International Rectifier PD-9,.320G IRF9530 HEXFET Power MOSFET Dynamic dv/dt Rating Repetitive Avalanche Rated P-Channel e e 175C Operating Temperature @ Fast Switching Ease of Paralleling @ Simple Drive Requirements Description Third Generation HEXFETs from Intemational Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low Voss = -1 0OV Rps(on) = 0.302 s Ip = -12A on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and fow package cost of the TO-220 contribute to its wide acceptance throughout the industry. TO-220AB Absolute Maximum Ratings Parameter Max. [ Units Ip @ To = 25C Continuous Drain Current, Vas @ -10 V -12 lb @ Te = 100C | Continuous Drain Current, Veg @ -10 V -8.2 A fom Pulsed Drain Current -48 Pp @ Tc = 25C | Power Dissipation 88 WwW Linear Derating Factor 0.59 WwrC Vas Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy @ 400 mJ lar Avalanche Current -12 A Ear Repetitive Avalanche Energy 8.8 mJ dv/dt Peak Diode Recovery dv/dt @ 55 Vins Ty Operating Junction and -55 to +175 Tste Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting Torque, 6-32 or M3 screw 10 Ibfsin (1.1 Nem) Thermal Resistance Parameter Min. Typ. Max. Units Rac Junction-to-Case = = 1.7 Recs Case-to-Sink, Flat, Greased Surface ~ 0.50 CiW Raa Junction-to-Ambient > _ 62 323IRF9530 Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Vienyoss Drain-to-Source Breakdown Voltage -100 | = V__ | Ves=0V, Ip=-250nA AVierypss/ATy} Breakdown Voltage Temp. Coefficient | -0.10} | V/C | Reference to 25C, Ip=-1mA Ros(on) Static Drain-to-Source On-Resistance _ | 0.30) Q | Ves=-10V, Ip=-7.2A Vesh) Gate Threshold Voltage -2.0 | | -4.0 | V_ | Vos=Vas, lo=-250nA Gis Forward Transconductance 3.7 _ S| Vps=-5O0V, Ip=-7.2A @ loss Drain-to-Source Leakage Current _| 100 HA Vos=-100V, Vas=0V _ | -600 Vos=-80V, Vgg=0V, Ty=150C less Gate-to-Source Forward Leakage _ _ -100 nA Vas=-20V Gate-to-Source Reverse Leakage _ 100 Vas=20V Qg Total Gate Charge _ _ 38 Ip=-12A Qgs Gate-to-Source Charge | | 68 | NC | Vpg=-80V Qoa Gate-to-Drain ("Miller") Charge _ _ 21 Vas=-10V See Fig. 6 and 13 @ ta(on) Turn-On Delay Time _ 12 _ Vpp=-50V tr Rise Time _ 52 _ ns Ip=-12A tarot Turn-Off Delay Time _ 31 _ Re=122 t Fail Time 39 _- Rp=3.9Q See Figure 10 Lo Internal Drain Inductance _ 45 _ e mo. sad ) i nH | from package (=) Ls Internal Source Inductance | 75) and center of die contact 8 Ciss Input Capacitance | 860 | Vag=0V Coss Output Capacitance | 340} PF | Vos=-25V Crss Reverse Transfer Capacitance _ 93 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current | | ape MOSFET symbol D (Body Diode) A showing the ism Pulsed Source Current | | 48 integral reverse (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage = | 63 V__ | Ty=25C, Is=-12A, Vas=0V tr Reverse Recovery Time _ 120 | 240 | ns | Ty=25C, Ip=-12A Qr Reverse Recovery Charge | 0.46 | 0.92 | uC | di/dt=100A/us @ ton Forward Tum-On Time intrinsic turn-on time is negiegible (turn-on is dominated by Ls+Lp) Notes: @ Repetitive rating; pulse width limited by max. junction temperature (See Figure 11) Vpp=-25V, starting Tj=25C, L=4.2mH Re@=25Q, las=-12A (See Figure 12} Isps-12A, di/dts140A/us, VopsV(BR)Dss, Tys175C Pulse width < 300 is; duty cycle <2%. 324-Ip, Drain Current (Amps) -lp, Drain Current (Amps) 20us WIDTH To = 26C -Vps, Drain-to-Source Voltage (volts) Fig 1. Typical Output Characteristics, To=25C Vpg = -S0V 20us_PULSE WIDTH -Ves, Gate-to-Source Voltage (volts) Fig 3. Typical Transfer Characteristics Rosion), Drain-to-Source On Resistance -Ip, Drain Current (Amps) (Normalized) IRF9530 tot 20us WIDTH Te = 175C 400 -Vps, Drain-to-Source Voltage (volts) Fig 2. Typical Outout Characteristics, To=175C es = ~4 Ty, Junction Temperature (C) Fig 4. Normalized On-Resistance Vs. Temperature 325IRF9530 1600 =I 20 Cgs + Cga Cds ES 1500 Cga + Fe) 16 & ~ wo LL 1200 i} 2 Ss 42 8 a = 300 g 3 3 0 8 = 600 2 oO 2 Oo 4 300 rs) o > FOR TEST CIRCUIT ' SEE FIGURE 13 0 40 -Vps, Drain-to-Source Voltage (volts) Qe, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage OPERATION IN THIS AREA LIMITED Y Aps (on) 104 40 -Ip, Drain Current (Amps) To=25C Ty=175C SINGLE -lsp, Reverse Drain Current (Amps) Ves = OV 1 aa : . .0 o.1 2 5 4 2 5 40 2 5 492 2 5 493 -Vsp, Source-to-Drain Voltage (volts) -Vps, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 326-Ip, Drain Current (Amps) 25 50 Tc, Case Temperature (C) 76 100 125 150 175 Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response (Zp jc) Fig 11. NOTES: RF9530 D HE-tov Puisa Width < fs i___Duty Factor < 0.1% D.U.T. =; Vo = Fig 10a. Switching Time Test Circuit taon) tr 10% Vps taot) Yes yp Ty ee F Fig 10b. Switching Time Waveforms HLT ph 1. DUTY FACTOR, D=ty/to 2, PEAK T, x +7, 10-5 10-4 10-3 1072 0.4 1 ty, Rectangular Pulse Duration (seconds) Maximum Effective Transient Thermal Impedance, Junction-to-Case 410 327IRF9530 | Vary tp to obtain VDS> required las = @ 600 Fig 12a. Unclamped Inductive Test Circuit lag 400 eo Eas, Single Pulse Energy (mJ) 200 Vos = -25V 0 Vpp 25 78 100 125 150 175 50 Starting Ty, Junction Temperature(C) Vieryoss Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator Same Type as D.U.T. Ala i 7 g 5 ww 12V | = Gp 10V Ves Va Charge + la Ip . Current Sampling Aesistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit -See page 1506 Appendix B: Package Outline Mechanical Drawing See page 1509 Appendix C: Part Marking Information - See page 1516 international Appendix E: Optional Leadforms See page 1525 R ti fi e r 328