ASMT-QYBB-Nxxxx Super 0.5W Warm White Power PLCC-4 Surface Mount LED Indicator Data Sheet Description Features The Super 0.5W Warm White Power PLCC-4 SMT LED is Warm white mid-Power PLCC-4 SMT LEDs using InGaN chip technology. The package can be driven at high current due to its superior package design. The product is able to dissipate the heat more efficiently compared to the Power PLCC-4 SMT LEDs. These LEDs produce higher light output with better flux performance compared to the Power PLCC-4 SMT LED. * Industry Standard PLCC 4 platform (3.2x2.8x1.9mm) The Super 0.5W Warm White Power PLCC-4 SMT LEDs are designed for higher reliability, better performance, and operate under a wide range of environmental conditions. The performance characteristics of these new mid-power LEDs make them uniquely suitable for use in harsh conditions such as in automotive applications, and in electronics signs and signals. * Low Thermal Resistance 40C/W To facilitate easy pick and place assembly, the LEDs are packed in EIA-compliant tape and reel. Every reel is shipped in single intensity and color bin, to provide close uniformity. * High reliability package with enhanced silicone resin encapsulation * High brightness with optimum flux performance using InGaN chip technologies * Available in Warm White * Available in 8mm carrier tape & 7 inch reel * Wide viewing angle at 120 degree * JEDEC MSL 2 Applications 1. Interior automotive a. Instrument panel backlighting b. Central console backlighting c. Navigation and audio system backlighting d. Dome/Map lighting e. Push button backlighting f. Puddle lamp g. Glove compartment illumination 2. Exterior automotive a. Number plate illumination 3. Electronic signs and signals a. Decorative lighting 4. Office automation, home appliances, industrial equipment a. Panel/button backlighting b. Display backl-ighting CAUTION: ASMT-QYBB-Nxxxx LEDs are Class 2 ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Avago Application Note AN-1142 for additional details. Package Drawing 1.9 0.2 2.2 0.2 A C C 1.15 0.2 0.97 0.56 (TYP.) O 2.4 3.2 0.2 3.6 0.2 0.41 (TYP.) A 0.6 0.3 0.79 0.3 2.8 0.2 0.7 CATHODE MARKING Note: 1. All Dimensions in millimeters. 2. Lead Polarity as shown in Figure 12. 3. Terminal Finish: Ag plating 4. Encapsulation material: Silicone resin Figure 1. Package Drawing Table 1. Device Selection Guide (TJ = 25 C) Luminous Flux, V[1] (lm) Color Part Number Min. Flux (lm) Typ. Flux (lm) Max. Flux (lm) Test Current (mA) Dice Technology Warm White ASMT-QYBB-NFG0E 15.0 22.5 25.5 150 InGaN Notes: 1. V is the total luminous flux output as measured with an integrating sphere at mono pulse conditions. 2. Tolerance = 12% Part Numbering System A S M T - Q X1 B B - N X 2 X 3 X 4 X 5 Packaging Option Colour Bin Selection Max. Flux Bin Selection Min. Flux Bin Selection Color Y - Warm White 2 Table 2. Absolute Maximum Ratings (TA = 25C) Parameters ASMT-QYBB-Nxxxx DC Forward Current [1] 150 mA Peak Forward Current [2] 300 mA Power Dissipation 615 mW Reverse Voltage Not Recommended Junction Temperature 125C Operating Temperature -40C to +110C Storage Temperature -40C to +110C Notes: 1. Derate Linearly as shown in Figure 6. 2. Duty Factor = 10%, Frequency = 1kHz Table 3. Optical Characteristics (TJ = 25C) Color Part Number Dice Technology Warm White ASMT-QYBB-Nxxxx InGaN Typical Chromaticity Coordinates Viewing Angle 21/2[1] (Degrees) Luminous Efficiency e (lm/W) Total Flux / Luminous Intensity V (lm) / IV (cd) x y Typ. Typ. Typ. 0.41 0.39 120 43 2.85 Notes: 1. 