Ten Degrees of Freedom Inertial Sensor
with Dynamic Orientation Outputs
Data Sheet
ADIS16480
Rev. H Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20122019 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Dynamic angle outputs
Quaternion, Euler, rotation matrix
0.1° (pitch, roll) and 0.3° (yaw) static accuracy
Triaxial, digital gyroscope, ±450°/sec dynamic range
±0.05° orthogonal alignment error
6°/hr in-run bias stability
0.3°/√hr angular random walk
0.01% nonlinearity
Triaxial, digital accelerometer, ±10 g
Triaxial, delta angle and delta velocity outputs
Triaxial, digital magnetometer, ±2.5 gauss
Digital pressure sensor, 300 mbar to 1100 mbar
Adaptive extended Kalman filter
Automatic covariance computation
Programmable reference reorientation
Programmable sensor disturbance levels
Configurable event-driven controls
Factory-calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C
SPI-compatible serial interface
Programmable operation and control
4 FIR filter banks, 120 configurable taps
Digital I/O: data-ready alarm indicator, external clock
Optional external sample clock input: up to 2.4 kHz
Single-command self-test
Single-supply operation: 3.0 V to 3.6 V
2000 g shock survivability
APPLICATIONS
Platform stabilization, control, and pointing
Navigation
Instrumentation
Robotics
GENERAL DESCRIPTION
The ADIS16480 iSensor® device is a complete inertial system
that includes a triaxial gyroscope, a triaxial accelerometer, triaxial
magnetometer, pressure sensor, and an extended Kalman filter
(EKF) for dynamic orientation sensing. Each inertial sensor in
the ADIS16480 combines industry-leading iMEMS® technology
with signal conditioning that optimizes dynamic performance.
The factory calibration characterizes each sensor for sensitivity,
bias, alignment, and linear acceleration (gyroscope bias). As a
result, each sensor has its own dynamic compensation formulas
that provide accurate sensor measurements. The sensors are
further correlated and processed in the extended Kalman filter,
which provides both automatic adaptive filtering, as well as
user-programmable tuning. Thus, in addition to the IMU
outputs, the device provides stable quaternion, Euler, and
rotation matrix outputs in the local navigation frame.
The ADIS16480 provides a simple, cost-effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at
the factory, greatly reducing system integration time. Tight
orthogonal alignment simplifies inertial frame alignment in naviga-
tion systems. The SPI and register structure provide a simple
interface for data collection and configuration control.
The ADIS16480 uses the same footprint and connector system
as the ADIS16488A, which greatly simplifies the upgrade process.
It comes in a module that is approximately 47 mm × 44 mm ×
14 mm and has a standard connector interface. The ADIS16480
provides an operating temperature range of −40°C to +105°C.
FUNCTIONAL BLOCK DIAGRAM
CLOCK
TRIAXIAL
GYRO
TRIAXIAL
ACCEL
POWER
MANAGEMENT
CS
SCLK
DIN
DOUT
GND
VDD
TEMP
VDD
DIO1 DIO2 DIO3 DIO4
VDDRTC
RST
SPI
TRIAXIAL
MAGN
PRESSURE
SELF-TEST I/O ALARMS
OUTPUT
DATA
REGISTERS
USER
CONTROL
REGISTERS
ADIS16480
CONTROLLER CALIBRATION EXTENDED
KALMAN
FILTER DIGITAL
FILTERING
10278-001
Figure 1.
ADIS16480 Data Sheet
Rev. H | Page 2 of 44
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Timing Specifications .................................................................. 7
Absolute Maximum Ratings ............................................................ 9
ESD Caution .................................................................................. 9
Pin Configuration and Function Descriptions ........................... 10
Typical Performance Characteristics ........................................... 11
Basic Operation ............................................................................... 12
Register Structure ....................................................................... 12
SPI Communication ................................................................... 13
Device Configuration ................................................................ 13
Reading Sensor Data .................................................................. 13
User Registers .................................................................................. 14
Output Data Registers .................................................................... 18
Inertial Sensor Data Format ...................................................... 18
Rotation Rate (Gyroscope) ........................................................ 18
Acceleration ................................................................................. 19
Delta Angles ................................................................................ 19
Delta Velocity .............................................................................. 20
Magnetometers ........................................................................... 21
Roll, Pitch, Yaw Angles .............................................................. 21
Initial Conditions ....................................................................... 21
Rotation Matrix Data ................................................................. 22
Barometer .................................................................................... 23
Internal Temperature ................................................................. 23
Status/Alarm Indicators ............................................................. 24
Firmware Revision ..................................................................... 25
Product Identification ................................................................ 25
Digital Signal Processing ............................................................... 26
Gyroscopes/Accelerometers ...................................................... 26
Averaging/Decimation Filter .................................................... 26
Magnetometer/Barometer ......................................................... 26
FIR Filter Banks .......................................................................... 27
Extended Kalman Filter ................................................................. 29
Algorithm .................................................................................... 29
Covariance Terms ....................................................................... 29
Reference Frame ......................................................................... 30
Reference Transformation Matrix ............................................ 30
Declination .................................................................................. 31
Adaptive Operation .................................................................... 31
Calibration ....................................................................................... 33
Gyroscopes .................................................................................. 33
Accelerometers ........................................................................... 34
Magnetometers ........................................................................... 34
Barometers .................................................................................. 36
Restoring Factory Calibration .................................................. 36
Point of Percussion Alignment ................................................. 36
Alarms .............................................................................................. 37
Static Alarm Use ......................................................................... 37
Dynamic Alarm Use .................................................................. 37
System Controls .............................................................................. 39
Global Commands ..................................................................... 39
Memory Management ............................................................... 39
General-Purpose I/O ................................................................. 40
Power Management ................................................................... 40
Applications Information .............................................................. 42
Mounting Tips ............................................................................ 42
Evaluation Tools ......................................................................... 43
Power Supply Considerations ................................................... 43
X-Ray Sensitivity ........................................................................ 43
Outline Dimensions ....................................................................... 44
Ordering Guide .......................................................................... 44
Data Sheet ADIS16480
Rev. H | Page 3 of 44
REVISION HISTORY
1/2019—Rev. G to Rev. H
Added Endnote 4, Table 1; Renumbered Sequentially ................. 6
Added X-Ray Sensitivity Section .................................................. 43
10/2017—Rev. F to Rev. G
Changes to General Description Section ....................................... 1
Changes to Logic 0 Input Current, IIL Parameter, Table 1 ........... 5
Added Note 7, Table 1; Renumbered Sequentially ....................... 6
Changed PC-Based Evaluation, EVAL-ADIS Section to PC-Based
Evaluation, EVAL-ADIS2 Section ................................................. 43
Changes to PC-Based Evaluation, EVAL-ADIS2 Section .......... 43
10/2016—Rev. E to Rev. F
Changes to Figure 19 ...................................................................... 18
Changes to Figure 30 and Figure 31 ............................................. 43
6/2015—Rev. D to Re v. E
Changes to Figure 28 ...................................................................... 42
Changes to Ordering Guide ........................................................... 44
2/2015—Rev. C to Rev. D
Changes to Features Section and General Description Section ....... 1
Changes to Table 1 ............................................................................ 4
Changes to t2 Parameter, Table 2, and Figure 2 ............................. 7
Added Table 3; Renumbered Sequentially ..................................... 7
Changes to Figure 4 ........................................................................... 8
Change to Operating Temperature Range, Table 4 ....................... 9
Change to Dual Memory Structure Section ................................ 13
Change to Linear Acceleration on Effect on Gyroscope Bias
Section .............................................................................................. 33
Changes to Input Sync/Clock Control Section, Table 151, and
Power Management Section .......................................................... 40
Changes to Ordering Guide ........................................................... 44
4/2014—Rev. B to Rev. C
Changes to Features Section ............................................................ 1
Change to Nonlinearity, Barometer Parameter, Endnote 5, and
Endnote 12, Table 2 ........................................................................... 5
Changes to Table 9 .......................................................................... 16
Changes to Delta Angles Section .................................................. 19
Changes to Magnetometer/Barometer Section ........................... 25
Changes to Linear Acceleration on Effect on Gyroscope Bias
Section .............................................................................................. 32
Change to Manual Bias Correction Section ................................ 33
Change to Static Alarm Use Section ............................................. 36
Change to Software Reset Section ................................................. 38
Changes to General Purpose I/O Section .................................... 39
Changes to Mounting Tips Section ............................................... 41
1/2014—Rev. A to Rev. B
Moved Revision History ................................................................... 3
Change to t2 Parameter, Table 2....................................................... 7
Changes to Figure 6 .......................................................................... 9
Changes to Delta Angles Section .................................................. 18
Changes to Delta Velocity Section and Table 34 ......................... 19
Changes to Initial Conditions Section ......................................... 20
Changes to Table 42 ........................................................................ 21
Changes to Status/Alarm Indicators Section ............................... 23
Changes to Table 94, Automatic EKF Divergence Reset Control
Bit Section, and Body Frame/Local Navigation Frame Bit
Section .............................................................................................. 30
Change to Magnetometers Section ............................................... 33
Changes to Table 146 ...................................................................... 38
Deleted Prototype Interface Board Section and Mechanical
Design Tips Section ........................................................................ 39
Added Mounting Tips Section ...................................................... 41
Added Evaluation Tools Section and Power Supply
Considerations Section ................................................................... 42
Updated Outline Dimensions ........................................................ 43
Changes to Ordering Guide ........................................................... 43
2/2013—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Changes to Table 2 and Figure 2 ..................................................... 6
Changes to Table 9 .......................................................................... 12
Changes to Table 94, Bit 3 and Body Frame/Local Navigation
Frame Bit Section ............................................................................ 29
Deleted Installation Tips Section; Added Mechanical Design
Tips Section; Changes to Prototype Interface Board Section,
Figure 29, and Figure 30 ................................................................. 39
Added Connector-Up Design Tips Section Figure 31, and
Figure 32, Renumbered Sequentially ............................................ 40
5/2012—Revision 0: Initial Version
ADIS16480 Data Sheet
Rev. H | Page 4 of 44
SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, 300 mbar to 1100 mbar, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
ANGLE OUTPUTS
Euler Dynamic Range Yaw and roll (Euler) ±180 Degrees
Pitch (Euler) ±90 Degrees
Rotation matrix, quaternion ±180 Degree
Sensitivity 0.0055 Degrees/LSB
Static Accuracy1 Pitch and roll 0.1 Degrees
Yaw 0.3 Degrees
Dynamic Accuracy1 Pitch and roll 0.3 Degrees
Yaw 0.5 Degrees
GYROSCOPES
Dynamic Range ±450 ±480 °/sec
Sensitivity x_GYRO_OUT and x_GYRO_LOW (32-bit) 3.052 × 10−7 °/sec/LSB
Repeatability2 40°C ≤ TA ≤ +85°C ±1 %
Sensitivity Temperature Coefficient 40°C ≤ TA +85°C, 1 σ ±35 ppm/°C
Misalignment Axis to axis ±0.05 Degrees
Axis to frame (package) ±1.0 Degrees
Nonlinearity Best-fit straight line, FS = 450°/sec 0.01 % of FS
Initial Bias Error ±0.2 °/sec
In-Run Bias Stability 1 σ 6.25 °/hr
Angular Random Walk 1 σ 0.3 °/√hr
Bias Temperature Coefficient 40°C ≤ TA +85°C, 1 σ ±0.0025 °/sec/°C
Linear Acceleration Effect on Bias Any axis, 1 σ (CONFIG[7] = 1) 0.009 °/sec/g
Output Noise No filtering 0.16 °/sec rms
Rate Noise Density f = 25 Hz, no filtering 0.0066 °/sec/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 18 kHz
ACCELEROMETERS Each axis
Dynamic Range ±10 g
Sensitivity x_ACCL_OUT and x_ACCL_LOW (32-bit) 1.221 × 10−8 g/LSB
Repeatability 40°C ≤ TA +85°C ±0.5 %
Sensitivity Temperature Coefficient 40°C ≤ TA ≤ +85°C, 1 σ ±25 ppm/°C
Misalignment Axis to axis ±0.035 Degrees
Axis to frame (package) ±1.0 Degrees
Nonlinearity Best-fit straight line, ±10 g 0.1 % of FS
Bias Repeatability3, 4 40°C ≤ TA +85°C, 1 σ ±16 mg
In-Run Bias Stability 1 σ 0.1 mg
Velocity Random Walk 1 σ 0.029 m/sec/√hr
Bias Temperature Coefficient 40°C ≤ TA +85°C ±0.1 mg/°C
Output Noise No filtering 1.5 mg rms
Noise Density f = 25 Hz, no filtering 0.067 mg/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 5.5 kHz
Data Sheet ADIS16480
Rev. H | Page 5 of 44
Parameter Test Conditions/Comments Min Typ Max Unit
MAGNETOMETER
Dynamic Range ±2.5 gauss
Sensitivity 0.1 mgauss/LSB
Initial Sensitivity Tolerance ±2 %
Sensitivity Temperature Coefficient 1 σ 275 ppm/°C
Misalignment Axis to axis 0.25 Degrees
Axis to frame (package) 0.5 Degrees
Nonlinearity Best fit straight line 0.5 % of FS
Initial Bias Error 0 gauss stimulus ±15 mgauss
Bias Temperature Coefficient 40°C ≤ TA ≤ +85°C, 1 σ 0.3 mgauss/°C
Output Noise No filtering 0.45 mgauss
Noise Density f = 25 Hz, no filtering 0.054 mgauss/√Hz
3 dB Bandwidth 330 Hz
BAROMETER
Pressure Range 300 1100 mbar
Extended 10 1200 mbar
Sensitivity BAROM_OUT and BAROM_LOW (32-bit) 6.1 × 10−7 mbar/LSB
Error with Supply 0.04 %/V
Total Error 4.5 mbar
Relative Error5 40°C to +85°C 2.5 mbar
Nonlinearity6 Best fit straight line, FS = 1100 mbar 0.1 % of FS
40°C to +85°C 0.2 % of FS
Linear-g Sensitivity ±1 g, 1 σ 0.005 mbar/g
Noise 0.025 mbar rms
TEMPERATURE SENSOR
Scale Factor Output = 0x0000 at 25°C (±5°C) 0.00565 °C/LSB
LOGIC INPUTS7
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
CS Wake-Up Pulse Width 20 µs
Logic 1 Input Current, IIH VIH = 3.3 V 10 µA
Logic 0 Input Current, IIL VIL = 0 V
All Pins Except RST, CS 10 µA
RST, CS Pins8 0.33 mA
Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS
Output High Voltage, VOH ISOURCE = 0.5 mA 2.4 V
Output Low Voltage, VOL ISINK = 2.0 mA 0.4 V
FLASH MEMORY Endurance9 100,000 Cycles
Data Retention10 TJ = 85°C 20 Years
FUNCTIONAL TIMES11 Time until inertial sensor data is available
Power-On Start-Up Time 400 ± 160 ms
Reset Recovery Time12 Initiated by RST or GLOB_CMD[7] = 1 400 ± 160 ms
Sleep Mode Recovery Time 700 µs
Flash Memory Update Time 1.1 6.8 sec
Flash Memory Test Time 53 ms
Automatic Self-Test Time Using internal clock, 100 SPS 12 ms
CONVERSION RATE 2.46 kSPS
Initial Clock Accuracy 0.02 %
Temperature Coefficient 40 ppm/°C
Sync Input Clock13 0.7 2.4 kHz
ADIS16480 Data Sheet
Rev. H | Page 6 of 44
Parameter Test Conditions/Comments Min Typ Max Unit
POWER SUPPLY, VDD Operating voltage range 3.0 3.6 V
Power Supply Current14 Normal mode, VDD = 3.3 V, µ ± σ 254 mA
Sleep mode, VDD = 3.3 V 12.2 mA
Power-down mode, VDD = 3.3 V 45 µA
POWER SUPPLY, VDDRTC Operating voltage range 3.0 3.6 V
Real-Time Clock Supply Current Normal mode, VDDRTC = 3.3 V 13 µA
1 Accuracy specifications assume calibration of accelerometers and magnetometers to address sensor drift and local influences on magnetic fields.
