EMZ2 / UMZ2N / IMZ2A
Transistors
Rev.A 1/4
Power management (dual transistors)
EMZ2 / UMZ2N / IMZ2A
zFeature
1) Both a 2SA1037AK chip and 2SC2412K chip in a
EMT or UMT or SMT package.
zEquiva lent circuit s
EMZ2 / UMZ2N
(3) (2) (1)
(4) (5) (6)
Tr
1
Tr
2
IMZ2A
(4) (5) (6)
(3) (2) (1)
Tr
1
Tr
2
zA bsolute maximum ratings (Ta = 25°C)
Parameter Symbol Limits
60 60
Tr
1
Tr
2
Unit
V
50 50 V
67
150 150 V
mA
300 (TOTAL)
55 to +150 °C
150 °C
V
CBO
V
CEO
V
EBO
I
C
150 (TOTAL)
2
1
IMZ2A
EMZ2, UMZ2N mW
P
C
Tj
Tstg
1 120mW per element must not be exceeded.
2 200mW per element must not be exceeded.
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Collector power
dissipation
Junction temperature
Storage temperature
zPackage, marking, and packaging specifications
Part No. UMZ2N
UMT6
Z2
TR
3000
EMZ2
EMT6
Z2
T2R
8000
IMZ2A
SMT6
Z2
T108
3000
Package
Marking
Code
Basic ordering unit (pieces)
zExternal dimensions (Unit : mm)
ROHM : EMT6
ROHM : UMT6
UMZ2N
EMZ2
EIAJ : SC-88
2.0
Each lead has same dimensions
0to0.1
(6)
1.3
0.15
0.7
0.1Min.
2.1
0.65
0.2
1.25
(1)
0.65
(4)
(3)
(2)
(5)
ROHM : SMT6
IMZ2A
EIAJ : SC-74
Each lead has same dimensions
(6)
(5)
(4)
0.3to0.6
0.15 0.3
1.1
0.8
0to0.1
(3)
2.8
1.6
1.9
2.9
0.95
(2)
0.95
(1)
Each lead has same dimensions
0.22
1.2
1.6
(1)
(2)(5)
(3)
(6)
(4)
0.13
0.5
0.5
0.5
1.0
1.6
EMZ2 / UMZ2N / IMZ2A
Transistors
Rev.A 2/4
zElectrical characteristics (Ta=25°C)
Tr1
(PNP)
Parameter Symbol Min. Typ. Max. Unit Conditions
BVEBO
ICBO
IEBO
VCE(sat)
hFE
BVCEO 50
6
120
0.1
0.1
0.5
560
V
V
µA
µA
V
IC = 1mA
BVCBO 60 −− VIC = 50µA
IE = 50µA
VCB = 60V
VEB = 6V
IC/IB = 50mA/5mA
VCE = 6V , IC = 1mA
fT
Cob
140
4
5MHz
pF VCE = 12V , IE = 2mA , f = 100MHz
VCB = 12V , IE = 0A , f = 1MHz
Tr2
(NPN)
Parameter Symbol Min. Typ. Max. Unit Conditions
BVEBO
ICBO
IEBO
VCE(sat)
hFE
BVCEO 50
7
120
0.1
0.1
0.4
560
V
V
µA
µA
V
IC = 1mA
BVCBO 60 −−VIC = 50µA
IE = 50µA
VCB = 60V
VEB = 7V
IC/IB = 50mA/5mA
VCE = 6V , IC = 1mA
fT
Cob
180
2
3.5 MHz
pF VCE = 12V , IE = 2mA , f = 100MHz
VCB = 12V , IE = 0A , f = 1MHz
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current
transfer ratio
Transition frequency
Output capacitance
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current
transfer ratio
Transition frequency
Output capacitance
Transition frequency of the device.
Transition frequency of the device.
zElectrical characteristics curves
PNP T r
Fig.1 Grounded emitter propagation
characteristics
0.2
COLLECTOR CURRENT : Ic (
mA)
50
20
10
5
2
1
0.5
0.2
0.1 0.4 0.6 0.8 1.0 1.2 1.4 1.6
V
CE
= 6V
BASE TO EMITTER VOLTAGE : V
BE
(
V)
Ta=100˚C
25˚C
40˚C
Fig.2 Grounded emitter output
characteristics (I)
0.4
4
8
1.20
2
6
10
0.8 1.6 2.0
3.5µA
7.0
10.5
14.0
17.5
21.0
24.5
28.0
31.5
I
B
=0
Ta=25˚C 35.0
COLLECTOR CURRENT : I
C
(mA)
COLLECTOR TO MITTER VOLTAGE : V
CE
(V)
Fig.3 Grounded emitter output
characteristics (II)
40
80
53421
20
60
100
0I
B
=0
Ta=25˚C
COLLECTOR CURRENT : I
C
(
mA
)
COLLECTOR TO EMITTER VOLTAGE : VCE (
V)
50µA
100
150
200
250
500
450
400
350
300
EMZ2 / UMZ2N / IMZ2A
Transistors
Rev.A 3/4
Fig.4 DC current gain vs.
collector current (I)
500
200
100
50
0.2 0.5 12510 20 50 100
DC CURRENT GAIN : hFE
Ta=25˚C VCE= 5V
3V
1V
COLLECTOR CURRENT : IC (
mA)
Fig.5 DC current gain vs.
