PC9D17 High Speed, High Common Mode Rejection, 2-channel OPIC Photocoupler PC9D17 Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC9D17I/PC9D17P ) Features Outline Dimensions 1. Built-in 2-channel 2. High speed response ( t PHL , t PLH : TYP. 0.3 s at R L = 1.9k ) 3. High instantaneous common mode rejection voltage CM H : TYP. 1kV/ s 4. Standard dual-in-line package 5. Recognized by UL, file No. E64380 2.54 0.25 8 ( Unit : mm ) 0.8 0.2 7 6 5 Primary side mark ( Sunken place ) 1 2 3 1.2 0.3 4 0.85 0.3 3.0 0.5 Applications 0.5 0.1 7 6 5 1 2 3 4 7.62 0.3 0.5TYP. 3.5 0.5 9.22 0.5 1. Electronic calculators, measuring instruments 2. Digital audio equipment 3. High speed receivers 4. Switching regulators 8 6.5 0.5 PC9D17 Internal connection diagram 1 4 Anode 2 3 Cathode 5 GND 0.26 0.1 : 0 to 13 6 V 02 7 V 01 8 V CC * " OPIC " ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. Absoulte Maximum Ratings Input Output Parameter *1 Forward current *1 Reverse voltage *1 Power dissipation Supply voltage *1 Output voltage *1 Output current *1 Power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25C ) Symbol IF VR P V CC VO IO PO V iso T opr T stg T sol Rating 25 5 45 - 0.5 to + 15 - 0.5 to + 15 8 35 2 500 - 55 to + 100 - 55 to + 125 260 Unit mA V mW V V mA mW V rms C C C *1 Each channel *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds " In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. " PC9D17 Electro-optical Characteristics Input Output Transfer characteristics ( Unless otherwise specified, Ta = 0 to + 70C ) Parameter Forward voltage Reverse current Terminal capacitance High level output current ( 1 ) High level output current ( 2 ) High level output current ( 3 ) Low level output voltage Low level supply current High level supply current ( 1 ) High level supply current ( 2 ) Current transfer ratio Isolation resistance Floating capacitance " HighLow " propagation delay time " LowHigh " propagation delay time Instantaneous common mode rejection voltage " High level output " Instantaneous common mode rejection voltage " Low level output " Symbol VF IR Ct I OH(1) I OH(2) I OH(3) V OL I CCL I CCH(1) I CCH(2) CTR R ISO Cf t PHL t PLH CM H CM L Conditions MIN. Ta = 25C, I F = 16mA Ta = 25C, V R = 5V Ta = 25C, V F = 0, f = 1MH Z Ta = 25C, I F = 0, V CC = V O = 5.5V Ta = 25C, I F = 0, V CC = V O = 15V I F = 0, VCC = V O = 15V I F = 16mA, I O = 2.4mA, V CC = 4.5V I F = 16mA, V O = open, V CC = 15V Ta = 25C, I F = 0, V O = open V CC = 15V I F = 0, V O = open, V CC = 15V Ta = 25C, I F = 16mA, V O = 0.4V, V CC = 4.5V 19 Ta = 25C, DC500V, 40 to 60% RH 5 x 1010 Ta = 25C, V = 0, f = 1MH Z Fig. 1 Ta = 25C, R L = 1.9k I F = 16mA, V CC = 5V Fig. 1 Ta = 25C, R L = 1.9k I F = 16mA, V CC = 5V Fig. 2 Ta = 25C, I F = 0, R L = 1.9k V CM = 10Vp-p, VCC = 5V Fig. 2 Ta = 25C, I F = 16mA, R L = 19k V CM = 10Vp-p, V CC = 5V TYP. 1.7 60 400 0.02 1011 0.6 MAX. 1.95 10 250 500 1 50 0.4 1 2 - Unit V A pF