2 The repeatability specifications represent analytical projections that are based off of the following drift contributions and conditions: temperature hysteresis (−40°C to
+85°C), electronics drift (High-Temperature Operating Life test: +110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles,
40°C to +85°C), rate random walk (10 year projection), and broadband noise.
3 Bias repeatability describes a long-term behavior, over a variety of conditions. Short-term repeatability is related to the in-run bias stability and noise density
specifications.
4 X-ray exposure may degrade this performance metric.
5 The relative error assumes that the initial error, at 25°C, is corrected in the end application.
6 Specification assumes a full scale (FS) of 1000 mbar.
7 The digital I/O signals use a 3.3 V system.
8 RST and CS pins are connected to the VDD pin through 10 kΩ pull-up resistors.
9 Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C.
10 The data retention specification assumes a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.
11 These times do not include thermal settling, internal filter response times, or EKF start-up times (~825 ms), which may affect overall accuracy, with respect to time.
12 The RST line must be in a low state for at least 10 μs to assure a proper reset initiation and recovery.
13 The device functions at clock rates below 0.7 kHz, but at reduced performance levels.
14 Supply current transients can reach 600 mA during start-up and reset recovery.
Data Sheet ADIS16480
Rev. H | Page 7 of 44
TIMING SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Normal Mode
Parameter Description Min1 Typ Max1 Unit
fSCLK Serial clock 0.01 15 MHz
tSTALL2 Stall period between data 2 μs
tCLS Serial clock low period 31 ns
tCHS Serial clock high period 31 ns
tCSE Chip select to clock edge 32 ns
tDAV DOUT valid after SCLK edge 10 ns
tDSU DIN setup time before SCLK rising edge 2 ns
tDHD DIN hold time after SCLK rising edge 2 ns
tDR, tDF DOUT rise/fall times, ≤100 pF loading 3 8 ns
tDSOE CSE assertion to data out active 0 11 ns
tHD SCLK edge to data out invalid 0 ns
tSFS Last SCLK edge to CSE deassertion 32 ns
tDSHI CSE deassertion to data out high impedance 0 9 ns
t1 Input sync pulse width 5 μs
t2 Input sync to data invalid 635 μs
t3 Input sync period 417 μs
1 Guaranteed by design and characterization, but not tested in production.
2 See Table 3 for exceptions to the stall time rating.
Table 3. Register Specific Stall Times
Register Function Minimum Stall Time (μs)
FNCTIO_CTRL Configure DIOx functions 60
FLTR_BNK0 Enable/select FIR filter banks 320
FLTR_BNK1 Enable/select FIR filter banks 320
NULL_CFG Configure autonull bias function 10
GLOB_CMD[1] Self-test 12,000
GLOB_CMD[2] Memory test 50,000
GLOB_CMD[3] Flash memory update 375,000
GLOB_CMD[6] Flash memory test 75,000
GLOB_CMD[7] Software reset 12,000
Timing Diagrams
CS
SCLK
DOUT
DIN
1 2 3 4 5 6 15 16
R/W A5A6 A4 A3 A2 D2
MSB DB14
D1 LSB
DB13 DB12 DB10DB11 DB2 LSBDB1
t
CS
t
DSHI
t
DR
t
SFS
t
DF
t
DAV
t
HD
t
CHS
t
CLS
t
DSOE
t
DHD
t
DSU
10278-002
Figure 2. SPI Timing and Sequence
ADIS16480 Data Sheet
Rev. H | Page 8 of 44
CS
SCLK
t
STALL
10278-003
Figure 3. Stall Time and Data Rate
t3
t2
t1
SYNC
CLOCK (CL KIN)
DATA
READY
OUTPUT
REGISTERS DAT A VALI D DATA VAL ID
10278-004
Figure 4. Input Clock Timing Diagram
Data Sheet ADIS16480
Rev. H | Page 9 of 44
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Acceleration
Any Axis, Unpowered 2000 g
Any Axis, Powered 2000 g
VDD to GND 0.3 V to +3.6 V
Digital Input Voltage to GND 0.3 V to VDD + 0.2 V
Digital Output Voltage to GND 0.3 V to VDD + 0.2 V
Operating Temperature Range 40°C to +105°C
Storage Temperature Range 65°C to +150°C1
Barometric Pressure 2 bar
1 Extended exposure to temperatures that are lower than −40°C or higher
than +105°C can adversely affect the accuracy of the factory calibration.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Table 5. Package Characteristics
Package Type θJA θJC
Device
Weight
24-Lead Module (ML-24-6) 22.8°C/W 10.1°C/W 48 g
ESD CAUTION
ADIS16480 Data Sheet
Rev. H | Page 10 of 44
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
DIO3
SCLK
DIN
DIO1
DIO2
VDD
GND
GND
DNC
DNC
DNC
VDDRTC
DIO4
DOUT
CS
RST
VDD
VDD
GND
DNC
DNC
DNC
DNC
DNC
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ADIS16480
TOP VIEW
(No t t o Scal e)
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VI EW PI NOUT
FO R THE M ATI NG SOCKET CONNECTO R.
2. THE ACTUAL CONNECTO R P INS ARE NOT V ISIBL E FROM THE
TOP VIEW .
3. MAT ING CONNECTO R: S AM TEC CL M-112-02 OR EQUI V ALENT .
4. DNC = DO NOT CONNECT T O THE S E P INS.
10278-005
Figure 5. Mating Connector Pin Assignments
PIN 1
PIN 23
PIN 1 PIN 2
10278-206
Figure 6. Axial Orientation (Top Side Facing Up)
Table 6. Pin Function Descriptions
Pin No. Mnemonic Type Description
1 DIO3 Input/output Configurable Digital Input/Output.
2 DIO4 Input/output Configurable Digital Input/Output.
3 SCLK Input SPI Serial Clock.
4 DOUT Output SPI Data Output. Clocks output on SCLK falling edge.
5 DIN Input SPI Data Input. Clocks input on SCLK rising edge.
6 CS Input SPI Chip Select.
7 DIO1 Input/output Configurable Digital Input/Output.
8 RST Input Reset.
9 DIO2 Input/output Configurable Digital Input/Output.
10, 11, 12 VDD Supply Power Supply.
13, 14, 15 GND Supply Power Ground.
16 to 22, 24 DNC Not applicable Do Not Connect. Do not connect to these pins.
23 VDDRTC Supply Real-Time Clock Power Supply.
Data Sheet ADIS16480
Rev. H | Page 11 of 44
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 7. Gyroscope Allan Variance, 25°C
0.001
0.00001
0.0001
0.01 0.1 110 100 1000 10000
ROO T AL LAN VARIANCE ( g)
INTEGRATION PERIOD (Seconds)
+1σ
–1σ
AVERAGE
10278-008
Figure 8. Accelerometer Allan Variance, 25°C
0.8
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
–40 –30 –20 –10 010 20 30 40 50 60 70 80
GYRO SCALE E RROR (% FS)
TEMPERATURE (°C)
INI TI AL ERROR = ±0.5%
TEMPCO = 35ppm/°C
10278-009
Figure 9. Gyroscope Scale (Sensitivity) Error and Hysteresis vs. Temperature
0.6
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5
–40 –30 –20 –10 010 20 30 40 50 60 70 80
GYRO BI AS E RROR (°/ sec)
TEMPERATURE (°C)
INI TI AL ERROR = ±0. /sec
TE M P CO = 0.0025° /sec/ °C
10278-010
Figure 10. Gyroscope Bias Error and Hysteresis vs. Temperature
ADIS16480 Data Sheet
Rev. H | Page 12 of 44
BASIC OPERATION
The ADIS16480 is an autonomous sensor system that starts up
on its own when it has a valid power supply. After running through
its initialization process, it begins sampling, processing, and
loading calibrated sensor data into the output registers, which
are accessible using the SPI port. The SPI port typically connects to
a compatible port on an embedded processor, using the connection
diagram in Figure 11. The four SPI signals facilitate synchronous,
serial data communication. Connect RST (see Table 6) to VDD
or leave it open for normal operation. The factory default
configuration provides users with a data-ready signal on the
DIO2 pin, which pulses high when new data is available in
the output data registers.
SYSTEM
PROCESSOR
SPI MASTER SCLK
CS
DIN
DOUT
SCLK
SS
MOSI
MISO
+3.3V
IRQ DIO2
VDD
I/O LINES ARE COMPATIBLE WITH
3.3V LOGIC LEVELS
10
6
3
5
4
9
11 12 23
13 14 15
ADIS16480
10278-011
Figure 11. Electrical Connection Diagram
Table 7. Generic Master Processor Pin Names and Functions
Mnemonic Function
SS Slave select
IRQ Interrupt request
MOSI Master output, slave input
MISO Master input, slave output
SCLK Serial clock
Embedded processors typically use control registers to configure
their serial ports for communicating with SPI slave devices such
as the ADIS16480. Table 8 provides a list of settings, which
describe the SPI protocol of the ADIS16480. The initialization
routine of the master processor typically establishes these settings
using firmware commands to write them into its serial control
registers.
Table 8. Generic Master Processor SPI Settings
Processor Setting Description
Master The ADIS16480 operates as a slave
SCLK ≤ 15 MHz Maximum serial clock rate
SPI Mode 3 CPOL = 1 (polarity), and CPHA = 1 (phase)
MSB-First Mode Bit sequence
16-Bit Mode Shift register/data length
REGISTER STRUCTURE
The register structure and SPI port provide a bridge between
the sensor processing system and an external, master processor.
It contains both output data and control registers. The output
data registers include the latest sensor data, a real-time clock, error
flags, alarm flags, and identification data. The control registers
include sample rate, filtering, input/output, alarms, calibration,
EKF tuning, and diagnostic configuration options. All commu-
nication between the ADIS16480 and an external processor
involves either reading or writing to one of the user registers.
DSP OUTPUT
REGISTERS
CONTROL
REGISTERS
TRIAXIS
GYRO
TRIAXIS
MAGN
BARO
TEMP
SENSOR
CONTROLLER
TRIAXIS
ACCEL
SPI
10278-012
Figure 12. Basic Operation
The register structure uses a paged addressing scheme that is
composed of 13 pages, with each one containing 64 register
locations. Each register is 16 bits wide, with each byte having
its own unique address within the memory map of that page. The
SPI port has access to one page at a time, using the bit sequence in
Figure 17. Select the page to activate for SPI access by writing
its code to the PAGE_ID register. Read the PAGE_ID register
to determine which page is currently active. Table 9 displays the
PAGE_ID contents for each page, along with their basic functions.
The PAGE_ID register is located at Address 0x00 on every page.
Table 9. User Register Page Assignments
Page PAGE_ID Function
0 0x00 Output data, clock, identification
1 0x01 Reserved
2 0x02 Calibration
3 0x03 Control: sample rate, filtering, I/O, alarms
4 0x04 Serial number
5 0x05 FIR Filter Bank A Coefficient 0 to Coefficient 59
6 0x06 FIR Filter Bank A, Coefficient 60 to Coefficient 119
7 0x07 FIR Filter Bank B, Coefficient 0 to Coefficient 59
8 0x08 FIR Filter Bank B, Coefficient 60 to Coefficient 119
9 0x09 FIR Filter Bank C, Coefficient 0 to Coefficient 59
10 0x0A FIR Filter Bank C, Coefficient 60 to Coefficient 119
11 0x0B FIR Filter Bank D, Coefficient 0 to Coefficient 59
12 0x0C FIR Filter Bank D, Coefficient 60 to Coefficient 119
Data Sheet ADIS16480
Rev. H | Page 13 of 44
SPI COMMUNICATION
The SPI port supports full duplex communication, as shown in
Figure 17, which enables external processors to write to DIN
while reading DOUT, if the previous command was a read
request. Figure 17 provides a guideline for the bit coding on
both DIN and DOUT.
DEVICE CONFIGURATION
The SPI provides write access to the control registers, one byte at
a time, using the bit assignments shown in Figure 17. Each register
has 16 bits, where Bits[7:0] represent the lower address (listed in
Table 10) and Bits[15:8] represent the upper address. Write to
the lower byte of a register first, followed by a write to its upper
byte. The only register that changes with a single write to its
lower byte is the PAGE_ID register. For a write command, the
first bit in the DIN sequence is set to 1. Address Bits[A6:A0]
represent the target address, and Data Command Bits[DC7:DC0]
represent the data being written to the location. Figure 13
provides an example of writing 0x03 to Address 0x00 (PAGE_ID
[7:0]), using DIN = 0x8003. This write command activates the
control page for SPI access.
SCLK
CS
DIN
DIN = 1000 0000 0000 0011 = 0x8003, W RIT E S 0x03 TO ADDRE S S 0x00
10278-013
Figure 13. SPI Sequence for Activating the Control Page (DIN = 0x8003)
Dual Memory Structure
Writing configuration data to a control register updates its SRAM
contents, which are volatile. After optimizing each relevant control
register setting in a system, use the manual flash update command,
which is located in GLOB_CMD[3] on Page 3 of the register map.
Activate the manual flash update command by turning to Page 3
(DIN = 0x8003) and setting GLOB_CMD[3] = 1 (DIN = 0x8208,
then DIN = 0x8300). For a flash memory update, make sure that
the power supply is within specification for the entire processing
time (see Table 1). Tabl e 10 provides a memory map for all of
the user registers, which includes a column of flash backup
information. A yes in this column indicates that a register
has a mirror location in flash and, when backed up properly,
automatically restores itself during startup or after a reset.
Figure 14 provides a diagram of the dual memory structure
used to manage operation and store critical user settings.
NONVOLATILE
FLASH MEMORY
(NO SPI ACCESS)
MANUAL
FLASH
BACKUP
START-UP
RESET
VOLATILE
SRAM
SPI ACCESS
10278-014
Figure 14. SRAM and Flash Memory Diagram
READING SENSOR DATA
The ADIS16480 automatically starts up and activates Page 0 for
data register access. Write 0x00 to the PAGE_ID register (DIN =
0x8000) to activate Page 0 for data access after accessing any other
page. A single register read requires two 16-bit SPI cycles. The
first cycle requests the contents of a register using the bit assignments
in Figure 17, and then the register contents follow DOUT during
the second sequence. The first bit in a DIN command is zero,
followed by either the upper or lower address for the register.
The last eight bits are don’t care, but the SPI requires the full set
of 16 SCLKs to receive the request. Figure 15 includes two register
reads in succession, which starts with DIN = 0x1A00 to request
the contents of the Z_GYRO_OUT register and follows with
0x1800 to request the contents of the Z_GYRO_LOW register.
DIN
DOUT
0x1A00 0x1800 NEXT
ADDRESS
Z_GYRO_OUT Z_GYRO_LOW
10278-015
Figure 15. SPI Read Example
Figure 16 provides an example of the four SPI signals when reading
PROD_ID in a repeating pattern. This is a good pattern to use
for troubleshooting the SPI interface setup and communications
because the contents of PROD_ID are predefined and stable.
SCLK
CS
DIN
DOUT
DOUT = 0100 0000 0110 0000 = 0x4060 = 16,480 (P ROD_I D)
DIN = 0111 1110 0000 0000 = 0x7E 00
10278-016
Figure 16. SPI Read Example, Second 16-Bit Sequence
R/W R/W
A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0
D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15
CS
SCLK
DIN
DOUT
A6 A5
D13D14D15
NOTES
1. DOUT BIT S ARE P RODUCED ONL Y WHEN T HE P RE V IO US 16- BIT DIN SEQUENCE S TART S WI TH R/W = 0.
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE
FO R OT HE R DE V ICES .
