Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw1
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
1MHz, High Efficiency, Step-Up Converter with Internal FET Switch
Features
Wide 2.5V to 6V Input Voltage Range
Built-in 0.6N-Channel MOSFET
Built-in Soft-Start
High Efficiency up to 90%
<1µA Quiescent Current During Shutdown
Current-Mode Operation
- Stable with Ceramic Output Capacitors
- Fast Transient Response
Current-Limit Protection
Over-Temperature Protection with Hysteresis
Available in a Tiny 5-Pin SOT-23 and TSOT-23
Packages
Lead Free and Green Devices Available
(RoHS Compliant)
Applications
General Description
The APW7137 is a fixed switching frequency (1MHz
typical), current-mode, step-up regulator with an inte-
grated N-channel MOSFET. The device allows the usage
of small inductors and output capacitors for portable
devices. The current-mode control scheme provides fast
transient response and good output voltage accuracy.
The APW7137 includes under-voltage lockout, current-
limit, and over-temperature shutdown preventing dam-
age in the event of an output overload.
Cell Phone and Smart Phone
PDA, PMP, MP3
Digital Camera
Boost Regulators
Simplified Application Circuit
Efficiency, η (%)
Output Current, IOUT (mA)
0.1 1 10 100 1000
0
10
20
30
40
50
60
70
80
90
100 VIN=5V
VIN=3.3V
VOUT=12V
Pin Configuration
GND
VIN
VOUT
12V
EN
LX
FB
4
5
3
2
1
L1
10µH
C2
4.7µF
C1
4.7µF
R2
137k
VIN
5V
OFF
R1
1.2M
ON APW7137
4 EN
5 VIN
GND 2
FB 3
LX 1
SOT-23-5 / TSOT-23-5
(Top View)
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw2
Symbol Parameter Rating Unit
VIN VIN Pin to GND -0.3 to 7 V
VLX LX Pin to GND -0.3 to 40 V
VEN EN Pin to GND -0.3 to VIN V
TJ Maximum Junction Temperature 150 °C
TSTG Storage Temperature Range -65 to 150 °C
TSDR Maximum Lead Soldering Temperature, 10 Seconds 260 °C
Absolute Maximum Ratings (Note 1)
Thermal Characteristics
Symbol Parameter Typical Value Unit
θJA Junction to Ambient Thermal Resistance (Note 2) SOT-23-5
TSOT-23-
5
260
220 °C/W
Recommended Operating Conditions (Note 3)
Symbol Parameter Range Unit
VIN VIN Input Voltage 2.5 ~ 6 V
VLX LX to GND Voltage -0.3 ~ 36 V
VOUT Converter Output Voltage VIN ~ 35 V
CIN Input Capacitor 2.2 ~ µF
COUT Output Capacitor 2.2 ~ µF
TA Ambient Temperature -40 ~ 85 °C
TJ Junction Temperature -40 ~ 125 °C
Ordering and Marking Information
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recom-
mended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Note 3: Please refer to the typical application circuit.
APW7137
Handling Code
Temperature Range
Package Code
Package Code
B : SOT-23-5 BT : TSOT-23-5
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
Assembly Material
APW7137 B :W37XX - Date Code
APW7137 BT :37WX X - Date Code
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw3
Electrical Characteristics
APW7137
Symbol
Parameter Test Conditions Min.
Typ. Max.
