 30] - | - 0.25 0.85 10 250 10 4.5 35 | 351225 175 | 10/1.0 = - = | 306) | - [y= 0. 40 0.95 50 2N4123 30 5.0 0. 08 = | = |] 504 7 Jas} - ] -f - 0.30 0.95 50 280 10 4.0 24]13 [125 [11 | 10/1.0 > {> |e, TS Se 2N4124 25 5.0 0.05 | - | - | 120] - | eo] - | -] - 0.30 0.95 50 300 10 4.0 24] 13}tas [11 | 10/10 = - | 366 - | - |) - = 2N4125* 30 4.0 0.05 | - | - | so] -|a5}- | -]- 0. 40 0. 95 50 200 10 4.5 25} 18/140 [15 | 10/10 ~ | > | 150) = J] d= 2N4126* 25 4.0 005 | - | - | 120) - Jeol. | - | - 0. 40 0.95 50 250 10 4.5 25 }18|i40 115 | 10/2 > | > | 366) Sp PP 24400 40 6.0 0.4 =) 2 } =) 40)- | - |s0]}20)} 0.40 0.95 150 200 20 6.5t 15 }20 j225 }30 | 150/15 > FD fos] 2 pS [eis - 0.75 1.20 500 2N4401 40 6.0 0.1 20) 40] - | go]- | - |100/40] 0.40 0. 95 150 250 20 6. 5+ 15 }20 |228 [30 | 150/15 ~ | = |] 2 | > 7277300] ~ 0.75 1,20 500 2N4402* 40 5.0 0.1 - | 30] - | so]- |- {50/20] 0.40 0.95 150 150 20 8. 5+ 15 | 20 |225 {30 | 150/15 Tz] Spm] Tye fs |isol = 0. 75 1.20 500 2N4403% 40 5.0 0.1 30 | 60 | - | 100] ~ | - {100/20} 0.40 0.95 150 200 20 8.5t 15 | 20/225 ]30 | 150/15 ~ | 2 fa] Spe] = | 300! = 0.75 1.20 500 Mps3638*{ 25 4.0 - : 20/30] - | - |2ot} 0.25 1.10 50 100 50 20 20 |70]140 }70 | 300/30 Tyre} eye ye} 1.00 2.00 300 MPS3631 25 4.0 - - | a0 | - | 100} 100) - | - |20r] 0.25 1,10 50 150 50 10 201 70|140|70 | 300/30 TVS SS pays} cis 2.00 2.00 300 MPS3702*) 25 5.0 0.1 - | = - | -]eo} - | -] - 0. 25 - 50 100 50 12 -J-]-4]- : Tr ysyps 300 aT MPS3703*} 30 5.0 OL | - | - } =) -) 30) - ) -)- 0.25 - 50 100 50 12 -J-t-4- - = = ~ =~] 15 - ff - | . MPS3704 30 5.0 0.1 - | =} -] - frog - | - | - 0. 60 - 100 100 50 12 -[-]-]- - >) o) ms) =)]ds| = MPS3705 30 5.0 0.1 : - -| -|so} -] -|- 0. 80 - 100 100 50 +12 -[-]-]- - ryt) sp} a)isd) aT MPS3706 20 5.0 0.1 - - | -| -J}aoj -] -]. 1.00 - 100 100 50 12 -|-]- ]- - >| >|) = feo] > MPS6530 40 5.0 0.05 | - | - | - | 30] -] 40] -]25 0.50 1.00 100 390 50 5.0 -|-]-]- - = = = |] Y2q) 1 = MPS6531 40 5.0 o.os | - | - | - 7] 60} -} 90] -|s0] 0.30 1.00 100 390 50 5.0 ~}-[- ]- - > oe eres eee en en Be MPS6532 30 5.0 0.1 -~]-{]_] ~|-js0]_-]-] 050 1,20 100 390 50 5.0 -f-]- |[- - MPS6533*| 40 4.0 005 | - | - | - | 30} - [40] - [25] 0.50 1.00 100 260 50 6.0 -4-[- [- - = Sp) PS] 20} | = MPS6534*{ 40 4.0 0.05 | - | - | _- | eo] - | 90] - |so} 0.30 1,00 100 260 50 6.0 -f-ft-d- - - ] = =] 370["- |= MPS6S35 30 4.0 0.4 2-2 )-) -)-}se]-]-] 050 1.20 100 260 50 6.0 -|-]- ]- - MPS8565 45 4.0 0.1 - |=] | 40} -]- | -f- 0.40 - 10 200 10 3.5 -J-]- ]- - = |S | Tp 186) MPS6566 45 4.0 0.1 ~tlal i -}-] -]- 0. 40 - 10 200 10 3.5 -[-f- ]- : > | 2 | =] 200) | => c i eb t ho = 300 mA 5-5 NQQ\\[wWwiwWwUw E =e.