10278-017
Figure 17. SPI Communication Bit Sequence
ADIS16480 Data Sheet
Rev. H | Page 14 of 44
USER REGISTERS
Table 10. User Register Memory Map (N/A = Not Applicable)
Name R/W Flash PAGE_ID Address Default Register Description Format
PAGE_ID R/W No 0x00 0x00 0x00 Page identifier N/A
Reserved N/A N/A 0x00 0x02 to 0x04 N/A Reserved N/A
SEQ_CNT R No 0x00 0x06 N/A Sequence counter Table 69
SYS_E_FLAG R No 0x00 0x08 0x0000 Output, system error flags Table 60
DIAG_STS R No 0x00 0x0A 0x0000 Output, self-test error flags Table 61
ALM_STS R No 0x00 0x0C 0x0000 Output, alarm error flags Table 62
TEMP_OUT R No 0x00 0x0E N/A Output, temperature Table 58
X_GYRO_LOW R No 0x00 0x10 N/A Output, x-axis gyroscope, low word Table 15
X_GYRO_OUT R No 0x00 0x12 N/A Output, x-axis gyroscope, high word Table 11
Y_GYRO_LOW R No 0x00 0x14 N/A Output, y-axis gyroscope, low word Table 16
Y_GYRO_OUT R No 0x00 0x16 N/A Output, y-axis gyroscope, high word Table 12
Z_GYRO_LOW R No 0x00 0x18 N/A Output, z-axis gyroscope, low word Table 17
Z_GYRO_OUT R No 0x00 0x1A N/A Output, z-axis gyroscope, high word Table 13
X_ACCL_LOW R No 0x00 0x1C N/A Output, x-axis accelerometer, low word Table 22
X_ACCL_OUT R No 0x00 0x1E N/A Output, x-axis accelerometer, high word Table 18
Y_ACCL_LOW R No 0x00 0x20 N/A Output, y-axis accelerometer, low word Table 23
Y_ACCL_OUT R No 0x00 0x22 N/A Output, y-axis accelerometer, high word Table 19
Z_ACCL_LOW R No 0x00 0x24 N/A Output, z-axis accelerometer, low word Table 24
Z_ACCL_OUT R No 0x00 0x26 N/A Output, z-axis accelerometer, high word Table 20
X_MAGN_OUT R No 0x00 0x28 N/A Output, x-axis magnetometer, high word Table 39
Y_MAGN_OUT R No 0x00 0x2A N/A Output, y-axis magnetometer, high word Table 40
Z_MAGN_OUT R No 0x00 0x2C N/A Output, z-axis magnetometer, high word Table 41
BAROM_LOW R No 0x00 0x2E N/A Output, barometer, low word Table 57
BAROM_OUT R No 0x00 0x30 N/A Output, barometer, high word Table 55
Reserved N/A N/A 0x00 0x32 to 0x3E N/A Reserved N/A
X_DELTANG_LOW R No 0x00 0x40 N/A Output, x-axis delta angle, low word Table 29
X_DELTANG_OUT R No 0x00 0x42 N/A Output, x-axis delta angle, high word Table 25
Y_DELTANG_LOW R No 0x00 0x44 N/A Output, y-axis delta angle, low word Table 30
Y_DELTANG_OUT
R
No
0x00
0x46
N/A
Output, y-axis delta angle, high word
Table 26
Z_DELTANG_LOW R No 0x00 0x48 N/A Output, z-axis delta angle, low word Table 31
Z_DELTANG_OUT R No 0x00 0x4A N/A Output, z-axis delta angle, high word Table 27
X_DELTVEL_LOW R No 0x00 0x4C N/A Output, x-axis delta velocity, low word Table 36
X_DELTVEL_OUT R No 0x00 0x4E N/A Output, x-axis delta velocity, high word Table 32
Y_DELTVEL_LOW R No 0x00 0x50 N/A Output, y-axis delta velocity, low word Table 37
Y_DELTVEL_OUT R No 0x00 0x52 N/A Output, y-axis delta velocity, high word Table 33
Z_DELTVEL_LOW R No 0x00 0x54 N/A Output, z-axis delta velocity, low word Table 38
Z_DELTVEL_OUT R No 0x00 0x56 N/A Output, z-axis delta velocity, high word Table 34
Reserved N/A N/A 0x00 0x58 N/A Reserved N/A
Q0_C11_OUT R/W Yes 0x00 0x60 N/A Quaternion, q0 or rotation matrix, C11 Table 43
Q1_C12_OUT R/W Yes 0x00 0x62 N/A Quaternion, q1 or rotation matrix, C12 Table 44
Q2_C13_OUT R/W Yes 0x00 0x64 N/A Quaternion, q2 or rotation matrix, C13 Table 45
Q3_C21_OUT R/W Yes 0x00 0x66 N/A Quaternion, q3 or rotation matrix, C21 Table 46
C22_OUT R/W Yes 0x00 0x68 N/A Rotation matrix, C22 Table 47
ROLL_C23_OUT R/W Yes 0x00 0x6A N/A Euler angle, roll axis, or rotation matrix, C23 Table 48
PITCH_C31_OUT R/W Yes 0x00 0x6C N/A Euler angle, pitch axis, or rotation matrix, C31 Table 49
YAW_C32_OUT R/W Yes 0x00 0x6E N/A Euler angle, yaw axis, or rotation matrix, C32 Table 50
C33_OUT R/W Yes 0x00 0x70 N/A Rotation matrix, C33 Table 51
Reserved N/A N/A 0x00 0x72 to 0x76 N/A Reserved N/A
Data Sheet ADIS16480
Rev. H | Page 15 of 44
Name R/W Flash PAGE_ID Address Default Register Description Format
TIME_MS_OUT R Yes 0x00 0x78 N/A Factory configuration time: minutes/seconds Table 157
TIME_DH_OUT R Yes 0x00 0x7A N/A Factory configuration date/time: day/hour Table 158
TIME_YM_OUT R Yes 0x00 0x7C N/A Factory configuration date: year/month Table 159
PROD_ID R Yes 0x00 0x7E 0x4060 Output, product identification (16,480) Table 66
Reserved N/A N/A 0x01 0x00 to 0x7E N/A Reserved N/A
PAGE_ID R/W No 0x02 0x00 0x00 Page identifier N/A
Reserved N/A N/A 0x02 0x02 N/A Reserved N/A
X_GYRO_SCALE R/W Yes 0x02 0x04 0x0000 Calibration, scale, x-axis gyroscope Table 104
Y_GYRO_SCALE R/W Yes 0x02 0x06 0x0000 Calibration, scale, y-axis gyroscope Table 105
Z_GYRO_SCALE R/W Yes 0x02 0x08 0x0000 Calibration, scale, z-axis gyroscope Table 106
X_ACCL_SCALE R/W Yes 0x02 0x0A 0x0000 Calibration, scale, x-axis accelerometer Table 114
Y_ACCL_SCALE R/W Yes 0x02 0x0C 0x0000 Calibration, scale, y-axis accelerometer Table 115
Z_ACCL_SCALE R/W Yes 0x02 0x0E 0x0000 Calibration, scale, z-axis accelerometer Table 116
XG_BIAS_LOW R/W Yes 0x02 0x10 0x0000 Calibration, offset, gyroscope, x-axis, low word Table 101
XG_BIAS_HIGH R/W Yes 0x02 0x12 0x0000 Calibration, offset, gyroscope, x-axis, high word Table 98
YG_BIAS_LOW R/W Yes 0x02 0x14 0x0000 Calibration, offset, gyroscope, y-axis, low word Table 102
YG_BIAS_HIGH R/W Yes 0x02 0x16 0x0000 Calibration, offset, gyroscope, y-axis, high word Table 99
ZG_BIAS_LOW R/W Yes 0x02 0x18 0x0000 Calibration, offset, gyroscope, z-axis, low word Table 103
ZG_BIAS_HIGH R/W Yes 0x02 0x1A 0x0000 Calibration, offset, gyroscope, z-axis, high word Table 100
XA_BIAS_LOW R/W Yes 0x02 0x1C 0x0000 Calibration, offset, accelerometer, x-axis, low word Table 111
XA_BIAS_HIGH R/W Yes 0x02 0x1E 0x0000 Calibration, offset, accelerometer, x-axis, high word Table 108
YA_BIAS_LOW R/W Yes 0x02 0x20 0x0000 Calibration, offset, accelerometer, y-axis, low word Table 112
YA_BIAS_HIGH R/W Yes 0x02 0x22 0x0000 Calibration, offset, accelerometer, y-axis, high word Table 109
ZA_BIAS_LOW R/W Yes 0x02 0x24 0x0000 Calibration, offset, accelerometer, z-axis, low word Table 113
ZA_BIAS_HIGH R/W Yes 0x02 0x26 0x0000 Calibration, offset, accelerometer, z-axis, high word Table 110
HARD_IRON_X R/W Yes 0x02 0x28 0x0000 Calibration, hard iron, magnetometer, x-axis Table 117
HARD_IRON_Y R/W Yes 0x02 0x2A 0x0000 Calibration, hard iron, magnetometer, y-axis Table 118
HARD_IRON_Z R/W Yes 0x02 0x2C 0x0000 Calibration, hard iron, magnetometer, z-axis Table 119
SOFT_IRON_S11 R/W Yes 0x02 0x2E 0x0000 Calibration, soft iron, magnetometer, S11 Table 121
SOFT_IRON_S12 R/W Yes 0x02 0x30 0x0000 Calibration, soft iron, magnetometer, S12 Table 122
SOFT_IRON_S13 R/W Yes 0x02 0x32 0x0000 Calibration, soft iron, magnetometer, S13 Table 123
SOFT_IRON_S21 R/W Yes 0x02 0x34 0x0000 Calibration, soft iron, magnetometer, S21 Table 124
SOFT_IRON_S22 R/W Yes 0x02 0x36 0x0000 Calibration, soft iron, magnetometer, S22 Table 125
SOFT_IRON_S23 R/W Yes 0x02 0x38 0x0000 Calibration, soft iron, magnetometer, S23 Table 126
SOFT_IRON_S31 R/W Yes 0x02 0x3A 0x0000 Calibration, soft iron, magnetometer, S31 Table 127
SOFT_IRON_S32 R/W Yes 0x02 0x3C 0x0000 Calibration, soft iron, magnetometer, S32 Table 128
SOFT_IRON_S33 R/W Yes 0x02 0x3E 0x0000 Calibration, soft iron, magnetometer, S33 Table 129
BR_BIAS_LOW R/W Yes 0x02 0x40 0x0000 Calibration, offset, barometer, low word Table 132
BR_BIAS_HIGH R/W Yes 0x02 0x42 0x0000 Calibration, offset, barometer, high word Table 131
Reserved N/A N/A 0x02 0x44 to 0x60 N/A Reserved N/A
REFMTX_R11 R/W Yes 0x02 0x62 0x7FFF Reference transformation matrix, R11 Table 85
REFMTX_R12 R/W Yes 0x02 0x64 0x0000 Reference transformation matrix, R12 Table 86
REFMTX_R13 R/W Yes 0x02 0x66 0x0000 Reference transformation matrix, R13 Table 87
REFMTX_R21 R/W Yes 0x02 0x68 0x0000 Reference transformation matrix, R21 Table 88
REFMTX_R22 R/W Yes 0x02 0x6A 0x7FFF Reference transformation matrix, R22 Table 89
REFMTX_R23 R/W Yes 0x02 0x6C 0x0000 Reference transformation matrix, R23 Table 90
REFMTX_R31 R/W Yes 0x02 0x6E 0x0000 Reference transformation matrix, R31 Table 91
REFMTX_R32 R/W Yes 0x02 0x70 0x0000 Reference transformation matrix, R32 Table 92
REFMTX_R33 R/W Yes 0x02 0x72 0x7FFF Reference transformation matrix, R33 Table 93
USER_SCR_1 R/W Yes 0x02 0x74 0x0000 User Scratch Register 1 Table 153
USER_SCR_2 R/W Yes 0x02 0x76 0x0000 User Scratch Register 2 Table 154
USER_SCR_3 R/W Yes 0x02 0x78 0x0000 User Scratch Register 3 Table 155
USER_SCR_4 R/W Yes 0x02 0x7A 0x0000 User Scratch Register 4 Table 156
ADIS16480 Data Sheet
Rev. H | Page 16 of 44
Name R/W Flash PAGE_ID Address Default Register Description Format
FLSHCNT_LOW R Yes 0x02 0x7C N/A Diagnostic, flash memory count, low word Table 148
FLSHCNT_HIGH R Yes 0x02 0x7E N/A Diagnostic, flash memory count, high word Table 149
PAGE_ID R/W No 0x03 0x00 0x0000 Page identifier N/A
GLOB_CMD W No 0x03 0x02 N/A Control, global commands Table 147
Reserved N/A N/A 0x03 0x04 N/A Reserved N/A
FNCTIO_CTRL R/W Yes 0x03 0x06 0x000D Control, I/O pins, functional definitions Table 150
GPIO_CTRL R/W Yes 0x03 0x08 0x00X01 Control, I/O pins, general purpose Table 151
CONFIG R/W Yes 0x03 0x0A 0x00C0 Control, clock, and miscellaneous correction Table 107
DEC_RATE R/W Yes 0x03 0x0C 0x0000 Control, output sample rate decimation Table 68
Reserved N/A N/A 0x03 0x0E N/A Reserved N/A
SLP_CNT R/W No 0x03 0x10 N/A Control, power-down/sleep mode Table 152
Reserved N/A N/A 0x03 0x12 to 0x14 N/A Reserved N/A
FILTR_BNK_0 R/W Yes 0x03 0x16 0x0000 Filter selection Table 70
FILTR_BNK_1 R/W Yes 0x03 0x18 0x0000 Filter selection Table 71
Reserved N/A N/A 0x03 0x1A to 0x1E N/A Reserved N/A
ALM_CNFG_0 R/W Yes 0x03 0x20 0x0000 Alarm configuration Table 143
ALM_CNFG_1 R/W Yes 0x03 0x22 0x0000 Alarm configuration Table 144
ALM_CNFG_2 R/W Yes 0x03 0x24 0x0000 Alarm configuration Table 145
Reserved N/A N/A 0x03 0x26 N/A Reserved N/A
XG_ALM_MAGN R/W Yes 0x03 0x28 0x0000 Alarm, x-axis gyroscope threshold setting Table 133
YG_ALM_MAGN R/W Yes 0x03 0x2A 0x0000 Alarm, y-axis gyroscope threshold setting Table 134
ZG_ALM_MAGN R/W Yes 0x03 0x2C 0x0000 Alarm, z-axis gyroscope threshold setting Table 135
XA_ALM_MAGN R/W Yes 0x03 0x2E 0x0000 Alarm, x-axis accelerometer threshold Table 136
YA_ALM_MAGN R/W Yes 0x03 0x30 0x0000 Alarm, y-axis accelerometer threshold Table 137
ZA_ALM_MAGN R/W Yes 0x03 0x32 0x0000 Alarm, z-axis accelerometer threshold Table 138
XM_ALM_MAGN R/W Yes 0x03 0x34 0x0000 Alarm, x-axis magnetometer threshold Table 139
YM_ALM_MAGN R/W Yes 0x03 0x36 0x0000 Alarm, y-axis magnetometer threshold Table 140
ZM_ALM_MAGN R/W Yes 0x03 0x38 0x0000 Alarm, z-axis magnetometer threshold Table 141
BR_ALM_MAGN R/W Yes 0x03 0x3A 0x0000 Alarm, barometer threshold setting Table 142
Reserved N/A N/A 0x03 0x3C to 0x4E N/A Reserved N/A
EKF_CNFG R/W Yes 0x03 0x50 0x0200 Extended Kalman filter configuration Table 95
Reserved N/A N/A 0x03 0x52 N/A Reserved N/A
DECLN_ANGL R/W Yes 0x03 0x54 0x0000 Declination angle Table 94
ACC_DISTB_THR R/W Yes 0x03 0x56 0x0020 Accelerometer disturbance threshold Table 96
MAG_DISTB_THR R/W Yes 0x03 0x58 0x0030 Magnetometer disturbance threshold Table 97
Reserved N/A N/A 0x03 0x5A to 0x5E N/A Reserved N/A
QCVR_NOIS_LWR R/W Yes 0x03 0x60 0xC5AC Process covariance, gyroscope noise, lower word Table 78
QCVR_NOIS_UPR R/W Yes 0x03 0x62 0x3727 Process covariance, gyroscope noise, upper word Table 77
QCVR_RRW_LWR R/W Yes 0x03 0x64 0xE6FF Process covariance, gyroscope RRW, lower word Table 80
QCVR_RRW_UPR R/W Yes 0x03 0x66 0x2E5B Process covariance, gyroscope RRW, upper word Table 79
Reserved N/A N/A 0x03 0x68 to 0x6A N/A Reserved N/A
RCVR_ACC_LWR R/W Yes 0x03 0x6C 0x705F Measurement covariance, accelerometer, upper Table 82
RCVR_ACC_UPR R/W Yes 0x03 0x6E 0x3189 Measurement covariance, accelerometer, lower Table 81
RCVR_MAG_LWR R/W Yes 0x03 0x70 0xCC77 Measurement covariance, magnetometer, upper Table 84
RCVR_MAG_UPR R/W Yes 0x03 0x72 0x32AB Measurement covariance, magnetometer, lower Table 83
Reserved N/A N/A 0x03 0x74 to 0x76 N/A Reserved N/A
FIRM_REV R Yes 0x03 0x78 N/A Firmware revision Table 63
FIRM_DM R Yes 0x03 0x7A N/A Firmware programming date: day/month Table 64
FIRM_Y R Yes 0x03 0x7C N/A Firmware programming date: year Table 65
Reserved N/A N/A 0x03 0x7E N/A Reserved N/A
Reserved N/A N/A 0x04 0x00 to 0x18 N/A Reserved N/A
SERIAL_NUM R Yes 0x04 0x20 N/A Serial number Table 67
Reserved N/A N/A 0x04 0x22 to 0x7F N/A Reserved N/A
Data Sheet ADIS16480
Rev. H | Page 17 of 44
Name R/W Flash PAGE_ID Address Default Register Description Format
PAGE_ID R/W No 0x05 0x00 0x0000 Page identifier N/A
FIR_COEF_Axxx R/W Yes 0x05 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 0 through 59 Table 72
PAGE_ID R/W No 0x06 0x00 0x0000 Page identifier N/A
FIR_COEF_Axxx R/W Yes 0x06 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 60 through 119 Table 72
PAGE_ID R/W No 0x07 0x00 0x0000 Page identifier N/A
FIR_COEF_Bxxx R/W Yes 0x07 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 0 through 59 Table 73
PAGE_ID R/W No 0x08 0x00 0x0000 Page identifier N/A
FIR_COEF_Bxxx R/W Yes 0x08 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 60 through 119 Table 73
PAGE_ID R/W No 0x09 0x00 0x0000 Page identifier N/A
FIR_COEF_Cxxx R/W Yes 0x09 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 0 through 59 Table 74
PAGE_ID R/W No 0x0A 0x00 0x0000 Page identifier N/A
FIR_COEF_Cxxx R/W Yes 0x0A 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 60 through 119 Table 74
PAGE_ID R/W No 0x0B 0x00 0x0000 Page identifier N/A
FIR_COEF_Dxxx R/W Yes 0x0B 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 0 through 59 Table 75
PAGE_ID R/W No 0x0C 0x00 0x0000 Page identifier N/A
FIR_COEF_Dxxx R/W Yes 0x0C 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 60 through 119 Table 75
1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.