nA A A V A A A % pF 0.3 0.8 s 0.3 0.8 s 1 000 - V/ s - 1 000 - V/ s All typical values : at Ta = 25C Recommended Operating Conditions Parameter Forward current Supply voltage Operating temperature Symbol IF V CC T opr MIN. 0 TYP. 5 - MAX. 16 70 Unit mA V C Fig. 1 Test Circuit for Propagation Delay Time Pulse input Pulse width 10 s Duty ratio 1/10 IF 0 IF IF monitor 100 1 8 2 7 3 6 4 5 VCC VO 5V RL 1.5V 1.5V VO 0.01 F CL = 15pF tPHL tPLH VOL PC9D17 Fig. 2 Test Circuit for Instantaneous Common Mode Rejection Voltage IF 1 8 2 7 3 6 4 5 RL + 10% 0V 0.01 F 90% tr CMH VO tf 5V 2V IF = 0mA CML VO - 10% 90% VO VCM VFF 10V VCM VCC 0.8V VO IF = 16mA Fig. 4 Power Dissipation vs. Ambient Temperature 30 60 25 50 power dissipation P,Po ( mW ) Forward current I F ( mA ) Fig. 3 Forward Current vs. Ambient Temperature 20 15 10 40 PO 30 20 10 5 0 - 55 P 0 25 50 Ambient temperature T 75 a 100 0 - 55 125 0 25 50 75 100 125 Forward voltage V F ( V ) ( C ) Fig. 5 Forward Current vs. Forward Voltage Fig. 6 Output Current vs. Output Voltage ( Dotted line shows pulse characteristics ) 20 100 10 T a = 75C 1 Output current I O ( mA ) Forward current I F ( mA ) V CC = 5V T a = 25C 25C 50C 0C - 25C 0.1 0.01 1.0 I F = 25mA 20mA 10 15mA 10mA 5mA 1.5 Forward voltage V F ( V ) 2.0 0 0 10 Output voltage V O ( V ) 20 PC9D17 Fig. 7 Relative Current Transfer Ratio vs. Forward Current Fig. 8 Relative Current Transfer Ratio vs. Ambient Temperature 150 150 I F = 16mA V O = 0.4V V CC = 5V V O = 0.4V Relative current transfer ratio ( % ) Relative current transfer ratio ( % ) V CC = 5V T a = 25C 100 50 CTR = 100% at I F = 16mA 0 0.1 100 50 CTR = 100% at Ta = 25C 1 10 Forward current I F ( mA ) 0 -30 100 Fig. 9 Propagation Delay Time vs. Ambient Temperature 40 60 80 100 10 V CC = 5V I F = 16mA T a = 25C I F = 16mA V CC = 5V R L = 1.9k 600 Propagation delay time ( s ) Propagation delay time t PHL , t PLH ( ns ) 20 Fig.10 Propagation Delay Time vs. Load Resistance 800 400 t PLH 200 t PHL t PLH 1 t PHL 0 - 60 - 40 - 20 0 20 40 60 80 0.1 0 100 Ambient temperature Ta ( C ) Fig.11 Output Voltage vs. Forward Current High level output current I OH ( A ) 4 3 R L = 1.9k 2 4.1k 10k 1 0 0 10 Forward current I F ( mA ) 100 10 -5 10 -6 10 -7 10 -8 10 -9 V CC = V O = 5V V CC = 5V T a = 25C 5 10 Load resistance R L ( k ) Fig.12 High Level Output Current vs. Ambient Temperature 6 Output current VO ( V ) 0 Ambient temperature T a ( C ) 20 10 - 10 10 - 11 - 60 - 40 - 20 0 20 40 60 Ambient temperature T a ( C ) 80 100 PC9D17 Fig.13 Frequency Response Test Circuit for Frequency Response 0 I F = 16mA T a = 25C -5 - 15 15V 5V 220 470 1 AC Input 20k 1k 560 - 20 - 25 - 30 0.1 100 Voltage gain Av ( dB ) R L = 100 - 10 8 2 7 3 6 4 5 1.6V DC 0.25VP - PAC 0.2 0.5 1 2 5 10 Frequency f ( MHz ) Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 F is added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, refer to the chapter "Precautions for Use ". RL VO