Unit
SUPPLY VOLTAGE AND CURRENT
VIN Input Voltage Range TA = -40 ~ 85°C, TJ = -40 ~ 125°C 2.5 - 6 V
IDD VFB = 1.0V, switching - 1 2 mA
ISD Input DC Bias Current EN = GND - 0.1 1 µA
UNDER-VOLTAGE LOCKOUT
UVLO Threshold Voltage VIN Rising 2.0 2.2 2.4 V
UVLO Hysteresis Voltage 50 100 150 mV
REFERENCE AND OUTPUT VOLTAGES
TA = 25°C 1.212
1.23 1.248
VREF Regulated Feedback Voltage TA = -40 ~ 85°C 1.205
- 1.255
V
IFB FB Input Current -50 - 50 nA
INTERNAL POWER SWITCH
FSW Switching Frequency VFB=1.1V 0.8 1.0 1.2 MHz
RON Power Switch On Resistance - 0.6 -
ILIM Power Switch Current Limit 1 1.3 1.6 A
LX Leakage Current VEN=0V, VLX=0V or 5V, VIN = 5V -1 - 1 µA
DMAX LX Maximum Duty Cycle 92 95 98 %
SOFT-START AND SHUTDOWN
TSS Soft-Start Duration (Note 4) - 2 3 ms
VTEN EN Voltage Threshold VEN Rising 0.4 0.7 1 V
EN Voltage Hysteresis - 0.1 - V
ILEN EN Leakage Current VEN=5V, VIN = 5V -1 ±0.5 1 µA
OVER-TEMPERATURE PROTECTION
TOTP Over-Temperature Protection (Note 4) TJ Rising - 150 - °C
Over-Temperature Protection
Hysteresis (Note 4) - 40 - °C
Refer to the typical application circuits. These specifications apply over. VIN=3.6V, IOUT=0mA, TA=-40°C to 85°C, unless
otherwise noted. Typical values are at TA=25°C.
Note 4: Guaranteed by design, not production tested.
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw4
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
Switching Current vs. Supply Voltage Reference Voltage vs.
Junction Temperature
Switch ON Resistance vs.
Junction temperature Maximum Duty Cycle vs.
Supply Voltage
Switching Frequency vs.
Supply Voltage
Typical Operating Characteristics
Switching Frequency vs.
Junction Temperature
Switching Current, IDD (mA)
Supply Voltage, VIN (V)
02.5 33.5 44.5 55.5 6
0.2
0.4
0.6
0.8
1
1.2
VFB=1.0V
Reference Voltage, VREF (%)
Junction Temperature, TJ (°C)
-50 -25 0 25 50 75 100 125
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
Maximum Duty Cycle, DMAX (%)
Supply Voltage, VIN (V)
40
50
60
70
80
90
100
2.5 33.5 44.5 55.5 6
Switching Frequency, FSW (MHz)
Supply Voltage, VIN (V)
2.5 33.5 44.5 55.5 6
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
Junction Temperature, TJ (°C)
Switching Frequency, FSW (MHz)
-50 -25 025 50 75 100 125
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
Switch ON Resistance, RON (Ω)
Junction Temperature, TJ (°C)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
-50 -25 025 50 75 100 125
VIN=2.7V
VIN=3.6V
VIN=5V
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw5
Efficiency vs. Output Current Output Voltage vs. Output Current
Output Voltage vs. Supply Voltage
Typical Operating Characteristics (Cont.)
Output Voltage, VOUT(V)
Output Current, IOUT (mA)
0.1 1 10 100 1000
11.80
11.85
11.90
11.95
12.00
12.05
12.10
12.15
12.20
VIN=5V
VIN=3.3V
Output Voltage, VOUT(V)
Supply Voltage, VIN (V)
11.80
11.85
11.90
11.95
12.00
12.05
12.10
12.15
12.20
2.5 33.5 44.5 55.5 6
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
Efficiency, η (%)
Output Current, IOUT (mA)
0.1 1 10 100 1000
0
10
20
30
40
50
60
70
80
90
100 VIN=5V
VIN=3.3V
VOUT=12V
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw6
Operating Waveforms
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
CH1: VEN, 1V/Div, DC
CH2: VOUT, 5V/Div, DC
CH3: IIN, 100mA/Div, DC
Time: 0.5ms/Div
Start-up
1
2
IIN, 100mA/Div
VEN, 1V/Div, DC
Time: 0.5ms/Div
VOUT, 5V/Div, DC
3
VIN=3.6V
IOUT=1mA
CH1: VEN, 1V/Div, DC
CH2: VOUT, 5V/Div, DC
CH3: IIN, 100mA/Div, DC
Time: 0.5ms/Div
Start-up
1
2IIN, 100mA/Div
VEN, 1V/Div, DC
Time: 0.5ms/Div
VOUT, 5V/Div, DC
3VIN=3.6V
IOUT=100mA
Normal Operation
CH1: VLX, 10V/Div, DC
CH2: VOUT, 50mV/Div, AC
CH3: IL, 100mA/Div, DC
Time: 1µs/Div
1
2
3
IL, 100mA/Div
VOUT, 50mV/Div
VLX, 10V/Div
VIN=3.3V
IOUT=80mA
Time: 1µs/Div
Normal Operation
CH1: VLX, 10V/Div, DC
CH2: VOUT, 50mV/Div, AC
CH3: IL, 100mA/Div, DC
Time: 1µs/Div
1
2
3Time: 1µs/Div
IL, 100mA/Div
VOUT, 50mV/Div
VLX, 10V/Div
VIN=5V
IOUT=80mA
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw7
Operating Waveforms (Cont.)