ADIS16480 Data Sheet
Rev. H | Page 18 of 44
OUTPUT DATA REGISTERS
After the ADIS16480 completes its start-up process, the PAGE_ID
register contains 0x0000, which sets Page 0 as the active page
for SPI access. Page 0 contains the output data, real-time clock,
status, and product identification registers.
INERTIAL SENSOR DATA FORMAT
The gyroscope, accelerometer, delta angle, delta velocity, and
barometer output data registers use a 32-bit, twos complement
format. Each output uses two registers to support this resolution.
Figure 18 provides an example of how each register contributes
to each inertial measurement. In this case, X_GYRO_OUT is
the most significant word (upper 16 bits), and X_GYRO_LOW
is the least significant word (lower 16 bits), which captures the
bit growth associated with the final averaging/decimation
register. When using the maximum sample rate (DEC_RATE =
0x0000, the x_xxxx_LOW registers are not active.
X-AXIS GYROSCOPE DATA
01515 0
X_GYRO_OUT X_GYRO_LOW
10278-018
Figure 18. Gyroscope Output Format Example, DEC_RATE > 0
The arrows in Figure 19 describe the direction of the motion,
which produces a positive output response in each sensor
output register. The accelerometers respond to both dynamic
and static forces associated with acceleration, including gravity.
When lying perfectly flat, as shown in Figure 19, the z-axis
accelerometer output is 1 g, and the x and y accelerometers are
0 g. EKF_CNFG[3] (see Table 95) provides a selection for
gyroscope, accelerometer, and magnetometer data orientation,
between the body frame and the local navigation frame.
When EKF_CNFG[3] = 0 (default), the accelerometer and
magnetometer data displays in the local navigation frame.
ROTATION RATE (GYROSCOPE)
The registers that use the x_GYRO_OUT format are the primary
registers for the gyroscope measurements (see Table 11, Table 12,
and Table 13). When processing data from these registers, use
a 16-bit, twos complement data format. Table 14 provides
x_GYRO_OUT digital coding examples.
Table 11. X_GYRO_OUT (Page 0, Base Address = 0x12)
Bits Description
[15:0] X-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 12. Y_GYRO_OUT (Page 0, Base Address = 0x16)
Bits Description
[15:0] Y-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 13. Z_GYRO_OUT (Page 0, Base Address = 0x1A)
Bits Description
[15:0] Z-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 14. X_GYRO_OUT Data Format Examples
Rotation Rate Decimal Hex Binary
+450°/sec +22,500 0x57E4 0101 0111 1110 0100
+0.04/sec +2 0x0002 0000 0000 0000 0010
+0.02°/sec +1 0x0001 0000 0000 0000 0001
0°/sec 0 0x0000 0000 0000 0000 0000
−0.02°/sec −1 0xFFFF 1111 1111 1111 1111
−0.04°/sec −2 0xFFFE 1111 1111 1111 1110
−450°/sec −22,500 0xA81C 1010 1000 0001 1100
The MSB in x_GYRO_LOW has a weight of 0.01°/sec, and each
subsequent bit has ½ the weight of the previous one.
Table 15. X_GYRO_LOW (Page 0, Base Address = 0x10)
Bits Description
[15:0] X-axis gyroscope data; additional resolution bits
Table 16. Y_GYRO_LOW (Page 0, Base Address = 0x14)
Bits Description
[15:0] Y-axis gyroscope data; additional resolution bits
Table 17. Z_GYRO_LOW (Page 0, Base Address = 0x18)
Bits Description
[15:0] Z-axis gyroscope data; additional resolution bits
PIN 1
PIN 23
a
Y
m
Y
g
Y
Y-AXIS
g
X
X-AXIS
a
X
m
X
Z-AXIS
a
Z
m
Z
g
Z
10278-019
φ
θ
ψ
Figure 19. Inertial Sensor Direction Reference Diagram
Data Sheet ADIS16480
Rev. H | Page 19 of 44
ACCELERATION
The registers that use the x_ACCL_OUT format are the primary
registers for the accelerometer measurements (see Table 18,
Table 19, and Table 20). When processing data from these
registers, use a 16-bit, twos complement data format. Tabl e 21
provides x_ACCL_OUT digital coding examples.
Table 18. X_ACCL_OUT (Page 0, Base Address = 0x1E)
Bits Description
[15:0] X-axis accelerometer data; twos complement,
±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 19. Y_ACCL_OUT (Page 0, Base Address = 0x22)
Bits Description
[15:0]
Y-axis accelerometer data; twos complement,
±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 20. Z_ACCL_OUT (Page 0, Base Address = 0x26)
Bits Description
[15:0] Z-axis accelerometer data; twos complement,
±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 21. x_ACCL_OUT Data Format Examples
Acceleration Decimal Hex Binary
+10 g +12,500 0x30D4 0011 0000 1101 0100
+1.6 mg +2 0x0002 0000 0000 0000 0010
+0.8 mg +1 0x0001 0000 0000 0000 0001
0 mg 0 0x0000 0000 0000 0000 0000
0.8 mg −1 0xFFFF 1111 1111 1111 1111
−1.6 mg −2 0xFFFE 1111 1111 1111 1110
−10 g −12,500 0xCF2C 1100 1111 0010 1100
The MSB in x_ACCL_LOW has a weight of 0.4 mg, and each
subsequent bit has ½ the weight of the previous one.
Table 22. X_ACCL_LOW (Page 0, Base Address = 0x1C)
Bits Description
[15:0] X-axis accelerometer data; additional resolution bits
Table 23. Y_ACCL_LOW (Page 0, Base Address = 0x20)
Bits Description
[15:0] Y-axis accelerometer data; additional resolution bits
Table 24. Z_ACCL_LOW (Page 0, Base Address = 0x24)
Bits Description
[15:0] Z-axis accelerometer data; additional resolution bits
DELTA ANGLES
The x_DELTANG_OUT registers are the primary output registers
for the delta angle calculations. When processing data from these
registers, use a 16-bit, twos complement data format (see Table 25,
Table 26, and Table 27). Table 28 provides x_DELTANG_OUT
digital coding examples.
The delta angle outputs represent an integration of the gyro-
scope measurements and use the following formula for all
three axes (x-axis displayed):
( )
1,,
1
0
,2
1
++
=
+×= dnDxdnDx
D
d
S
nDxf
ωωθ
where:
ωx is the x-axis rate of rotation (gyroscope).
fS is the sample rate.
n is the sample time prior to the decimation filter.
D is the decimation rate (DEC_RATE + 1).
When using the internal sample clock, fS is equal to 2,460 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock, which is limited to a minimum of 2 kHz,
in order to prevent overflow in the x_DELTANG_xxx registers
at high rotation rates. See Table 68 and Figure 20 for more
information on the DEC_RATE register (decimation filter).
Table 25. X_DELTANG_OUT (Page 0, Base Address = 0x42)
Bits Description
[15:0] X-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Table 26. Y_DELTANG_OUT (Page 0, Base Address = 0x46)
Bits Description
[15:0] Y-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Table 27. Z_DELTANG_OUT (Page 0, Base Address = 0x4A)
Bits Description
[15:0] Z-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Table 28. x_DELTANG_OUT Data Format Examples
Angle (°) Decimal Hex Binary
+720 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
+1440/215 +2 0x0002 0000 0000 0000 0010
+720/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−720/215 −1 0xFFFF 1111 1111 1111 1111
−1440/215 −2 0xFFFE 1111 1111 1111 1110
−720 −32,768 0x8000 1000 0000 0000 0000
ADIS16480 Data Sheet
Rev. H | Page 20 of 44
The x_DELTANG_LOW registers (see Table 29, Table 30, and
Table 31) provide additional resolution bits for the delta angle and
combine with the x_DELTANG_OUT registers to provide a
32-bit, twos complement number. The MSBs in the
x_DELTANG_LOW registers have a weight of ~0.01
(720°/216), and each subsequent bit carries a weight of ½ of the
previous one.
Table 29. X_DELTANG_LOW (Page 0, Base Address = 0x40)
Bits Description
[15:0] X-axis delta angle data; additional resolution bits
Table 30. Y_DELTANG_LOW (Page 0, Base Address = 0x44)
Bits Description
[15:0] Y-axis delta angle data; additional resolution bits
Table 31. Z_DELTANG_LOW (Page 0, Base Address = 0x48)
Bits Description
[15:0] Z-axis delta angle data; additional resolution bits
DELTA VELOCITY
The registers that use the x_DELTVEL_OUT format are the
primary registers for the delta velocity calculations. When
processing data from these registers, use a 16-bit, twos
complement data format (see Table 32, Table 33, and Table 34).
Table 35 provides x_DELTVEL_OUT digital coding examples.
The delta velocity outputs represent an integration of the
accelerometer measurements and use the following formula
for all three axes (x-axis displayed):
( )
1,,
1
0
,
2
1
++
=
+×=
dnDxdnDx
D
d
S
nDx
aa
f
V
where:
ax is the x-axis linear acceleration.
fS is the sample rate.
n is the sample time prior to the decimation filter.
D is the decimation rate (DEC_RATE + 1).
When using the internal sample clock, fS is equal to 2,460 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock, which is limited to a minimum of 2 kHz,
in order to prevent overflow in the x_DELTVEL_xxx registers
at high rotation rates. See Table 68 and Figure 20 for more
information on the DEC_RATE register (decimation filter).
Table 32. X_DELTVEL_OUT (Page 0, Base Address = 0x4E)
Bits Description
[15:0] X-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 – 1) = ~6.104 mm/sec
Table 33. Y_DELTVEL_OUT (Page 0, Base Address = 0x52)
Bits Description
[15:0] Y-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 1) = ~6.104 mm/sec
Table 34. Z_DELTVEL_OUT (Page 0, Base Address = 0x56)
Bits Description
[15:0] Z-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 1) = ~6.104 mm/sec
Table 35. x_DELTVEL_OUT, Data Format Examples
Velocity (m/sec) Decimal Hex Binary
+200 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
+400/215 +2 0x0002 0000 0000 0000 0010
+200/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−200/215 −1 0xFFFF 1111 1111 1111 1111
−400/215 −2 0xFFFE 1111 1111 1111 1110
−200 −32,768 0x8000 1000 0000 0000 0000
The x_DELTVEL_LOW registers (see Table 36, Tabl e 37, and
Table 38) provide additional resolution bits for the delta velocity
and combine with the x_DELTVEL_OUT registers to provide a
32-bit, twos complement number. The MSBs in the
x_DELTVEL_LOW registers have a weight of ~3.052 mm/sec
(200 m/sec ÷ 216), and each subsequent bit carries a weight of ½
of the previous one.
Table 36. X_DELTVEL_LOW (Page 0, Base Address = 0x4C)
Bits Description
[15:0] X-axis delta velocity data; additional resolution bits
Table 37. Y_DELTVEL_LOW (Page 0, Base Address = 0x50)
Bits Description
[15:0] Y-axis delta velocity data; additional resolution bits
Table 38. Z_DELTVEL_LOW (Page 0, Base Address = 0x54)
Bits Description
[15:0] Z-axis delta velocity data; additional resolution bits
Data Sheet ADIS16480
Rev. H | Page 21 of 44
MAGNETOMETERS
The registers that use the x_MAGN_OUT format are the primary
registers for the magnetometer measurements. When processing
data from these registers, use a 16-bit, twos complement data
format. Table 39, Table 40, and Tabl e 41 provide each register
numerical format, and Table 42 provides x_MAGN_OUT digital
coding examples.