> vy 39 gppy3y1))y oorEconomy Transistors 2N4402 (siticon) 2n4403 PNP silicon annular transistors designed for general purpose switching and amplifier applications and for complementary circuitry with NPN types 2N4400 and 2N4401. MAXIMUM RATINGS Rating Symbol Value Unit Coilector-Emitter Voltage VCEO 40 Vde Collector-Base Voltage Vos 40 Vde Emitter-Base Voltage Vep 5 Vde Collector Current - Continuous Io 600 mAdc Total Device Dissipation T, = 25C Pb 310 mW Derate above 25C 2.81 mw/c Operating & Storage Junction Temperature Range Ty, Tstg | -55 to +135 C CASE 29 (1 ) THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case 830 0.137 Cc/mw Thermal Resistance, Junction to Ambient ogA 0.357 C/mw SWITCHING TIME EQUIVALENT TEST CIRCUIT FIGURE 1 TURN-ON TIME -30 200.Q *| jt < 2a +2V -_> \ I -t- 1kQ ->~ t Cs* < 10 pF | 16V ae 9, Scope rise time < 4 ns | le 10 to 100 4s, DUTY CYCLE == 296 *Total shunt capacitance of test jig, connectors, and oscilloscope FIGURE 2 TURN-OFF TIME q 30V > 20 > [- < 20ns s a +14V {f n > 1k a | Cs" < 10 pF an I6V --| le 1.0 to 100 jxs, DUTY CYCLE ~ 2% 5-39Economy Transistors 2N4402, 2N4403 (continued) ELECTRICAL CHARACTERISTICS 4, = 25C uniess otherwise noted) Characteristic | Fig. No. | Symbol | Min | Max | Unit | OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage* BVcEQ* Vde (lg = 1 mAde, I, = 0) 40 _ Collector-Bage Breakdown Voltage BVcBO Vde (ig = 0.1 mAdc, Ig = 0) 40 - Emitter-Base Breakdown Voltage BVERBO Vde (lg = 0.1 mAdc, I = 0) 5 _ Collector Cutoff Current Iorx uAde (Vog = 35 Vdc, VBE(ott) = 0.4 Vde) _ 0.1 Base Cutoff Current Ipu Adc (Vog = 3 Vdc, VBE(off) * 0.4 Vde) _ 0.1 ON CHARACTERISTICS DC Current Gain 15 hrge - {Ig = 0.1 mAde, Vog = 1 Vde) 2N4403 30 - (ig = 1 mAde, Veg = 1 Vdc) 2N4402 30 _ 2N4403 60 - (Ig = 10 mAde, Vog = 1 Vde) 2N4402 50 _ 2N4403 100 ~ (ig =150-mAde, Vog = 2 Vde)* 2N4402 50 150 2N4403 100 $00 (lg = 500 mAdc, Vog = 2 Vde)* 20 ~_ Collector-Emitter Saturation Voltage* 16, 17, 18 Vox(sat) Vdc (ic = 150 mAde, Ip = 15 mAdc) - 0.4 (Ig = 500 mAdc, Ip = 50 mAdc) ~ 0.75 Base-Emitter Saturation Voltage* 17, 18 VEE(aat) Vde (ic = 150 mAdc, Ip = 13 mAdc) 0.75 0.95 (lg = 500 mAdc, Ip = $0 mAdc) _ 1.3 SMALL-SIGNAL CHARACTERISTICS Current-Gain Bandwidth Product tp MHz (ig = 20 mAdc, Vog = 10 Vde,f = 100MHe) 24402 150 - 2N4403 200 _ Collector-Base Capacitance 3 Cop pF (Vog *10 Vac, Ip = 0, f = 140 kHz, emitter guarded) _ 8.5 Emitter-Base Capacitance 3 Cen pF (Vgg = 0.5 Vdc, Io = 0, f = 140 kHz, collector guarded) _ 30 Input Impedance 12 bie ohms (ig = 1 mAdc, Vog = 10 Vde, f = 1 kHz) 2N4402 750 7.8% 2N4403 15k 15k Voltage Feedback Ratio 13 hy x 10-4 (ig = 1 mAdc, Vog = 10 Vide, f = 1 kHz) e 1 8 Small-Signal Current Gain 11 he _ (ig = 1 mAdc, Vog = 10 Vde, f= 1 kHz) 2N4402 30 250 2N4403 60 500 Output Admittance 14 Noe pmbos (ic = 1 mAde, Vog =-10 Vde, f= 1 kHz) 1 100 SWITCHING CHARACTERISTICS Delay