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity. Table 4. Electrical Characteristics (TJ = 25C) Forward Voltage VF (Volts) @ IF = 150 mA Part Number Typ. Max. Thermal Resistance RJ-P (C/W) ASMT-QYBB-NxxxE 3.5 4.1 40 3 250 FORWARD CURRENT - mA RELATIVE INTENSITY 300 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 380 430 480 530 580 630 WAVELENGTH - nm 680 730 200 150 100 50 0 780 RELATIVE LUMINOUS FLUX (NORMALIZED AT 25C) RELATIVE LUMINOUS FLUX (NORMALIZED AT 150 mA) 0.6 0.4 0.2 0 25 50 75 100 DC FORWARD CURRENT - mA 125 0.4 0.2 0 25 50 T J - JUNCTION TEMPERATURE - C 75 100 CURRENT - mA 80 60 100 120 100 80 60 40 40 20 20 0 20 40 RJP = 40C/W 120 R JA = 110C/W 100 60 80 TEMPERATURE (C) 100 Figure 6a. Maximum Forward Current Vs. Ambient Temperature. Derated Based on TJMAX = 125C, RJ-A=110C/W & 90C/W. 0 120 0 20 40 60 80 TEMPERATURE (C) Figure 6b. Maximum Forward Current Vs. Solder Point Temperature. Derated Based on TJMAX = 125C, RJ-P=40C/W. 0.40 0.10 -25 140 R JA = 90C/W 120 CURRENT - mA 0.6 160 140 0.40 D= 0.05 0.10 0.25 0.50 1 tp D= 0.30 CURRENT - A CURRENT - A 0.8 Figure 5. Relative Flux Vs. Temperature 160 0.20 4 1.0 0.0 -50 150 Figure 4. Relative Flux vs. Forward Current 4 3 1.2 0.8 0.30 2 FORWARD VOLTAGE - V 1.4 1.0 0 1 Figure 3. Forward Current Vs. Forward Voltage. Figure 2. Relative Intensity Vs. Wavelength 0.0 0 0.20 0.10 tp T D= 0.05 0.10 0.25 0.50 1 tp T IF 0 20 40 60 80 TEMPERATURE (C) 100 120 0 0.40 0.00 0.00001 0.0001 0.001 0.01 0.1 tp - Time - (s) tp T 0.30 CURRENT - A CURRENT - A 0.20 D= T 0 10 NORMALIZED INTENSITY FORWARD VOLTAGE SHIFT - V 0.05 0.00 -0.05 -0.10 -0.15 0 25 50 75 T J - JUNCTION TEMPERATURE - C Figure 8. Forward Voltage Shift Vs. Temperature. 5 IF T 0.20 0.01 0.1 tp - Time - (s) 0 10 100 Figure 7b. Maximum Pulse Current Vs. Ambient Temperature. Derated Based on TA= 85C, RJ-P=110C/W. 0.10 -25 tp D= 0.05 0.10 0.25 0.50 1 0.00 0.00001 0.0001 0.001 100 0.15 -0.20 -50 tp T 120 IF 0.20 0.002 100 0.10 tp Figure 7a. Maximum Pulse Current Vs. Ambient Temperature. Derated Based on TA = 25C, RJ-A=110C/W. 01 60 80 TEMPERATURE (C) D= D= 0.05 0.10 0.25 0.50 1 0.10 100mA 40 0.40 0.30 150mA 20 100 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -90 -60 -30 0 30 60 ANGULAR DISPLACEMENT - DEGREES Figure 9. Radiation Pattern 90 TEMPERATURE 10 to 30 SEC. D 217 C 200 C 255 - 260C 3C/SEC. MAX. 6C/SEC. MAX. 150 C 3C/SEC. MAX. 100 SEC. MAX. 60 - 120 SEC. TIME Note: Diameter "D" should be smaller than 2.2mm Note: For detail information on reflow soldering of Avago surface mount LEDs, do refer to Avago Application Note AN 1060 Surface Mounting SMT LED Indicator Components. Figure 10. Recommended Pick and Place Nozzle Size Figure 11. Recommended Pb-free Reflow Soldering Profile 2.4 0.6 0.9 X 6 1.3 x 6 A A A 0.4 A 1.1 C C C C CATHODE MARKING C 0.3 SOLDER MASK A ANODE C CATHODE Figure 12. Recommended Soldering Pad Pattern 6 4.6 C CATHODE MARKING MINIMUM 55 mm2 OF CATHODE PAD FOR IMPROVED HEAT DISSIPATION TRAILER COMPONENT LEADER 200 mm MIN. FOR O180 REEL. 200 mm MIN. FOR O330 REEL. 480 mm MIN. FOR O180 REEL. 960 mm MIN. FOR O330 REEL. C A USER FEED DIRECTION Figure 13. Tape Leader and Trailer Dimensions O1.5 +0.1 -0 4 0.1 4 0.1 2 0.05 1.75 0.1 2.29 0.1 C C A A 3.5 0.05 8 +0.3 -0.1 3.05 0.1 +0.1 O1 -0 0.229 0.01 8 ALL DIMENSIONS IN mm. Figure 14. Tape Dimensions USER FEED DIRECTION CATHODE SIDE PRINTED LABEL Figure 15. Reeling Orientation 7 3.8 0.1 Handling Precaution The encapsulation material of the product is made of silicone for better reliability of the product. As silicone is a soft material, please do not press on the silicone or poke a sharp object onto the silicone. These might damage the product and cause premature failure. During assembly or handling, the unit should be held on the body only. Please refer to Avago Application Note AN 5288 for detail information. Device Color (X1) Y Warm White Flux Bin Select (X2X3) Individual reel will contain parts from one bin only X2 Min Flux Bin X3 Max Flux Bin Moisture Sensitivity Flux Bin Limits This product is qualified as Moisture Sensitive Level 2 