Table 39. X_MAGN_OUT (Page 0, Base Address = 0x28)
Bits Description
[15:0] X-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 40. Y_MAGN_OUT (Page 0, Base Address = 0x2A)
Bits Description
[15:0] Y-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 41. Z_MAGN_OUT (Page 0, Base Address = 0x2C)
Bits Description
[15:0] Z-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 42. x_MAGN_OUT Data Format Examples
Magnetic Field Decimal Hex Binary
+3.2767 gauss +32,767 0x7FFF 0111 1111 1111 1111
+0.2 mgauss +2 0x0002 0000 0000 0000 0010
+0.1 mgauss +1 0x0001 0000 0000 0000 0001
0 gauss
0
0x0000
0000 0000 0000 0000
−0.1 mgauss −1 0xFFFF 1111 1111 1111 1111
−0.2 mgauss −2 0xFFFE 1111 1111 1111 1110
−3.2768 gauss −32,768 0x8000 1000 0000 0000 0000
ROLL, PITCH, YAW ANGLES
The EKF_CNFG (Table 95) register contains two bits, which
define the output format of the angle estimates. The first one
is EKF_CNFG[4], which selects the output format. When EKF_
CNFG[4] = 0; the output data is in the format of a quaternion
vector (see Table 43 through Table 46) and Euler angles (see
Table 48 through Table 50). When EKF_CNFG[4] = 1, the
output data is in the form of a rotation matrix (see Table 43
through Table 51).
INITIAL CONDITIONS
During start-up, reset recovery, sleep mode recovery, and
power-down recovery, the ADIS16480 uses the inertial sensor
outputs to estimate bias and a number of critical initial states
that are critical for stable operation and accurate angle estimates.
To assure convergence and accuracy, only initiate start-up or
reset commands when the platform of the ADIS16480 is not in
motion and the magnetic environment is free of interference.
Quaternion
This four-element hypercomplex number defines the attitude of
the body frame, relative to that of the navigation frame. The
Qx_Cxx_OUT registers (See Ta ble 43 through Table 46) contain
the value for each element (q0, q1, q2, q4). The element, q0, is
the scalar part of the quaternion and represents the magnitude
of the rotation. The vector portion of the quaternion is defined
by (q1, q2, q3)T, which identifies the axis about which the
rotation takes place, in adjusting the body frame to that of the
navigation frame. When the orientation is in its reference
position, q0 is equal to one and q1, q2, and q3 are equal to zero.
These registers update at the same data rate as the gyroscopes
and accelerometers.
Euler Angles
The Euler angle names are yaw (ψ), pitch (θ), and roll (φ).
See Figure 19 for the axial association of these angles. These
three elements represent the most intuitive way of describing
orientation angles. The process of translating body frame
data to the navigation frame can be broken down into three
successive translations. These translations follow as the yaw
rotation about the z-axis, followed by the pitch rotation about
the y-axis, and finally the roll rotation about the x-axis. Reverse
this sequence to resolve a reverse rotation. Difficulties in this
process arise due to the singularities that occur whenever the
pitch approaches ±90° thus making the roll indistinguishable
from the yaw. For applications that may approach these limits,
the quaternion or rotation matrix output may be more appro-
priate. When the ADIS16480 is in its reference position, all
three Euler angles are equal to zero. The update rate for these
variables is the same as the gyroscopes and accelerometers.
ADIS16480 Data Sheet
Rev. H | Page 22 of 44
ROTATION MATRIX DATA
The rotation matrix defines the attitude of the body frame
relative to that of the navigation frame. The Cxx_OUT registers
(see Tabl e 43 through Table 51) define each element in this 3 ×
3 matrix. Each element is the product of the unit vectors that
describe the axes of the two frames, which in turn, are equal
to the cosines of the angles between the axes. When the
ADIS16480 is in its reference position, the rotation matrix
are equal to a 3 × 3 identify matrix.
Table 43. Q0_C11_OUT (Page 0, Base Address = 0x60)
Bits Description
[15:0] Quarterion scalar, q0 or rotation matrix, C11
Twos complement
q0 scale factor = 0.000030518/LSB (1/215)
C11 scale factor = 0.000030518/LSB (1/215)
Table 44. Q1_C12_OUT (Page 0, Base Address = 0x62)
Bits Description
[15:0] Quarterion vector, q1; or rotation matrix, C12
Twos complement
q1 scale factor = 0.000030518/LSB (1/215)
C12 scale factor = 0.000030518/LSB (1/215)
Table 45. Q2_C13_OUT (Page 0, Base Address = 0x64)
Bits Description
[15:0] Quarterion vector, q2; or rotation matrix, C13
Twos complement
q2 scale factor = 0.000030518/LSB (1/215)
C13 scale factor = 0.000030518/LSB (1/215)
Table 46. Q3_C21_OUT (Page 0, Base Address = 0x66)
Bits Description
[15:0] Quarterion vector, q3; or rotation matrix, C21
Twos complement
q3 scale factor = 0.000030518/LSB (1/215)
C21 scale factor = 0.000030518/LSB (1/215)
Table 47. C22_OUT (Page 0, Base Address = 0x68)
Bits Description
[15:0] Rotation matrix, C22, twos complement
C22 scale factor = 0.000030518/LSB (1/215)
Table 48. ROLL_C23_OUT (Page 0, Base Address = 0x6A)
Bits Description
[15:0] Euler angle, φ, roll or rotation matrix, C23
Twos complement, range: ±180° (±π radians)
Roll angle scale factor = (180/215)°/LSB
Rotation matrix variable, C23
Twos complement
C23 scale factor = 0.000030518/LSB (1/215)
Table 49. PITCH_C31_OUT (Page 0, Base Address = 0x6C)
Bits Description
[15:0] Euler angle, θ, pitch or rotation matrix, C31
Twos complement, range: ±90° (±π/2 radians)
Pitch angle scale factor = (180/215)°/LSB
Rotation matrix variable, C31
Twos complement, 0.000030518/LSB (1/215)
Table 50. YAW_C32_OUT (Page 0, Base Address = 0x6E)
Bits Description
[15:0] Euler angle, Ψ, yaw or rotation matrix, C32
Twos complement, range: ±180° (±π radians)
Yaw angle scale factor = (180/215)°/LSB
Rotation matrix variable, C32
Twos complement, 0.000030518/LSB (1/215)
Table 51. C33_OUT (Page 0, Base Address = 0x70)
Bits Description
[15:0] Rotation matrix, C33, twos complement
C22 scale factor = 0.000030518/LSB (1/215)
Table 52. Rotation Matrix/q1/q2/q3 Data Format Examples
Angle (°) Decimal Hex Binary
(215 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
2/215 +2 0x0002 0000 0000 0000 0010
1/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
1/215 −1 0xFFFF 1111 1111 1111 1111
2/215 −2 0xFFFE 1111 1111 1111 1110
−1 −32,768 0x8000 1000 0000 0000 0000
Table 53. Yaw, Roll, q0 Angle Data Format Examples
Angle (°) Decimal Hex Binary
+180 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
+360/215 +2 0x0002 0000 0000 0000 0010
+180/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−180/215 −1 0xFFFF 1111 1111 1111 1111
−360/215 −2 0xFFFE 1111 1111 1111 1110
−180 −32,768 0x8000 1000 0000 0000 0000
Table 54. Pitch Angle Data Format Examples
Angle (°) Decimal Hex Binary
+90 × (2
15
1)/2
15
+16,383
0x3FFF
0011 1111 1110 1111
+360/215 +2 0x0002 0000 0000 0000 0010
+180/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−180/215 −1 0xFFFF 1111 1111 1111 1111
−360/215 −2 0xFFFE 1111 1111 1111 1110
−90 −16,384 0xC000 1100 0000 0000 0000
Data Sheet ADIS16480
Rev. H | Page 23 of 44
BAROMETER
The BAROM_OUT register (see Table 55) and BAROM_LOW
register (see Table 57) provide access to the barometric pressure
data. These two registers combine to provide a 32-bit, twos
complement format. Some applications are able to use
BAROM_OUT by itself. For cases where the finer resolution
available from BAROM_LOW is valuable, combine them in
the same manner as the gyroscopes (see Figure 18). When
processing data from the BAROM_OUT register alone, use a
16-bit, twos complement data format. Tabl e 55 provides the
numerical format in BAROM_OUT, and Table 56 provides
digital coding examples.
Table 55. BAROM_OUT (Page 0, Base Address = 0x30)
Bits Description
[15:0] Barometric pressure; twos complement,
±1.31 bar range, 0 bar = 0x0000, 40 µbar/LSB
Table 56. BAROM_OUT Data Format Examples
Pressure (bar) Decimal Hex Binary
+0.00004 × (215 1) +32,767 0x7FFF 0111 1111 1111 1111
+0.00008 +2 0x0002 0000 0000 0000 0010
+0.00004 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−0.00004 −1 0xFFFF 1111 1111 1111 1111
−0.00008 −2 0xFFFE 1111 1111 1111 1110
−0.00004 × 215 −32,768 0x8000 1000 0000 0000 0000
The BAROM_LOW register provides additional resolution for
the barometric pressure measurement. The MSB has a weight
of 20 µbar, and each subsequent bit carries a weight of ½ of
the previous one.
Table 57. BAROM_LOW (Page 0, Base Address = 0x2E)
Bits Description
[15:0] Barometric pressure; additional resolution bits
INTERNAL TEMPERATURE
The TEMP_OUT register provides an internal temperature
measurement that can be useful for observing relative temperature
changes inside of the ADIS16480 (see Table 58). Tabl e 59
provides TEMP_OUT digital coding examples. Note that this
temperature reflects a higher temperature than ambient, due
to self heating.
Table 58. TEMP_OUT (Page 0, Base Address = 0x0E)
Bits Description
[15:0] Temperature data; twos complement,
0.00565°C per LSB, 25°C = 0x0000
Table 59. TEMP_OUT Data Format Examples
Temperature (°C) Decimal Hex Binary
+85 +10,619 0x297B 0010 1001 0111 1011
+25 + 0.0113 +2 0x0002 0000 0000 0000 0010
+25 + 0.00565 +1 0x0001 0000 0000 0000 0001
+25
0
0x0000
0000 0000 0000 0000
+25 0.00565 −1 0xFFFF 1111 1111 1111 1111
+25 0.0113 −2 0xFFFE 1111 1111 1111 1110
−40 −11,504 0xD310 1101 0011 0001 0000
ADIS16480 Data Sheet
Rev. H | Page 24 of 44
STATUS/ALARM INDICATORS
The SYS_E_FLAG register in Table 60 provides the system error
flags and new data bits for the magnetometer and barometer
outputs. The new data flags are useful for triggering data collec-
tion of the magnetometer and barometer (x_MAGN_OUT and
BAROM_xxx registers) because they update at a fixed rate that
is not dependent on the DEC_RATE setting. Reading the SYS_
E_FLAG register clears all of its error flags and returns each bit
to a zero value, with the exception of Bit[7]. If SYS_E_FLAG[7]
is high, use the software reset (GLOB_CMD[7], see Table 147)
to clear this condition and restore normal operation. If any bit
in the SYS_E_FLAG register is associated an error condition
that remains after reading this register, this bit automatically
returns to an alarm value of 1.
Table 60. SYS_E_FLAG (Page 0, Base Address = 0x08)
Bits Description (Default = 0x0000)
15 Watch dog timer flag (1 = timed out)
14 Not used
13 EKF divergence (1 = divergence has occurred)
12 Gyroscope saturation
1 = saturation conditions exists and the gyroscope
weighting factors in the EKF have been automatically
reduced
0 = gyroscope measurements within range
11 Magnetometer disturbance
1 = magnetometer measurements exceed
MAG_DISTB_THR levels (see Table 97) and the
magnetometer influence in the EKF has been
automatically eliminated
0 = magnetometer measurements are within the
specified normal range
10 Linear acceleration
1 = accelerometer measurements exceed
ACC_DISTR_THR levels (see Table 96) and the
accelerometer weighting factors in the EKF have been
automatically reduced
0 = accelerometer measurements are within the
specified normal range
9 New data flag, barometer (1 = new, unread data)1
8 New data flag, magnetometer (1 = new, unread data)2
7 Processing overrun (1 = error)
6 Flash memory update, result of GLOB_CMD[3] = 1
(1 = failed update, 0 = update successful)
5 Inertial self-test failure (1 = DIAG_STS ≠ 0x0000)
4 Sensor overrange (1 = at least one sensor overranged)
3 SPI communication error
(1 = error condition, when the number of SCLK pulses is
not equal to a multiple of 16)
[2:1] Not used
0 Alarm status flag (1 = ALM_STS ≠ 0x0000)
1 This flag restores to zero after reading the contents on BAROM_OUT.
2 This flag restores to zero after reading one x_MAGN_OUT register.
The DIAG_STS register in Table 61 provides the flags for the
internal self-test function, which is from GLOB_CMD[1] (see
Table 147). Note that the barometer flag, DIAG_STS[11], only
updates after start-up and reset operations and that reading
DIAG_STS also resets it to 0x0000.
Table 61. DIAG_STS (Page 0, Base Address = 0x0A)
Bits Description (Default = 0x0000)
[15:12] Not used
11 Self-test failure, barometer (1 = failed at startup)
10 Self-test failure, z-axis magnetometer (1 = failure)
9 Self-test failure, y-axis magnetometer (1 = failure)
8 Self-test failure, x-axis magnetometer (1 = failure)
[7:6] Not used
5 Self-test failure, z-axis accelerometer (1 = failure)
4 Self-test failure, y-axis accelerometer (1 = failure)
3 Self-test failure, x-axis accelerometer (1 = failure)
2 Self-test failure, z-axis gyroscope (1 = failure)
1 Self-test failure, y-axis gyroscope (1 = failure)
0 Self-test failure, x-axis gyroscope (1 = failure)
The ALM_STS register in Table 62 provides the alarm bits
for the programmable alarm levels of each sensor. Note that
reading ALM_STS also resets it to 0x0000.
Table 62. ALM_STS (Page 0, Base Address = 0x0C)
Bits Description (Default = 0x0000)
[15:12] Not used
11 Barometer alarm flag (1 = alarm is active)
10 Z-axis magnetometer alarm flag (1 = alarm is active)
9 Y-axis magnetometer alarm flag (1 = alarm is active)
8 X-axis magnetometer alarm flag (1 = alarm is active)
[7:6] Not used
5 Z-axis accelerometer alarm flag (1 = alarm is active)
4 Y-axis accelerometer alarm flag (1 = alarm is active)
3 X-axis accelerometer alarm flag (1 = alarm is active)
2 Z-axis gyroscope alarm flag (1 = alarm is active)
1
Y-axis gyroscope alarm flag (1 = alarm is active)
0 X-axis gyroscope alarm flag (1 = alarm is active)
Data Sheet ADIS16480
Rev. H | Page 25 of 44
FIRMWARE REVISION
The FIRM_REV register (see Table 63) provides the firmware
revision for the internal processor. Each nibble represents a
digit in this revision code. For example, if FIRM_REV =
0x0102, the firmware revision is 1.02.
Table 63. FIRM_REV (Page 3, Base Address = 0x78)
Bits Description
[15:12] Binary, revision, 10’s digit
[11:8] Binary, revision, 1’s digit
[7:4] Binary, revision, tenths digit
[3:0] Binary, revision, hundredths digit
The FIRM_DM register (see Table 64) contains the month and
day of the factory configuration date. FIRM_DM[15:12] and
FIRM_DM[11:8] contain digits that represent the month
of factory configuration. For example, November is the 11th
month in a year and represented by FIRM_DM[15:8] = 0x11.
FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent
the day of factory configuration. For example, the 27th day of
the month is represented by FIRM_DM[7:0] = 0x27.