Time Voc = 30 Vac, VEE(ott) = 2 Vdc, 1,5 ty ~ 15 ns Rise Time Ig = 150 mAde, Ip) = 15 mAdc 1,5, 6 ty _ 20 ns Storage Time Voc * 30 Vdc, Ig = 150 mAdc, 2,7 ty _ 225 ns Fall Time Ig) = Ipg = 15 mAdc 2,8 te _ 30 ns *Pulse Test: Pulse Width 800 ya, Duty Cycle < 2% 5-40Economy Transistors 2N4402, 2N4403 (continued) TRANSIENT CHARACTERISTICS 25C - 100C FIGURE 3 CAPACITANCES FIGURE 4 CHARGE DATA 30 10 70 Veo = 30 20 5.0 lc/lp = 10 3.0 2.0 g a zw 0 2 ww z = 10 g 70 3 & o 0.7 5.0 0.5 03 3.0 02 Oy 20 0.1 Ol 02 03 05 07 10 20 3.0 50 7.0 10 20 30 10 20 30 50 70~s 100 200 300 500 REVERSE VOLTAGE (VOLTS) lo, COLLECTOR CURRENT (mA) FIGURE 5 TURN-ON TIME FIGURE 6 RISE TIME 100 io/lg = 10 7 cis Yoo = 30 Io/ly = 10 50 ici lp 0 t@Vec = WV 2 z t, @ Vee = 10V Po = 0 ta @ Vator) = 2V 5 = ty @ Veejon) = 0 = 10 7.6 5.0 10 20 30 50 70-100 200 300-500 10 20 30 50 70100 200-300 50 lc, COLLECTOR CURRENT (mA) le, COLLECTOR CURRENT (mA) FIGURE 7 STORAGE TIME FIGURE 8 FALL TIME 200 Veo = 30V le/le = 10 tei = Ip2 100 = 3 le/le = 20 we icfly = 20 = Zz 7 2 3 an z to/ly = 10 a 50 = 3 30 20 10 20 30 50 70 100 200 300 500 10 20 30 50 70 100 200 300 500 lc, COLLECTOR CURRENT (mA) Ie, COLLECTOR CURRENT (mA) 5-412N4402, 2N4403 (continued) NF, NOISE FIGURE (dB) hye. CURRENT GAIN he, VOLTAGE FEEDBACK RATIO (X10 ~*) Economy Transistors SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE Vee = 10 Vde, Ta = 25C FIGURE 9 FREQUENCY EFFECTS FIGURE 10 SOURCE RESISTANCE EFFECTS 10 f= 1 kHz 8 s Io = 1 mA, Rs = 4302 = 6 lo = 500 pA, Rs = 560 92 = tu le = 50 pA, Rs = 2.7 2 g 4 Ic = 100 pA, Rs = 1.6 kQ . =z Rs = OPTIMUM SOURCE RESISTANCE 2 0 O1 020 05 6.1 02 OF 10 20 50 10 20 50 100 50 100 200 500 lk 2k 5k 10k 20k 50k f, FREQUENCY (kHz) Rs, SOURCE RESISTANCE (OHMS) h PARAMETERS Vee = 10 Vde, f= 1 kHz, Ta = 25C This group of graphs illustrates the relationship be- 2N4402 and 2N4403 lines, and the same units tween hy, and other h'' parameters for this series were used to develop the correspondingly- of transistors. To obtain these curves, a high-gain numbered curves on each graph. and a Jow-gain unit were selected from both the FIGURE 11 CURRENT GAIN FIGURE 12 INPUT IMPEDANCE 1000 100k 700 50k 2N4403 UNIT 1 500 5? 2N4403 UNIT 2 g 2k 2N4402 UNIT 1 300 S 10k 2N4402 UNIT 2 3 200 x 5k 2N4403 UNIT 1 = 2k 100 2N4403 UNIT 2 5 Ik 2N4402 UNIT 1 = 70 2N4402 UNIT 2 2 (500 50 200 30 100 0. 