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.2ms/Div
Load Transient Response
1
2
IOUT, 50mA/Div
VIN=3.3V
VOUT=12V
VOUT, 200mV/Div, AC
1mA 30mA
Time: 0.2ms/Div
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.5ms/Div
Load Transient Response
1
2IOUT, 50mA/Div
VIN=3.3V
VOUT=12V
VOUT, 200mV/Div, AC
1mA
30mA
Time: 0.5ms/Div
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.2ms/Div
1
2
IOUT, 50mA/Div
VIN=5V
VOUT=12V
VOUT, 200mV/Div, AC
1mA 30mA
Time: 0.2ms/Div
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.5ms/Div
1
2IOUT, 50mA/Div
VIN=5V
VOUT=12V
VOUT, 200mV/Div, AC
1mA
30mA
Time: 0.5ms/Div
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw8
Operating Waveforms (Cont.)
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.1ms/Div
1
2
IOUT, 50mA/Div
VIN=3.3V
VOUT=12V
VOUT, 200mV/Div, AC
30mA
150mA
Time: 0.1ms/Div
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.1ms/Div
1
2
IOUT, 50mA/Div
VIN=3.3V
VOUT=12V
VOUT, 200mV/Div, AC
30mA
150mA
Time: 0.1ms/Div
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.1ms/Div
1
2
IOUT, 50mA/Div
VIN=5V
VOUT=12V
VOUT, 200mV/Div, AC
30mA
150mA
Time: 0.1ms/Div
Load Transient Response
CH1: VOUT, 200mV/Div, AC
CH2: IOUT, 50mA/Div, DC
Time: 0.1ms/Div
1
2
IOUT, 50mA/Div
VIN=5V
VOUT=12V
VOUT, 200mV/Div, AC
30mA
150mA
Time: 0.1ms/Div
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw9
Operating Waveforms (Cont.)
Line Transient Response
CH1: VIN, 1V/Div, DC
CH2: VOUT, 0.2/Div, AC
Time: 0.2ms/Div
IOUT=40mA
VOUT=12V
VIN, 1V/Div, DC
4V
5V
Time: 0.2ms/Div
VOUT, 0.2V/Div, AC
1
2
Line Transient Response
CH1: VIN, 1V/Div, DC
CH2: VOUT, 0.2/Div, AC
Time: 0.2ms/Div
IOUT=40mA
VOUT=5V
VIN, 1V/Div, DC
3.2V
4.2V
Time: 0.2ms/Div
VOUT, 0.2V/Div, AC
1
2
(Refer to the section Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw10
Pin Description
PIN.
NO NAME FUNCTION
1 LX Switch pin. Connect this pin to inductor/diode here.
2 GND Power and signal ground pin.
3 FB Feedback Input. The device senses feedback voltage via FB and regulate the voltage at 1.23V.
Connecting FB with a resistor-divider from the output that sets the output voltage in the range from
VIN to 30V.
4 EN Enable Control Input. Forcing this pin above 1.0V enables the device. Forcing this pin below 0.4V to
shut it down. In shutdown, all functions are disabled to decrease the supply current below 1µA. Do
not left this pin floating.