Table 64. FIRM_DM (Page 3, Base Address = 0x7A)
Bits Description
[15:12] Binary, month 10’s digit, range: 0 to 1
[11:8] Binary, month 1’s digit, range: 0 to 9
[7:4] Binary, day 10’s digit, range: 0 to 3
[3:0] Binary, day 1’s digit, range: 0 to 9
The FIRM_Y register (see Table 65) contains the year of the
factory configuration date. For example, the year of 2013 is
represented by FIRM_Y = 0x2013.
Table 65. FIRM_Y (Page 3, Base Address = 0x7C)
Bits Description
[15:12]
Binary, year 1000’s digit, range: 0 to 9
[11:8] Binary, year 100’s digit, range: 0 to 9
[7:4] Binary, year 10’s digit, range: 0 to 9
[3:0] Binary, year 1’s digit, range: 0 to 9
PRODUCT IDENTIFICATION
The PROD_ID register (see Table 66) contains the binary
equivalent of the part number (16,480 = 0x4060), and the
SERIAL_NUM register (see Table 67) contains a lot specific
serial number.
Table 66. PROD_ID (Page 0, Base Address = 0x7E)
Bits Description (Default = 0x4060)
[15:0] Product identification = 0x4060
Table 67. SERIAL_NUM (Page 4, Base Address = 0x20)
Bits Description
[15:0] Lot specific serial number
ADIS16480 Data Sheet
Rev. H | Page 26 of 44
DIGITAL SIGNAL PROCESSING
GYROSCOPES/ACCELEROMETERS
Figure 20 provides a block diagram for all of the components
and settings that influence the frequency response for the
accelerometers and gyroscopes. The sample rate for each
accelerometer and gyroscope is 9.84 kHz. Each sensor has
its own averaging/decimation filter stage, which reduces the
update rate to 2.46 kSPS. When using the external clock option
(FNCTIO_CTRL[7:4], see Table 150), the input clock drives a
4-sample burst at a sample rate of 9.84 kSPS, which feeds into
the 4× averaging/decimation filter. This results in a data rate
that is equal to the input clock frequency. Note that the
sensitivity to coning and sculling depends on the sample
rate. At 2.46 kHz, the sensitivity is very low, but can become
influential at lower sample rates. For best performance when
using an external clock, use the maximum input frequency
of 2.4 kHz.
AVERAGING/DECIMATION FILTER
The DEC_RATE register (see Table 68) provides user control
for the final filter stage (see Figure 20), which averages and
decimates the accelerometers, gyroscopes, delta angle, and delta
velocity data. Note that the orientation outputs do not go through
an averaging stage, prior to decimation. The output sample rate is
equal to 2460/(DEC_RATE + 1). When using the external clock
option (FNCTIO_CTRL[7:4], see Table 150), replace the 2460
number in this relationship, with the input clock frequency. For
example, turn to Page 3 (DIN = 0x8003), and set DEC_RATE =
0x18 (DIN = 0x8C18, then DIN = 0x8D00) to reduce the output
sample rate to 98.4 SPS (2460 ÷ 25).
Table 68. DEC_RATE (Page 3, Base Address = 0x0C)
Bits Description (Default = 0x0000)
[15:11] Don’t care
[10:0] Decimation rate, binary format, maximum = 2047
See Figure 20 for impact on sample rate
MAGNETOMETER/BAROMETER
When using the internal sampling clock, the magnetometer
output registers (x_MAGN_OUT) update at a rate of 102.5 SPS
and the barometer output registers (BAROM_xxx) update at a
rate of 51.25 SPS. When using the external clock, the magne-
tometers update at a rate of 1/24th of the input clock frequency
and the barometers update at a rate that is 1/48th of the input
clock frequency.
The update rates for the magnetometer and barometers do not
change with the DEC_RATE register settings. SYS_E_FLAG[9:8]
(see Table 60) offer new data indicator bits that indicate fresh,
unread data is in the x_MAGN_OUT and the BAROM_xxx
registers. The SEQ_CNT register provides a counter function to
help determine when there is new data in the magnetometer
and barometer registers.
When SEQ_CNT = 0x0001, there is new data in the
magnetometer and barometer output registers. The SEQ_CNT
register can be useful during initialization to help synchronize
read loops for new data in both magnetometer and barometer
outputs. When beginning a continuous read loop, read SEQ_CNT,
then subtract this value from the maximum value shown (range)
in Table 69 to calculate the number of internal sample cycles
until both magnetometer and barometer data is new.
Table 69. SEQ_CNT (Page 0, Base Address = 0x06)
Bits Description
[15:11] Don’t care
[6:0] Binary counter: range = 1 to 48/(DEC_RATE + 1)
MEMS
SENSOR 330Hz ÷4
2.46kHz , f
s
GYROSCOPE
2-POLE : 404Hz , 757Hz
ACCELEROMETER
1-POLE : 330Hz
AVERAGE
DECIMATION
FILTER
1
4
4
f
s
INTERNAL
CLOCK
9.84kHz
DIOx
OPTIONAL INPUT CLOCK
FNCTIO_CT RL[7] = 1
f
s
< 2400Hz
NOTES
1. WHEN F NCTI O_CT RL[7] = 1, EACH CL OCK PULSE ON T HE DE S I GNAT E D DIO x LI NE ( FNCT IO_CTRL [ 5: 4] ) S TART S A 4- S AM P LE BURS T,
AT A S AM P LE RAT E OF 9.84kHz. T HES E FO UR S AM P LES FEE D INTO T HE 4x AV E RAGE/DECIMAT IO N FI LT E R, WHICH PRODUCES A
DATA RATE T HAT I S E QUAL TO THE I NP UT CL OCK F RE QUENCY.
10278-020
ORIENTATION
÷D
÷D
1
D
D
FIR
EKF
FILTER
BANK
AVERAGE/DECIMATION
FILTER
D = DEC_RAT E [ 10: 0] + 1
SELECTABLE
FIR FILTER BANK
FILTR_BNK_0
FILTR_BNK_1
Figure 20. Sampling and Frequency Response Signal Flow
Data Sheet ADIS16480
Rev. H | Page 27 of 44
FIR FILTER BANKS
The ADIS16480 provides four configurable, 120-tap FIR filter
banks. Each coefficient is 16 bits wide and occupies its own
register location with each page. When designing a FIR filter for
these banks, use a sample rate of 2.46 kHz and scale the coefficients
so that their sum equals 32,768. For filter designs that have less
than 120 taps, load the coefficients into the lower portion of the
filter and start with Coefficient 1. Make sure that all unused
taps are equal to zero, so that they do not add phase delay to the
response. The FILTR_BNK_x registers provide three bits per
sensor, which configure the filter bank (A, B, C, D) and turn
filtering on and off. For example, turn to Page 3 (DIN =
0x8003), then write 0x002F to FILTR_BNK_0 (DIN = 0x962F,
DIN = 0x9700) to set the x-axis gyroscope to use the FIR filter
in Bank D, to set the y-axis gyroscope to use the FIR filter in
Bank B, and to enable these FIR filters in both x- and y-axis
gyroscopes. Note that the filter settings update after writing to
the upper byte; therefore, always configure the lower byte first.
In cases that require configuration to only the lower byte of
either FILTR_BNK_0 or FILTR_BNK_1, complete the process
by writing 0x00 to the upper byte.
Table 70. FILTR_BNK_0 (Page 3, Base Address = 0x16)
Bits Description (Default = 0x0000)
15 Don’t care
14
Y-axis accelerometer filter enable (1 = enabled)
[13:12]
Y-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
11 X-axis accelerometer filter enable (1 = enabled)
[10:9] X-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
8 Z-axis gyroscope filter enable (1 = enabled)
[7:6] Z-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
5 Y-axis gyroscope filter enable (1 = enabled)
[4:3] Y-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
2 X-axis gyroscope filter enable (1 = enabled)
[1:0] X-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Table 71. FILTR_BNK_1 (Page 3, Base Address = 0x18)
Bits Description (Default = 0x0000)
[15:12] Don’t care
11 Z-axis magnetometer filter enable (1 = enabled)
[10:9] Z-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
8 Y-axis magnetometer filter enable (1 = enabled)
[7:6] Y-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
5 X-axis magnetometer filter enable (1 = enabled)
[4:3] X-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
2 Z-axis accelerometer filter enable (1 = enabled)
[1:0] Z-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Filter Memory Organization
Each filter bank uses two pages of the user register structure.
See Table 72, Table 73, Table 74, and Table 75 for the register
addresses in each filter bank.
Table 72. Filter Bank A Memory Map, FIR_COEF_Axxx
Page PAGE_ID Address Register
5 0x05 0x00 PAGE_ID
5 0x05 0x02 to 0x07 Not used
5 0x05 0x08 FIR_COEF_A000
5 0x05 0x0A FIR_COEF_A001
5 0x05 0x0C to 0x7C FIR_COEF_A002 to
FIR_COEF_A058
5 0x05 0x7E FIR_COEF_A059
6 0x06 0x00 PAGE_ID
6 0x06 0x02 to 0x07 Not used
6 0x06 0x08 FIR_COEF_A060
6 0x06 0x0A FIR_COEF_A061
6 0x06 0x0C to 0x7C FIR_COEF_A062 to
FIR_COEF_A118
6 0x06 0x7E FIR_COEF_D119
Table 73. Filter Bank B Memory Map, FIR_COEF_Bxxx
Page PAGE_ID Address Register
7 0x07 0x00 PAGE_ID
7 0x07 0x02 to 0x07 Not used
7 0x07 0x08 FIR_COEF_B000
7 0x07 0x0A FIR_COEF_B001
7 0x07 0x0C to 0x7C FIR_COEF_B002 to
FIR_COEF_B058
7 0x07 0x7E FIR_COEF_B059
8 0x08 0x00 PAGE_ID
8 0x08 0x02 to 0x07 Not used
8 0x08 0x08 FIR_COEF_B060
8 0x08 0x0A FIR_COEF_B061
8 0x08 0x0C to 0x7C FIR_COEF_B062 to
FIR_COEF_B118
8 0x08 0x7E FIR_COEF_B119
Table 74. Filter Bank C Memory Map, FIR_COEF_Cxxx
Page PAGE_ID Address Register
9 0x09 0x00 PAGE_ID
9 0x09 0x02 to 0x07 Not used
9 0x09 0x08 FIR_COEF_C000
9 0x09 0x0A FIR_COEF_C001
9 0x09 0x0C to 0x7C FIR_COEF_C002 to
FIR_COEF_C058
9 0x09 0x7E FIR_COEF_C059
10 0x0A 0x00 PAGE_ID
10 0x0A 0x02 to 0x07 Not used
10 0x0A 0x08 FIR_COEF_C060
10 0x0A 0x0A FIR_COEF_C061
10 0x0A 0x0C to 0x7C FIR_COEF_C062 to
FIR_COEF_C118
10 0x0A 0x7E FIR_COEF_C119
ADIS16480 Data Sheet
Rev. H | Page 28 of 44
Table 75. Filter Bank D Memory Map, FIR_COEF_Dxxx
Page PAGE_ID Address Register
11 0x0B 0x00 PAGE_ID
11 0x0B 0x02 to 0x07 Not used
11 0x0B 0x08 FIR_COEF_D000
11 0x0B 0x0A FIR_COEF_D001
11 0x0B 0x0C to 0x7C FIR_COEF_D002 to
FIR_COEF_D058
11 0x0B 0x7E FIR_COEF_D059
12 0x0C 0x00 PAGE_ID
12 0x0C 0x02 to 0x07 Not used
12 0x0C 0x08 FIR_COEF_D060
12 0x0C 0x0A FIR_COEF_D061
12 0x0C 0x0C to 0x7C FIR_COEF_D062 to
FIR_COEF_D118
12 0x0C 0x7E FIR_COEF_D119
Default Filter Performance
The FIR filter banks have factory programmed filter designs. They
are all low-pass filters that have unity dc gain. Table 76 provides
a summary of each filter design, and Figure 21 shows the frequency
response characteristics. The phase delay is equal to ½ of the total
number of taps.
Table 76. FIR Filter Descriptions, Default Configuration
FIR Filter Bank Taps −3 dB Frequency (Hz)
A 120 310
B 120 55
C 32 275
D 32 63
NO FIR
FILTERING
0
–10
–20
MAG NITUDE ( dB)
–30
–40
–50
–60
–70
–80
–90
–1000200 400 600 800 1000 1200
FRE Q UE NCY ( Hz )
AD CB
10278-021
Figure 21. FIR Filter Frequency Response Curves
Data Sheet ADIS16480
Rev. H | Page 29 of 44
EXTENDED KALMAN FILTER
ALGORITHM
The extended Kalman filter (EKF) continuously estimates the
state vector, which includes the four elements in a quaternion
orientation array and the bias levels for all three gyroscopes.
Figure 22 illustrates the iterative process used in the EKF, which
uses angular rate measurements (gyroscopes) to predict
orientation updates and then makes corrections using accel-
erometer and magnetometer measurements. In addition to
continuous state estimation, the EKF also estimates the error
covariance terms. Using the covariance terms, current
orientation, and gyroscope sensor measurements, the algorithm
computes a Kalman gain that provides a weighting value for
each sensor contribution to the state vector. The ADIS16480 has
factory settings for the covariance terms but provides access to
them in the form of user-configuration registers, for fine
tuning, based on application-specific conditions/requirements.
COVARIANCE TERMS
Table 77 through Table 80 provides register information for the
gyroscope noise/RRW process covariance (Q) terms. Table 81
through Table 84 provides register information for the
accelerometer/magnetometer measurement covariance (R)
terms. These covariance terms use the IEEE 32-bit floating-
point format. Each term has two registers, one for the upper
word and one for the lower word.
Table 77. QCVR_NOIS_UPR (Page 3, Base Address = 0x62)
Bits Description (Default = 0x3727)
[15:0] Gyroscope noise covariance term, upper word
Table 78. QCVR_NOIS_LWR (Page 3, Base Address = 0x60)
Bits Description (Default = 0xC5AC)
[15:0] Gyroscope noise covariance term, lower word
Table 79. QCVR_RRW_UPR (Page 3, Base Address = 0x66)
Bits Description (Default = 0x2E5B)
[15:0] Gyroscope rate random walk (RRW) covariance term,
upper word
Table 80. QCVR_RRW_LWR (Page 3, Base Address = 0x64)
Bits Description (Default = 0xE6FF)
[15:0] Gyroscope rate random walk (RRW) covariance term,
lower word
Table 81. RCVR_ACC_UPR (Page 3, Base Address = 0x6E)
Bits Description (Default = 0x3189)
[15:0] Accelerometer measurement variance term, upper word
Table 82. RCVR_ACC_LWR (Page 3, Base Address = 0x6C)
Bits Description (Default = 0x705F)
[15:0] Accelerometer measurement variance term, lower word
Table 83. RCVR_MAG_UPR (Page 3, Base Address = 0x72)
Bits Description (Default = 0x32AB)
[15:0]
Magnetometer measurement variance term, upper word
Table 84. RCVR_MAG_LWR (Page 3, Base Address = 0x70)
Bits Description (Default = 0xCC77)
[15:0] Magnetometer measurement variance term, lower word
CORRECTPREDICT
GYROSCOPE
Q CO V ARIANCE
ACCELEROMETERS
MAGNETOMETERS
R COVARIANCE
QUATERNI ON, BIAS
ERROR COVARIANCE
QUATERNI ON, BIAS
ERROR COVARIANCE
QUATERNION
EKF PROCESS
10278-022
Figure 22. EKF Process
ADIS16480 Data Sheet
Rev. H | Page 30 of 44
REFERENCE FRAME
During the power-on initialization and reset recovery opera-
tions, the ADIS16480 sets the accelerometer and magnetometer
references for use in the orientation computation. During this
process, the gravity vector becomes the accelerometer reference
and the magnetometer reference computation includes the
following steps: measure horizontal and vertical components
of the magnetic field and align the horizontal component to
magnetic north. This also measures the inclination, which
removes this requirement from an external system. The resulting
reference frame is a local ENU inertial frame formed by the
y-axis pointing at magnetic north, the z-axis pointing up, and
the x-axis completing the right-hand frame by pointing east.