collector current (II)
500
200
100
50
0.2 0.5 12510 20 50100
DC CURRENT GAIN : h
FE
COLLECTOR CURRENT : I
C
(
mA)
V
CE
= 6V
Ta=100˚C
40˚C
25˚C
Fig.6 Collector-emitter saturation
voltage vs. collector current (I)
0.1
0.2 0.5 12510 20 50 100
1
0.5
0.2
0.05
Ta=25˚C
COLLECTOR CURRENT : I
C
(
mA)
I
C
/I
B
=
50
20
10
COLLECTOR SATURATION VOLTAGE : V
CE(sat)
(
V)
Fig.7 Collector-emitter saturation
voltage vs. collector current (II)
0.1
0.2 0.5 12510 20 50 100
1
0.5
0.2
0.05
COLLECTOR CURRENT : I
C
(mA)
l
C
/l
B
=10
Ta=100˚C
25˚C
40˚C
COLLECTOR SATURATION VOLTAGE : V
CE(sat)
(
V)
Fig.9
Collector output capacitance vs.
collector-base voltage
Emitter inputcapacitance vs.
emitter-base voltage
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE : VEB (V)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE : Cib (pF)
0.5 20
2
5
10
12510
20
Cib
Cob
Ta=25˚C
f=1MHz
IE
=0A
IC
=0A
Fig.8 Gain bandwidth product vs.
emitter current
50 1000.5 20
50
100
200
500
1000
12 510
EMITTER CURRENT : I
E
(
mA)
TRANSITION FREQUENCY : f
T
(
MHz)
Ta=25˚C
V
CE
=
12V
NPN Tr
Fig.10 Grounded emitter propagation
characteristics
0
0.1
0.2
0.5
2
20
50
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1
5
10
Ta
=
100°C
V
CE
=6V
COLLECTOR CURRENT : I
C
(mA)
BASE TO EMITTER VOLTAGE : V
BE
(V)
25°C
55°C
Fig.11 Grounded emitter output
characteristics ( Ι )
0
20
40
60
80
100
0.4 0.8 1.2 1.6 2.00
COLLECTOR CURRENT : I
C
(mA)
COLLECTOR TO EMITTER VOLTAGE : V
CE
(V)
0.05mA
0.10mA
0.15mA
0.25mA
0.30mA
0.35mA
0.20mA
Ta=25°C
I
B
=0A
0.40mA
0.50mA
0.45mA
0
0
2
8
10
4 8 12 16
4
6
20
I
B
=0A
Ta=25°C
COLLECTOR CURRENT : I
C
(mA)
COLLECTOR TO EMITTER VOLTAGE : V
CE
(V)
3µA
6µA
9µA
12µA
15µA
18µA
21µA
24µA
27µA
30µA
Fig.12 Grounded emitter output
characteristics ( ΙΙ )
EMZ2 / UMZ2N / IMZ2A
Transistors
Rev.A 4/4
0.2
20
10 0.5 1 2 5 10 20 50 100 200
50
100
200
500
V
CE
=5V
3V
1V
Ta=25°C
Fig.13 DC current gain vs.
collector current ( Ι )
DC CURRENT GAIN : h
FE
COLLECTOR CURRENT : I
C (mA)
0.2 0.5 1 2 5 10 20 50 100 200
20
10
50
100
200
500
25°C
55°C
Ta=100°CV
CE
=
5V
Fig.14 DC current gain vs.
collector current ( ΙΙ )
DC CURRENT GAIN : h
FE
COLLECTOR CURRENT : I
C (mA)
Fig.15 Collector-emitter saturation
voltage vs. collector current
0.2
COLLECTOR SATURATION VOLTAGE : VCE(sat)
(V)
COLLECTOR CURRENT : I
C
(mA)
0.01
0.02
0.05
0.1
0.2
0.5
0.5 1 2 5 10 20 50 100 200
I
C
/I
B
=50
20
10
Ta=25°C
Fig.16 Collector-emitter saturation
voltage vs. collector current ( Ι )
0.2
COLLECTOR SATURATION VOLTAGE : VCE(sat)
(V)
COLLECTOR CURRENT : I
C
(mA)
0.01
0.02
0.05
0.1
0.2
0.5
0.5 1 2 5 10 20 50 100 200
I
C
/I
B
=10
Ta=100°C
25°C
55°C
Fig.17 Collector-emitter saturation
voltage vs. collector current (ΙΙ)
COLLECTOR SATURATION VOLTAGE : V
CE(sat)
(V)
COLLECTOR CURRENT : IC
(mA)
0.2
0.01
0.02
0.05
0.1
0.2
0.5
0.5 1 2 5 10 20 50 100
IC/IB=50
Ta=100°C
25°C
55°C
Fig.18 Gain bandwidth product vs.
emitter current
50
0.5 12510 20 50 100
100
200
500
Ta=25°C
V
CE
=6V
EMITTER CURRENT : I
E
(mA)
TRANSITION FREQUENCY : f
T
(MHz)
Fig.20 Base-collector time constant
vs. emitter current
0.2 0.5 12510
BASE COLLECTOR TIME CONSTANT : Cc·r
bb' (ps)
EMITTER CURRENT : I
E
(mA)
10
20
50
100
200 Ta=25°C
f=32MH
Z
V
CB
=6V
Fig.19 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
COLLECTOR TO BASE VOLTAGE : V
CB
(V)
EMITTER TO BASE VOLTAGE : V
EB
(V)
COLLECTOR OUTPUT CAPACITANCE : Cob (
pF)
EMITTER INPUT CAPACITANCE : Cib (
pF)
0.2 0.5 1 2 5 10 20 50
1
2
5
10
20
Cob
Ta=25°C
f
=
1MHz
I
E
=0A
I
C
=0A
Cib
Appendix
Appendix1-Rev1.1
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.