5 VIN Main Supply Pin. Must be closely decoupled to GND with a 2.2µF or greater ceramic capacitor.
Block Diagram
UVLO
Oscillator
Control Logic
Σ
VIN
EN
FB
GND
LX
Over-Temperature
Protection
VREF
1.23V
EAMP
COMP
ICMP
Soft-Start
Error
Amplifier
Current Sense
Amplifier
Gate Driver
Current
Limit
Slop
Compensation
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw11
Typical Application Circuits
GND
VIN
VOUT
12V
EN
LX
FB
4
5
3
2
1
L1
10µH
C2
4.7µF
C1
4.7µF
R2
137k
VIN
5V
OFF
R1
1.2M
ON APW7137
Figure 1. Typical 5V to 12V Supply
GND
VIN
VOUT
5V
EN
LX
FB
4
5
3
2
1
L1
4.7µH
C2
10µF
C1
4.7µF
R2
140k
VIN
3.3V
OFF
R1
430k
ON APW7137
Figure 2. Standard 3.3V to 5V Supply
GND
VIN
VOUT
EN
LX
FB
4
5
3
2
1
L1
22µH
C2
1µF
C1
4.7µF
R1
62
VIN
Up to 8
WLEDs
100Hz~300Hz
Duty=100%, ILED=20mA
Duty=0%, LED off
APW7137
Figure 3. Brightness control using a PWM signal apply to EN
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw12
Typical Application Circuits (Cont.)
GND
VIN
VOUT
5V
EN
LX
FB
4
5
3
2
1
L1
4.7µH
C2
10µF
C1
4.7µF
R2
140k
VIN
OFF
R1
430k
ON APW7137
+9V
+13V
-8V
-4V
C3
0.1µF
C4
0.47µF
C6
0.47µF
C5
0.1µF
C8
0.47µF
C7
0.1µF
C10
0.47µF
C9
0.1µF
Figure 4. Multiple Output for TFT-LCD Power Supply
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw13
Function Description
Main Control Loop
The APW7137 is a constant frequency and current-mode
switching regulator. In normal operation, the internal N-
channel power MOSFET is turned on each cycle when the
oscillator sets an internal RS latch, and then turned off
when an internal comparator (ICMP) resets the latch. The
peak inductor current at which ICMP resets the RS latch
is controlled by the voltage on the COMP node which is
the output of the error amplifier (EAMP). An external resis-
tive divider connected between VOUT and ground allows
the EAMP to receive an output feedback voltage VFB at FB
pin. When the load current increases, it causes a slightly
to decrease in VFB associated with the 1.23V reference,
which in turn, it causes the COMP voltage to increase
until the average inductor current matches the new load
current.
VIN Under-Voltage Lockout (UVLO)
The Under-Voltage Lockout (UVLO) circuit compares the
input voltage at VIN with the UVLO threshold to ensure
the input voltage is high enough for reliable operation.
The 100mV (typ) hysteresis prevents supply transients
from causing a restart. Once the input voltage exceeds
the UVLO rising threshold, startup begins. When the in-
put voltage falls below the UVLO falling threshold, the
controller turns off the converter.
Soft-Start
The APW7137 has a built-in soft-start to control the output
voltage rise during start-up. During soft-start, an internal
ramp voltage, connected to the one of the positive inputs
of the error amplifier, raises up to replace the reference
voltage (1.23V typical) until the ramp voltage reaches the
reference voltage.
Current-Limit Protection
The APW7137 monitors the inductor current, flows through
the N-channel MOSFET, and limits the current peak at
current-limit level to prevent loads and the APW7137 from
damaging during overload or short-circuit conditions.
Over-Temperature Protection (OTP)
The over-temperature circuit limits the junction tempera-
ture of the APW7137. When the junction temperature ex-
ceeds 150oC, a thermal sensor turns off the power
MOSFET allowing the devices to cool. The thermal sen-
sor allows the converters to start a soft-start process and
regulates the output voltage again after the junction tem-
perature cools by 40oC. The OTP is designed with a 40oC
hysteresis to lower the average Junction Temperature
(TJ) during continuous thermal overload conditions in-
creasing the lifetime of the device.
Enable/Shutdown
Driving EN to the ground places the APW7137 in shut-
down mode. When in shutdown, the internal power
MOSFET turns off, all internal circuitry shuts down, and
the quiescent supply current reduces to 1µA maximum.
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw14
Application Information
Input Capacitor Selection
The input capacitor (CIN) reduces the ripple of the input
current drawn from the input supply and reduces noise
injection into the IC. The reflected ripple voltage will be
smaller when an input capacitor with larger capacitance
is used. For reliable operation, it is recommended to
select the capacitor with maximum voltage rating at least
1.2 times of the maximum input voltage. The capacitors
should be placed close to the VIN and the GND.