REFERENCE TRANSFORMATION MATRIX
The reference transformation matrix, RIJ, provides a user-
programmable alignment function for orientation alignment
to a local navigation frame. Another common name for this
function in navigation system literature is the coordinate
transformation matrix.
=
R
RR
R
RR
RR
R
IJ
R
333231
2322
21
131211
When this matrix is equal to an identify matrix (factory
default), the local navigation frame matches true level, with
respect to gravity, and magnetic north. The tare command
automatically calculates and loads the matrix values that
establish the current ADIS16480 orientation as the reference
orientation. When the ADIS16480 is in the desired reference
orientation, initiate the tare command by setting GLOB_CMD[8]
= 1 (DIN = 0x8003, then DIN = 0x8301, see Table 147).
Each element in this matrix is associated with a register that
provides read and write access. See Tabl e 85 through Table 93,
for these registers. Use these registers to define the local
navigation frame, based on system generated requirements.
Each element is the cross product of the unit vectors that
describe the axes of the two frames, which are equal to the
cosines of the angles between the axes. Units of rotation vary
by ±1. When writing to these registers, write to R33 last because
a write to the upper byte of this register causes all nine registers
to update inside of the ADIS16480.
Table 85. REFMTX_R11 (Page 2, Base Address = 0x62)
Bits Description (Default = 0x7FFF)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 86. REFMTX_R12 (Page 2, Base Address = 0x64)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 87. REFMTX_R13 (Page 2, Base Address = 0x66)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 88. REFMTX_R21 (Page 2, Base Address = 0x68)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 89. REFMTX_R22 (Page 2, Base Address = 0x6A)
Bits Description (Default = 0x7FFF)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 90. REFMTX_R23 (Page 2, Base Address = 0x6C)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 91. REFMTX_R31 (Page 2, Base Address = 0x6E)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 92. REFMTX_R32 (Page 2, Base Address = 0x70)
Bits Description (Default = 0x0000)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Table 93. REFMTX_R33 (Page 2, Base Address = 0x72)
Bits Description (Default = 0x7FFF)
15 Sign bit
[14:0] Magnitude, binary, 1 LSB = 1/215
Data Sheet ADIS16480
Rev. H | Page 31 of 44
DECLINATION
The DECLN_ANGL register provides a user-programmable
input that can shift the reference frame from magnetic north
to geodetic north (or any arbitrary azimuth heading).
Table 94. DECLN_ANGL (Page 3, Base Address = 0x54)
Bits Description (Default = 0x0000)
[15:0] Declination angle, twos complement
Scale factor = π/215 radians/LSB
ADAPTIVE OPERATION
The EKF_CNFG register, in Table 95, offers a number of control
bits for customizing EKF operation.
Table 95. EKF_CNFG (Page 3, Base Address = 0x50)
Bits Description (Default = 0x0200)
[15:13] Not used
12 Automatic reset recovery from divergence
1 = enable, 0 = disable
[11:10] Not used
9 Fade enable
1 = enable, 0 = disable
8 Adaptive EKF enable
1 = enable, 0 = disable
[7:5] Not used
4 Orientation format control
1 = rotation matrix, 0 = quaternion and Euler
3 Body frame/local navigation frame selection
1 = body frame, 0 = local navigation frame
2 Not for external use, always set to 0
1 Magnetometer disable
1 = enable, 0 = disable
0 Gravity removal (from accelerometers)
1 = enable, 0 = disable
Adaptive EKF Enable Bit
EKF_CNFG[8] (see Table 95) provides an on/off control bit
for the adaptive part of the EKF function. The adaptive part
of the EKF computes the measurement covariance terms (R),
which enables real-time adjustments for vibration and magnetic
field disturbances. See Table 81 through Table 84 for read access
to the measurement covariance terms.
Automatic EKF Divergence Reset Control Bit
The EKF algorithm monitors the normalized innovation squared
parameter to detect divergence. The normalized innovation is
the innovation (predicted measurements minus actual measure-
ments) divided by the statistically computed expected error,
which is based on the error covariance and the measurement
covariance. The normalized innovation is used to detect EKF
divergence and report it in the SYS_E_FLAG[13] bit (see Table 60),
and to trigger an automatic EKF reset when EKF_CFG[12] = 1.
The automatic reset process works best when the divergence
comes from short-term, transient inertial conditions. Use this
function only when predeployment validation testing can confirm
that it performs well through all application conditions. If there is
any sign of instability, keep this function off (EKF_CFG[12] = 0),
monitor SYS_E_FLAG[13] to test for divergence in the EKF,
and, after detecting divergence, use the manual EKF reset function
in GLOB_CMD[15] (see Table 147) or the full software reset in
GLB_CMD[7] to initiate a reset in the EKF. Note that this recovery
process requires zero inertial motion and a magnetic environment
free of interference to optimize postrecovery accuracy.
Gyroscope Fade Control Bit
EKF_CNFG[9] (see Table 95) provides an on/off control bit for
the gyroscope fade function, which is an internal adjustment
of the gyroscope process covariance terms. This reduces the
impact of gyroscope scale errors during transient events, where
the gyroscope rates are quickly changing. The fade function
effectively reduces the weighting of the gyroscope measure-
ments, with respect to the accelerometers and magnetometers,
during these transient events. The adjustment terminates when
the rates return to zero.
Body Frame/Local Navigation Frame Bit
EKF_CNFG[3] (see Table 95) provides a bit for selecting between
the body frame and local navigation frame. When using the
local navigation frame, the body sensor measurements are
translated into the local navigation frame before being loaded
into the output registers. Absent any external acceleration, the
accelerometer outputs remain unchanged as the ADIS16480 is
rotated when in this mode. Set EKF_CNFG[3] = 1 (DIN = 0x8003,
DIN = 0xD008, DIN = 0xD102) to establish the body frame as
the reference frame and to preserve the fade enable setting.
ADIS16480 Data Sheet
Rev. H | Page 32 of 44
Orientation Format Control Bit
EKF_CNFG[4] (see Table 95) provides a selection bit for angle
data format. Set EKF_CNFG[4] = 1 (DIN = 0x8003, DIN =
0xD010, DIN = 0xD102) to use the rotation matrix format and
to preserve the fade enable setting.
Magnetometer Disable Control Bit
EKF_CNFG[1] (see Table 95) provides an on/off control bit
for the magnetometer disable function, which disables the
magnetometer influence over angle calculations in the EKF.
Gravity Removal Control Bit
EKF_CNFG[0] (see Table 95) provides an on/off control bit
for the gravity removal function, which removes the gravity
component from the accelerometer outputs. This function
applies only when using the local navigation frame mode.
Linear Acceleration/Magnetic Disturbance Detection
The ADIS16480 checks the magnitudes of the accelerometers
and magnetometers and compares their values against those of
the corresponding reference vectors. If the difference exceeds
the percentage programmed in the disturbance thresholds, the
algorithm automatically ignores the affected sensor group for
the duration of the external disturbance.
Table 96. ACC_DISTB_THR (Page 3, Base Address = 0x56)
Bits Description (Default = 0x0020)
[15:8] Not used
[7:0] Threshold, binary, scale factor = 0.39%/LSB (50%/128)
Table 97. MAG_DISTB_THR (Page 3, Base Address = 0x58)
Bits Description (Default = 0x0030)
[15:8] Not used
[7:0] Threshold, binary, scale factor = 0.39%/LSB (50%/128)
Data Sheet ADIS16480
Rev. H | Page 33 of 44
CALIBRATION
The ADIS16480 factory calibration produces correction formulas
for the gyroscopes, accelerometers, magnetometers, and
barometers, and then programs them into the flash memory.
In addition, there are a series of user configurable calibration
registers, for in-system tuning.
GYROSCOPES
The use calibration for the gyroscopes includes registers for
adjusting bias and sensitivity, as shown in Figure 23.
X-AXIS
GYRO
FACTORY
CALIBRATION
AND
FILTERING X_GYRO_OUT X_GYRO_LOW
XG_BIAS_HIGH XG_BIAS_LOW
1 + X_G Y RO_SCALE
10278-023
Figure 23. User Calibration Signal Path, Gyroscopes
Manual Bias Correction
The xG_BIAS_HIGH registers (see Table 98, Table 99, and
Table 100) and xG_BIAS_LOW registers (see Table 101,
Table 102, and Table 103) provide a bias adjustment function
for the output of each gyroscope sensor.
Table 98. XG_BIAS_HIGH (Page 2, Base Address = 0x12)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope offset correction, upper word
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 99. YG_BIAS_HIGH (Page 2, Base Address = 0x16)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 100. ZG_BIAS_HIGH (Page 2, Base Address = 0x1A)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 101. XG_BIAS_LOW (Page 2, Base Address = 0x10)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 102. YG_BIAS_LOW (Page 2, Base Address = 0x14)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 103. ZG_BIAS_LOW (Page 2, Base Address = 0x18)
Bits
Description (Default = 0x0000)
[15:0] Z-axis gyroscope offset correction, lower word
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Manual Sensitivity Correction
The x_GYRO_SCALE registers enable sensitivity adjustment
(see Tabl e 104, Table 105, and Tabl e 106).
Table 104. X_GYRO_SCALE (Page 2, Base Address = 0x04)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 105. Y_GYRO_SCALE (Page 2, Base Address = 0x06)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 106. Z_GYRO_SCALE (Page 2, Base Address = 0x08)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Linear Acceleration on Effect on Gyroscope Bias
MEMS gyroscopes typically have a bias response to linear
acceleration that is normal to their axis of rotation. The ADIS16480
offers an optional compensation function for this effect. The
factory default setting for Register 0x00C0 enables this function. To
turn it off, turn to Page 3 (DIN = 0x8003) and set CONFIG[7] = 0
(DIN = 0x8A40, DIN = 0x8B00). Note that this also keeps the
point of percussion alignment function enabled.
Table 107. CONFIG (Page 3, Base Address = 0x0A)
Bits Description (Default = 0x00C0)
[15:8] Not used
7 Linear-g compensation for gyroscopes (1 = enabled)
6 Point of percussion alignment (1 = enabled)
[5:2] Not used
1 Real-time clock, daylight savings time
(1: enabled, 0: disabled)
0 Real-time clock control
(1: relative/elapsed timer mode, 0: calendar mode)
ADIS16480 Data Sheet
Rev. H | Page 34 of 44
ACCELEROMETERS
The user calibration for the accelerometers includes registers for
adjusting bias and sensitivity, as shown in Figure 24.
X-AXIS
ACCL
FACTORY
CALIBRATION
AND
FILTERING X_ACCL_OUT X_ACCL_LOW
XA_BIAS_HIGH XA_BIAS_LOW
1 + X_ACCL _S CALE
10278-024
Figure 24. User Calibration Signal Path, Accelerometers
Manual Bias Correction
The xA_BIAS_HIGH registers (see Table 108, Table 109,
and Table 110) and xA_BIAS_LOW registers (see Table 111,
Table 112, and Table 113) provide a bias adjustment function
for the output of each accelerometer sensor. The xA_BIAS_HIGH
registers use the same format as x_ACCL_OUT registers.
The xA_BIAS_LOW registers use the same format as
x_ACCL_LOW registers.
Table 108. XA_BIAS_HIGH (Page 2, Base Address = 0x1E)
Bits Description (Default = 0x0000)
[15:0] X-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 109. YA_BIAS_HIGH (Page 2, Base Address = 0x22)
Bits Description (Default = 0x0000)
[15:0]
Y-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 110. ZA_BIAS_HIGH (Page 2, Base Address = 0x26)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 111. XA_BIAS_LOW (Page 2, Base Address = 0x1C)
Bits Description (Default = 0x0000)
[15:0] X-axis accelerometer offset correction, low word,
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Table 112. YA_BIAS_LOW (Page 2, Base Address = 0x20)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer offset correction, low word,
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Table 113. ZA_BIAS_LOW (Page 2, Base Address = 0x24)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer offset correction, low word;
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Manual Sensitivity Correction
The x_ACCL_SCALE registers enable sensitivity adjustment
(see Tabl e 114, Table 115, and Tabl e 116).
Table 114. X_ACCL_SCALE (Page 2, Base Address = 0x0A)
Bits Description (Default = 0x0000)
[15:0]
X-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.003052%
Table 115. Y_ACCL_SCALE (Page 2, Base Address = 0x0C)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.003052%
Table 116. Z_ACCL_SCALE (Page 2, Base Address = 0x0E)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.003052%
MAGNETOMETERS
The user calibration registers enable both hard iron and soft
iron correction, as shown in the following relationship:
+
×
=
+
+
+
H
H
H
M
M
M
S
SS
S
S
S
SS
S
M
M
M
Z
Y
X
Z
Y
X
ZC
YC
XC
1
1
1
33
3231
23
22
21
1312
11
The MX, MY, and MZ variables represent the magnetometer
data, prior to application of the user correction formula. The
MXC, MYC, and MZC represent the magnetometer data, after the
application of the user correction formula.
Data Sheet ADIS16480
Rev. H | Page 35 of 44
Hard Iron Correction
Table 117, Table 118, and Table 119 describe the register format
for the hard iron correction factors: HX, HY, and HZ. These
registers use a twos complement format. Table 120 provides
some numerical examples for converting the digital codes for
these registers into their decimal equivalents.
Table 117. HARD_IRON_X (Page 2, Base Address = 0x28)
Bits Description (Default = 0x0000)
[15:0] X-axis magnetometer hard iron correction factor, HX
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120)
Table 118. HARD_IRON_Y (Page 2, Base Address = 0x2A)
Bits Description (Default = 0x0000)
[15:0] Y-axis magnetometer hard iron correction factor, HY
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120)
Table 119. HARD_IRON_Z (Page 2, Base Address = 0x2C)
Bits Description (Default = 0x0000)
[15:0] Z-axis magnetometer hard iron correction factor, Hz
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120)
Table 120. HARD_IRON_x Data Format Examples
Magnetic Field Decimal Hex Binary
+3.2767 gauss +32,767 0x7FFF 0111 1111 1111 1111
+0.2 mgauss +2 0x0002 0000 0000 0000 0010
+0.1 mgauss +1 0x0001 0000 0000 0000 0001
0 gauss 0 0x0000 0000 0000 0000 0000
−0.1 mgauss −1 0xFFFF 1111 1111 1111 1111
−0.2 mgauss −2 0xFFFE 1111 1111 1111 1110
−3.2768 gauss −32,768 0x8000 1000 0000 0000 0000
Soft Iron Correction Matrix
The soft iron correction matrix contains correction factors for
both sensitivity (S11, S22, S33) and alignment (S12, S13, S21, S23, S31,
S32). The registers that represent each soft iron correction factor
are in Table 121 (S11), Table 122 (S12), Table 123 (S13), Table 124
(S21), Table 125 (S22), Table 126 (S23), Tabl e 127 (S31), Table 128
(S32), and Table 129 (S33). Table 130 offers some numerical
examples for converting between the digital codes and their
effect on the magnetometer output, in terms of percent-change.