02 03 05 07 10 20 30 50 70 10 0.1 02 03 05 07 10 20 30 0 7.0 10 lc, COLLECTOR CURRENT (mAdc) FIGURE 13 VOLTAGE FEEDBACK RATIO 2N4403 UNIT 1 2N4403 UNIT 2 2N4402 UNIT 1 2N4402 UNIT 2 0.1 02 03 #05 07 10 2.0 Ic, COLLECTOR CURRENT (mAdc) 3.0 foe, OUTPUT ADMITTANCE (,2mhos) 5.0 7.0 10 5-42 te, COLLECTOR CURRENT {mAdc} FIGURE 14 OUTPUT ADMITTANCE 2N4403 UNIT 1 2N4403 UNIT 2 2N4402 UNIT 1 2N4402 UNIT 2 05 0.7 2.0 ie, COLLECTOR CURRENT (mAdc) 0.1 02 03 10 3.0 5.0 7.0 10Economy Transistors 2N4402 , 2N4403 (continued) STATIC CHARACTERISTICS FIGURE 15 DC CURRENT GAIN Ty = 125C 25C fee, NORMALIZED CURRENT GAIN 0.1 02 03 05 07 10 20 3.0 50 70 10 20 30 50 70 = 100 200 = 300 = 00 Ic, COLLECTOR CURRENT (mA) FIGURE 16 COLLECTOR SATURATION REGION Voce, COLLECTOR-EMITTER VOLTAGE (VOLTS) 0.005 = 0.01 0.02 0.03 0.05 0.07 01 02 03 05 07 10 20 3.0 5.0 70 10 20 30 50 Ip, BASE CURRENT (mA) FIGURE 17 ON VOLTAGE FIGURE 18 TEMPERATURE COEFFICIENTS 10 405 0 038 Vee (sat) @le/Ip = 10 Ovc for Veejsa1) o oe 05 = 06 > $ VBEton| @ Voce = 10V 4 = -10 = S Ss 0.4 3-15 02 -20 Bye for Voge Veetser) @le/la = 10 0 25 0.1 02 05 10 20 5.0 10 20 50 100 200 500 01 0.2 o5 10 20 50 10 20 50 100 200 500 ico COLLECTOR CURRENT (mA) Ic, COLLECTOR CURRENT (mA} 5-43Economy Transistors 2N4402 , 2N4403 (continued) RATINGS AND THERMAL DATA FIGURE 19 ACTIVE-REGION SAFE OPERATING AREA .10 50 it The safe cperating area curves indicate 20 - le-Ves limits of the transistor that must be 2 10 observed for reliable operation. Collector 10 load lines for specific circuits must fall be- & low the limits indicated by the applicable 2 05 curve. 3 r The data, of Figure 19 is based upon Ss mee = 989, up = 135C; T. is variable depending 8 02 THERMALLY LIMITED Te = 25C upon conditions. Pulse curves are valid = 9.1L 7 7 7 BONDING WIRE CURRENT LIMITED for duty cycles to 10% provided Tig < 8 Ty = 135C 135C. pe may be calculated from the 01 lata in Figure 20. At high case tempera- DOSE CURVES APPLY BELOW RATED tures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the sec- 0.01 ondary breakdown. 0.1 0.2 0.5 10 2.0 5.0 10 50 Vog, COLLECTOR-EMITTER VOLTAGE (VOLTS} FIGURE 20 THERMAL RESPONSE 10 07 05 0.3 0.2 STEADY STATE VALUES Bicol = 0.108C/mW 0.1 0.137C/mW 0.07 Actt) = C(t Bycl) # 0.05 CTIVE TRANSIENT THERMAL RESISTANCE DE & 0.03 0.02 S So Tit, NORMALIZ! 0.01 0.02 0.05 01 2.0 5.0 10 2.0 5.0 10 20 5) 100 200 500 100 t, TIME (ms) DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA FIGURE A te A train of periodical power pulses can be represented by the model as shown in Figure A. Using the model and the device thermal reponse, the normalized effective transient thermal resistance of Figure 20 was calculated for various duty cycles. Pp Pe To find @sc(t), multiply the value obtained from Figure 20 by the steady state value @jc(). 1 Example: y | The 2N4402 is dissipating 2.0 watts under the following conditions: 1 | t= 1.0 ms, t?=5.0ms. (D = 0.2) Using Figure 20, at a puise width of 1.0 ms and D = 0.2, the reading of r (t) is 0.27. The peak rise in junction temperature is therefore PEAK PULSE POWER = Pp AT = r(t) X Pe X Oic() = 0.27 X 2000 x 0.137 = 74.0C DUTY CYCLE D=t, =e 5-44