Inductor Selection
Selecting an inductor with low dc resistance reduces con-
duction losses and achieves high efficiency. The efficiency
is moderated whilst using small chip inductor which op-
erates with higher inductor core losses. Therefore, it is
necessary to take further consideration while choosing
an adequate inductor. Mainly, the inductor value deter-
mines the inductor ripple current: larger inductor value
results in smaller inductor ripple current and lower con-
duction losses of the converter. However, larger inductor
value generates slower load transient response. A rea-
sonable design rule is to set the ripple current, IL, to be
30% to 50% of the maximum average inductor current,
IL(AVG). The inductor value can be obtained as below,
whereVIN = input voltage
VOUT = output voltage
FSW = switching frequency in MHz
IOUT = maximum output current in amp.
η = Efficiency
IL /IL(AVG) = inductor ripple current/average current
(0.3 to 0.5 typical)
To avoid the saturation of the inductor, the inductor should
be rated at least for the maximum input current of the
converter plus the inductor ripple current. The maximum
input current is calculated as below:
η
=IN
OUT)MAX(OUT
)MAX(IN VVI
I
The peak inductor current is calculated as the following
equation:
(
)
SWOUT
INOUTIN
)MAX(INPEAK FLVVVV
2
1
II
+=
Output Capacitor Selection
The current-mode control scheme of the APW7137 al-
lows the usage of tiny ceramic capacitors. The higher
capacitor value provides good load transients response.
Ceramic capacitors with low ESR values have the lowest
output voltage ripple and are recommended. If required,
tantalum capacitors may be used as well. The output ripple
is the sum of the voltages across the ESR and the ideal
output capacitor.
where IPEAK is the peak inductor current.
ΔVOUT = ΔVESR + ΔVCOUT
SWOUT
INOUT
OUT
OUT
COUT FVVV
C
I
V
ESRPEAKESR RIV
VIN VOUT
IL
N-FET
LX IOUT
ISW
CIN
COUT
IIN D1
ESR
ILIM
IL
IPEAK
IIN
IOUT
ISW
ID
IL
( )
η
×
×
AVGL
L
)MAX(OUTSW
INOUT
2
OUT
IN
II
IFVV
V
V
L
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw15
Application Information (Cont.)
Output Capacitor Selection (Cont.)
For ceramic capacitor application, the output voltage ripple
is dominated by the VCOUT. When choosing the input and
output ceramic capacitors, the X5R or X7R with their good
temperature and voltage characteristics are
recommended.
Output Voltage Setting
The output voltage is set by a resistive divider. The exter-
nal resistive divider is connected to the output which al-
lows remote voltage sensing as shown in Typical Appli-
cation Circuits”. A suggestion of the maximum value of
R1 is 2M and R2 is 200k for keeping the minimum
current that provides enough noise rejection ability through
the resistor divider. The output voltage can be calculated
as below:
+=
+=2R1R
123.1
2R1R
1VV REFOUT
Diode Selection
To achieve the high efficiency, a Schottky diode must be
used. The current rating of the diode must meet the peak
current rating of the converter.
Layout Consideration
For all switching power supplies, the layout is an impor-
tant step in the design especially at high peak currents
and switching frequencies. If the layout is not carefully
done, the regulator might show noise problems and duty
cycle jitter.
1. The input capacitor should be placed close to the VIN
and the GND without any via holes for good input volt-
age filtering.
2. To minimize copper trace connections that can inject
noise into the system, the inductor should be placed as
close as possible to the LX pin to minimize the noise
coupling into other circuits.
3. Since the feedback pin and network is a high imped-
ance circuit the feedback network should be routed away
from the inductor. The feedback pin and feedback net-
work should be shielded with a ground plane or trace to
minimize noise coupling into this circuit.
4. A star ground connection or ground plane minimizes
ground shifts and noise is recommended.
R1
R2
L1
VEN
VIN
LX
Optimized APW7137 Layout
VOUT D1
C2
C1
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw16
Package Information
SOT-23-5
MAX.