per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details. Bin ID Min. (lm) Max. (lm) B 5.50 7.00 C 7.00 9.00 D 9.00 11.50 E 11.50 15.00 A. Storage before use F 15.00 19.50 - Unopen moisture barrier bag (MBB) can be stored at <40C/90%RH for 12 months. If the actual shelf life has exceeded 12 months and the HIC indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating. G 19.50 25.50 H 25.50 33.00 J 33.00 43.00 K 43.00 56.00 - It is not recommended to open the MBB prior to assembly (e.g. for IQC). L 56.00 73.00 J 43.00 56.00 K 56.00 73.00 B. Control after opening the MBB - The humidity indicator card (HIC) shall be read immediately upon opening of MBB. - The LEDs must be kept at <30C / 60%RH at all time and all high temperature related process including soldering, curing or rework need to be completed within 1 year. C. Control for unfinished reel - For any unuse LEDs, they need to be stored in sealed MBB with desiccant or desiccator at <5%RH. D. Control of assembled boards - If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at <5%RH to ensure no LEDs have exceeded their floor life of 1 year. E. Baking is required if: - "60%" HIC indicator is NOT blue. - The LEDs are exposed to condition of >30C / 60% RH at any time. - The LEDs floor life exceeded 1 year. Recommended baking condition: 605C for 20 hours. 8 Tolerance of each bin limit = 12% Color Bin Select (X4) Individual reel will contain parts from one sub bin only. X4 0 Full Distribution A H, J and K only B H, J, K, L and M only C L and M only D L, M, N and P only E N and P only F N, P, Q and R only G Q and R only Z Special Color Bin Color Bin Limits Bin ID Sub Bin ID H H3 H4 H5 J J3 J4 J5 K K3 K4 K5 L L3 L4 L5 M M3 M4 M5 N N3 N4 N5 9 Limits (Chromaticity Coordinates) x 0.348 0.360 0.364 0.350 y 0.332 0.341 0.358 0.348 x 0.350 0.364 0.367 0.352 y 0.348 0.358 0.376 0.365 x 0.352 0.367 0.371 0.354 y 0.365 0.376 0.392 0.381 x 0.360 0.373 0.378 0.364 y 0.341 0.350 0.368 0.358 x 0.364 0.378 0.383 0.367 y 0.358 0.368 0.386 0.376 x 0.367 0.383 0.388 0.371 y 0.376 0.386 0.403 0.392 x 0.373 0.387 0.393 0.378 y 0.350 0.358 0.376 0.368 x 0.378 0.393 0.399 0.383 y 0.368 0.376 0.395 0.386 x 0.383 0.399 0.405 0.388 y 0.386 0.395 0.412 0.403 x 0.387 0.400 0.407 0.393 y 0.358 0.366 0.384 0.376 x 0.393 0.407 0.414 0.399 y 0.376 0.384 0.402 0.395 x 0.399 0.414 0.421 0.405 y 0.395 0.402 0.420 0.412 x 0.400 0.413 0.421 0.407 y 0.366 0.372 0.390 0.384 x 0.407 0.421 0.429 0.414 y 0.384 0.390 0.409 0.402 x 0.414 0.429 0.436 0.421 y 0.402 0.409 0.426 0.420 x 0.413 0.425 0.434 0.421 y 0.372 0.378 0.396 0.390 x 0.421 0.434 0.443 0.429 y 0.390 0.396 0.414 0.409 x 0.429 0.443 0.451 0.436 y 0.409 0.414 0.430 0.426 Bin ID Sub Bin ID P P3 P4 P5 Q Q3 Q4 Q5 R R3 R4 R5 Limits (Chromaticity Coordinates) x 0.425 0.438 0.447 0.434 y 0.378 0.382 0.400 0.396 x 0.434 0.447 0.456 0.443 y 0.396 0.400 0.417 0.414 x 0.443 0.456 0.465 0.451 y 0.414 0.417 0.434 0.430 x 0.438 0.450 0.460 0.447 y 0.382 0.386 0.403 0.400 x 0.447 0.460 0.470 0.456 y 0.400 0.403 0.420 0.417 x 0.456 0.470 0.479 0.465 y 0.417 0.420 0.436 0.434 x 0.450 0.462 0.472 0.460 y 0.386 0.389 0.405 0.403 x 0.460 0.472 0.482 0.470 y 0.403 0.405 0.422 0.420 x 0.470 0.482 0.491 0.479 y 0.420 0.422 0.437 0.436 Tolerance of each bin limit = 0.02. 0.45 0.43 P5 N5 M5 0.41 P4 L5 Y-COORDINATE M4 J5 L4 K4 H5 P3 M3 2800K - 2500K 3150K - 2800K 3650K - 3150K J3 0.35 N3 K3 H4 R4 R3 Q3 L3 J4 0.37 Q4 N4 K5 0.39 R5 Q5 H3 4800K - 3650K 0.33 0.31 0.34 0.36 0.38 0.40 0.42 0.44 X-COORDINATE Packaging Option (X5) Option Test Current Package Type Reel Size E 150mA Top Mount 7 Inch VF Bin Limits Bin ID Min. Max. S5 3.20 3.50 S6 3.50 3.80 S7 3.80 4.10 Tolerance of each bin limit = 0.1V For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2009 Avago Technologies. All rights reserved. AV02-1323EN - September 28, 2009 0.46 0.48 0.50