0.057
0.051
0.024
0.006
0.009
0.0200.012
L0.30
0
e
e1
E1
E
D
c
b
0.08
0.30
0.60 0.012
0.95 BSC
1.90 BSC
0.22
0.50
0.037 BSC
0.075 BSC
0.003
MIN.
MILLIMETERS
S
Y
M
B
O
L
A1
A2
A
0.00
0.90
SOT-23-5
MAX.
1.45
0.15
1.30
MIN.
0.000
0.035
INCHES
°
8
°
0
°
8
°
0
bc
e1
0
L
VIEW A
0.25
GAUGE PLANE
SEATING PLANE
A
A2A1
e
D
E
E1
SEE
VIEW A
1.40
2.60
1.80
3.00
2.70 3.10 0.122
0.071
0.1180.102
0.055
0.106
Note : 1. Follow JEDEC TO-178 AA.
2. Dimension D and E1 do not include mold flash, protrusions or gate
burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil
per side.
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw17
Package Information
TSOT-23-5
S
Y
M
B
O
LMIN.MAX.
1.00
0.01
0.08 0.22
0.10
A
A1
c
D
E
E1
e
e1
L
MILLIMETERS
b0.30 0.50
0.95 BSC
TSOT-23-5
0.30 0.60
0.037 BSC
MIN.MAX.
INCHES
0.039
0.000
0.028 0.035
0.003 0.009
0.012 0.024
0
0.004
A20.70 0.90
0.012 0.020
1.90BSC 0.075 BSC
°
0
°
8
°
0
°
8
1.40 1.80
2.60 3.00
2.70 3.10 0.106 0.122
0.055 0.071
0.102 0.118
Note : 1. Followed from JEDEC TO-178 AA.
2. Dimension D and E1 do not include mold flash, protrusions or gate
burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per
side.
0.70 0.028
SEE VIEW A
c
E1
E
De
e1
b
A
A2A1
VIEW A
LSEATING PLANE
GAUGE PLANE
0.25
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw18
Application
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
SOT-23-5
4.0±0.10
4.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±0.20
1.50±0.20
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
TSOT-23-5
4.0±0.10
4.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±0.20
1.20±0.20
(mm)
Carrier Tape & Reel Dimensions
Devices Per Unit
Package Type Unit Quantity
SOT-23-5 Tape & Reel 3000
TSOT-23-5 Tape & Reel 3000
A
E1
A
B
W
F
T
P0
OD0
BA0
P2
K0
B0
SECTION B-B
SECTION A-A
OD1
P1
H
T1
A
d
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw19
Taping Direction Information
SOT-23-5
USER DIRECTION OF FEED
TSOT-23-5
USER DIRECTION OF FEED
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw20
Classification Profile
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw21
Classification Reflow Profiles
Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
Average ramp-up rate
(Tsmax to TP) 3 °C/second max. 3°C/second max.
Liquidous temperature (TL)
Time at liquidous (tL) 183 °C
60-150 seconds 217 °C
60-150 seconds
Peak package body Temperature
(Tp)* See Classification Temp in table 1 See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc) 20** seconds 30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max. 6 °C/second max.
Time 25°C to peak temperature 6 minutes max. 8 minutes max.
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 2. Pb-free Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350-2000 Volume mm3
>2000
<1.6 mm 260 °C 260 °C 260 °C
1.6 mm 2.5 mm 260 °C 250 °C 245 °C
2.5 mm 250 °C 245 °C 245 °C
Table 1. SnPb Eutectic Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350
<2.5 mm 235 °C 220 °C
2.5 mm 220 °C 220 °C
Test item Method Description
SOLDERABILITY JESD-22, B102 5 Sec, 245°C
HOLT JESD-22, A108 1000 Hrs, Bias @ Tj=125°C
PCT JESD-22, A102 168 Hrs, 100%RH, 2atm, 121°C
TCT JESD-22, A104 500 Cycles, -65°C~150°C
HBM MIL-STD-883-3015.7 VHBM2KV
MM JESD-22, A115 VMM200V
Latch-Up JESD 78 10ms, 1tr100mA
Reliability Test Program
Copyright ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APW7137
www.anpec.com.tw22
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838