Table 121. SOFT_IRON_S11 (Page 2, Base Address = 0x2E)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S11
Twos complement format, see Table 130 for examples
Table 122. SOFT_IRON_S12 (Page 2, Base Address = 0x30)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S12
Twos complement format, see Table 130 for examples
Table 123. SOFT_IRON_S13 (Page 2, Base Address = 0x32)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S13
Twos complement format, see Table 130 for examples
Table 124. SOFT_IRON_S21 (Page 2, Base Address = 0x34)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S21
Twos complement format, see Table 130 for examples
Table 125. SOFT_IRON_S22 (Page 2, Base Address = 0x36)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S22
Twos complement format, see Table 130 for examples
Table 126. SOFT_IRON_S23 (Page 2, Base Address = 0x38)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S23
Twos complement format, see Table 130 for examples
Table 127. SOFT_IRON_S31 (Page 2, Base Address = 0x3A)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S31
Twos complement format, see Table 130 for examples
Table 128. SOFT_IRON_S32 (Page 2, Base Address = 0x3C)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S32
Twos complement format, see Table 130 for examples
Table 129. SOFT_IRON_S33 (Page 2, Base Address = 0x3E)
Bits Description (Default = 0x0000)
[15:0] Magnetometer soft iron correction factor, S33
Twos complement format, see Table 130 for examples
Table 130. Soft Iron Correction, Numerical Examples
Delta (%) Decimal Hex Binary
+100 – 1/216 +32,767 0x7FFF 0111 1111 1111 1111
+200/215 +2 0x0002 0000 0000 0000 0010
+100/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−100/215 −1 0xFFFF 1111 1111 1111 1111
−200/215 −2 0xFFFE 1111 1111 1111 1110
−100 −32,768 0x8000 1000 0000 0000 0000
ADIS16480 Data Sheet
Rev. H | Page 36 of 44
BAROMETERS
The BR_BIAS_HIGH register (see Table 131) and
BR_BIAS_LOW register (Table 132) provide an offset
control function and use the same format as the output
registers, BAROM_OUT and BAROM_LOW.
Table 131. BR_BIAS_HIGH (Page 2, Base Address = 0x42)
Bits Description (Default = 0x0000)
[15:0] Barometric pressure bias correction factor, high word
Twos complement, ±1.3 bar measurement range,
0 bar = 0x0000, 1 LSB = 40 µbar
Table 132. BR_BIAS_LOW (Page 2, Base Address = 0x40)
Bits Description (Default = 0x0000)
[15:0]
Barometric pressure bias correction factor, low word
Twos complement, ±1.3 bar measurement range,
0 bar = 0x0000, 1 LSB = 40 µbar ÷ 216 = ~0.00061 µbar
RESTORING FACTORY CALIBRATION
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[6] = 1
(DIN = 0x8240, DIN = 0x8300) to execute the factory calibration
restore function. This function resets each user calibration register
to zero, resets all sensor data to 0, and automatically updates the
flash memory within 72 ms. See Table 147 for more information
on GLOB_CMD.
POINT OF PERCUSSION ALIGNMENT
CONFIG[6] offers a point of percussion alignment function
that maps the accelerometer sensors to the corner of the package
identified in Figure 25. To activate this feature, turn to Page 3
(DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40,
DIN = 0x8B00). See Table 107 for more information on the
CONFIG register.
PIN 1
PIN 23
POINT OF PERCUSSION
ALIGNM E NT REFERE NCE P OINT.
SEE CONFIG[6].
10278-025
Figure 25. Point of Percussion Reference Point
Data Sheet ADIS16480
Rev. H | Page 37 of 44
ALARMS
Each sensor has an independent alarm function that provides
controls for alarm magnitude, polarity, and enabling a dynamic
rate of change option. The ALM_STS register (see Table 62)
contains the alarm output flags and the FNCTIO_CTRL register
(see Tabl e 150) provides an option for configuring one of the
digital I/O lines as an alarm indicator.
STATIC ALARM USE
The static alarm setting compares each sensor output with
the trigger settings in the xx_ALM_MAGN registers (see
Table 133 through Table 142) of that sensor. The polarity controls
for each alarm are in the ALM_CNFG_x registers (see Table 143,
Table 144, Table 145) establish the relationship for the condition
that causes the corresponding alarm flag to be active. For example,
when ALM_CNFG_0[13] = 1, the alarm flag for the x-axis
accelerometer (ALM_STS[3], see Table 62) becomes active
(equal to 1) when X_ACCL_OUT is greater than
XA_ALM_MAGN.
DYNAMIC ALARM USE
The dynamic alarm setting provides the option to compare the
change in each sensor output over a period of 48.7 ms with the
xx_ALM_MAGN register of that sensor.
Table 133. XG_ALM_MAGN (Page 3, Base Address = 0x28)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 134. YG_ALM_MAGN (Page 3, Base Address = 0x2A)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 135. ZG_ALM_MAGN (Page 3, Base Address = 0x2C)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 136. XA_ALM_MAGN (Page 3, Base Address = 0x2E)
Bits Description (Default = 0x0000)
[15:0] X-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 137. YA_ALM_MAGN (Page 3, Base Address = 0x30)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 138. ZA_ALM_MAGN (Page 3, Base Address = 0x32)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 139. XM_ALM_MAGN (Page 3, Base Address = 0x34)
Bits Description (Default = 0x0000)
[15:0] X-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 140. YM_ALM_MAGN (Page 3, Base Address = 0x36)
Bits Description (Default = 0x0000)
[15:0] Y-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 141. ZM_ALM_MAGN (Page 3, Base Address = 0x38)
Bits Description (Default = 0x0000)
[15:0] Z-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 142. BR_ALM_MAGN (Page 3, Base Address = 0x3A)
Bits Description (Default = 0x0000)
[15:0] Z-axis barometer alarm threshold settings,
Twos complement, 0 bar = 0x0000, 1 LSB = 40 µbar
Table 143. ALM_CNFG_0 (Page 3, Base Address = 0x20)
Bits Description (Default = 0x0000)
15 X-axis accelerometer alarm (1 = enabled)
14 Not used
13 X-axis accelerometer alarm polarity (1 = greater than)
12 X-axis accelerometer dynamic enable (1 = enabled)
11 Z-axis gyroscope alarm (1 = enabled)
10 Not used
9 Z-axis gyroscope alarm polarity (1 = greater than)
8 Z-axis gyroscope dynamic enable (1 = enabled)
7 Y-axis gyroscope alarm (1 = enabled)
6 Not used
5 Y-axis gyroscope alarm polarity (1 = greater than)
4 Y-axis gyroscope dynamic enable (1 = enabled)
3 X-axis gyroscope alarm (1 = enabled)
2 Not used
1 X-axis gyroscope alarm polarity (1 = greater than)
0 X-axis gyroscope dynamic enable (1 = enabled)
ADIS16480 Data Sheet
Rev. H | Page 38 of 44
Table 144. ALM_CNFG_1 (Page 3, Base Address = 0x22)
Bits Description (Default = 0x0000)
15 Y-axis magnetometer alarm (1 = enabled)
14 Not used
13 Y-axis magnetometer alarm polarity (1 = greater than)
12 Y-axis magnetometer dynamic enable (1 = enabled)
11 X-axis magnetometer (1 = enabled)
10 Not used
9 X-axis magnetometer alarm polarity (1 = greater than)
8 X-axis magnetometer dynamic enable (1 = enabled)
7 Z-axis accelerometer alarm (1 = enabled)
6 Not used
5 Z-axis accelerometer alarm polarity (1 = greater than)
4 Z-axis accelerometer dynamic enable (1 = enabled)
3 Y-axis accelerometer alarm (1 = enabled)
2 Not used
1 Y-axis accelerometer alarm polarity (1 = greater than)
0 Y-axis accelerometer dynamic enable (1 = enabled)
Table 145. ALM_CNFG_2 (Page 3, Base Address = 0x24)
Bits Description (Default = 0x0000)
[15:8] Not used
7 Barometer alarm (1 = enabled)
6 Not used
5 Barometer alarm polarity (1 = greater than)
4 Barometer dynamic enable (1 = enabled)
3 Z-axis magnetometer alarm (1 = enabled)
2 Not used
1 Z-axis magnetometer alarm polarity (1 = greater than)
0 Z-axis magnetometer dynamic enable (1 = enabled)
Alarm Example
Table 146 offers an alarm configuration example, which sets the
z-axis gyroscope alarm to trip when Z_GYRO_OUT > 131.1°/sec
(0x199B).
Table 146. Alarm Configuration Example
DIN Description
0xAC9B Set ZG_ALM_MAGN[7:0] = 0x9B
0xAD19 Set ZG_ALM_MAGN[15:8] = 0x19
0xA000 Set ALM_CNFG_0[7:0] = 0x00
0xA10A Set ALM_CNFG_0[15:8] = 0x0A
Data Sheet ADIS16480
Rev. H | Page 39 of 44
SYSTEM CONTROLS
The ADIS16480 provides a number of system level controls
for managing its operation, which include reset, self-test,
calibration, memory management, and I/O configuration.
GLOBAL COMMANDS
The GLOB_CMD register (see Table 147) provides trigger bits for
several operations. Write 1 to the appropriate bit in GLOB_CMD
to start a function. After the function completes, the bit
restores to 0.
Table 147. GLOB_CMD (Page 3, Base Address = 0x02)
Bits Description Execution Time
15 EKF reset 416 ms
[14:10] Not used Not applicable
9 Reset the reference rotation matrix 1 sample period
8 Tare command 1 sample period
7 Software reset 1.8 seconds
6 Factory calibration restore 1 sample period
[5:4] Not used Not applicable
3 Flash memory update 1100 ms
2 Flash memory test 53 ms
1 Self-test 12 ms
0 Not used Not applicable
Software Reset
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1
(DIN = 0x8280, DIN = 0x8300) to reset the operation, which
removes all data, initializes all registers from their flash settings,
and starts data collection. This function provides a firmware
alternative to the RST pin (see Table 6, Pin 8).
Automatic Self-Test
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1
(DIN = 0x8202, then DIN = 0x8300) to run an automatic self-
test routine, which executes the following steps:
1. Measure output on each sensor.
2. Activate self-test on each sensor.
3. Measure output on each sensor.
4. Deactivate the self-test on each sensor.
5. Calculate the difference with self-test on and off.
6. Compare the difference with internal pass/fail criteria.
7. Report the pass/fail results for each sensor in DIAG_STS.
After waiting 12 ms for this test to complete, turn to Page 0
(DIN = 0x8000) and read DIAG_STS using DIN = 0x0A00.
Note that using an external clock can extend this time. When
using an external clock of 100 Hz, this time extends to 35 ms.
Note that 100 Hz is too slow for optimal sensor performance.
MEMORY MANAGEMENT
The data retention of the flash memory depends on the tempera-
ture and the number of write cycles. Figure 26 characterizes the
dependence on temperature, and the FLSHCNT_LOW and
FLSHCNT_HIGH registers (see Table 148 and Table 149)
provide a running count of flash write cycles. The flash updates
every time GLOB_CMD[6] or GLOB_CMD[3] is set to 1.
Table 148. FLSHCNT_LOW (Page 2, Base Address = 0x7C)
Bits Description
[15:0] Binary counter; number of flash updates, lower word
Table 149. FLSHCNT_HIGH (Page 2, Base Address = 0x7E)
Bits Description
[15:0] Binary counter; number of flash updates, upper word
600
450
300
150
030 40
RETE NTI ON (Y ears)
JUNCTION TEM P E RATURE ( °C)
55 70 85 100 125 135 150
10278-026
Figure 26. Flash Memory Retention
Flash Memory Test
Turn to Page 3 (DIN = 0x8003), and then set GLOB_CMD[2] = 1
(DIN = 0x8204, DIN = 0x8300) to run a checksum test of the
internal flash memory, which compares a factory programmed
value with the current sum of the same memory locations. The
result of this test loads into SYS_E_FLAG[6]. Turn to Page 0
(DIN = 0x8000) and use DIN = 0x0800 to read SYS_E_FLAG.
ADIS16480 Data Sheet
Rev. H | Page 40 of 44
GENERAL-PURPOSE I/O
There are four general-purpose I/O pins: DIO1, DIO2, DIO3, and
DIO4. The FNCTIO_CTRL register controls the basic function
of each I/O pin. Each I/O pin only supports one function at a
time. In cases where a single pin has two different assignments,
the enable bit for the lower priority function automatically
resets to zero and is disabled. The priority is (1) data-ready, (2)
sync clock input, (3) alarm indicator, and (4) general-purpose,
where 1 identifies the highest priority and 4 indicates the lowest
priority.
Table 150. FNCTIO_CTRL (Page 3, Base Address = 0x06)
Bits Description (Default = 0x000D)
[15:12] Not used
11 Alarm indicator: 1 = enabled, 0 = disabled
10 Alarm indicator polarity: 1 = positive, 0 = negative
[9:8] Alarm indicator line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
7 Sync clock input enable: 1 = enabled, 0 = disabled
6 Sync clock input polarity:
1 = rising edge, 0 = falling edge
[5:4] Sync clock input line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
3 Data-ready enable: 1 = enabled, 0 = disabled
2 Data-ready polarity: 1 = positive, 0 = negative
[1:0] Data-ready line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
Data-Ready Indicator
FNCTIO_CTRL[3:0] provide some configuration options for
using one of the DIOx pins as a data-ready indicator signal,
which can drive a processor interrupt control line. The factory
default assigns DIO2 as a positive polarity, data-ready signal.
Use the following sequence to change this assignment to DIO1
with a negative polarity: turn to Page 3 (DIN = 0x8003) and set
FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN = 0x8700).
The timing jitter on the data-ready signal is ±1.4 µs.
Input Sync/Clock Control
FNCTIO_CTRL[7:4] provide some configuration options for
using one of the DIOx pins as an input synchronization signal
for sampling inertial sensor data. For example, use the following
sequence to establish DIO4 as a positive polarity, input clock pin
and keep the factory default setting for the data-ready function:
turn to Page 3 (DIN = 0x8003) and set FNCTIO_CTRL[7:0]
= 0xFD (DIN = 0x86FD, then DIN = 0x8700). Note that this
command also disables the internal sampling clock, and no
data sampling takes place without the input clock signal.
When selecting a clock input frequency, consider the 330 Hz
sensor bandwidth, because under sampling the sensors can
degrade noise and stability performance.
General-Purpose I/O Control
When FNCTIO_CTRL does not configure a DIOx pin,
GPIO_CTRL provides register controls for general-purpose use
of the pin. GPIO_CTRL[3:0] provides input/output assignment
controls for each pin. When the DIOx pins are inputs, monitor
their levels by reading GPIO_CTRL[7:4]. When the DIOx pins
are used as outputs, set their levels by writing to GPIO_CTRL[7:4].
For example, use the following sequence to set DIO1 and
DIO3 as high and low output pins, respectively, and set DIO2
and DIO4 as input pins. Turn to Page 3 (DIN = 0x8003) and set
GPIO_CTRL[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900).
Table 151. GPIO_CTRL (Page 3, Base Address = 0x08)
Bits Description (Default = 0x00X0)1
[15:8] Don’t care
7 General-Purpose I/O Pin 4 (DIO4) data level
6 General-Purpose I/O Pin 3 (DIO3) data level
5 General-Purpose I/O Pin 2 (DIO2) data level
4 General-Purpose I/O Pin 1 (DIO1) data level
3
General-Purpose I/O Pin 4 (DIO4) direction control
(1 = output, 0 = input)
2 General-Purpose I/O Pin 3 (DIO3) direction control
(1 = output, 0 = input)
1 General-Purpose I/O Pin 2 (DIO2) direction control
(1 = output, 0 = input)
0 General-Purpose I/O Pin 1 (DIO1) direction control
(1 = output, 0 = input)
1 GPIO_CTRL[7:4] reflects levels on the DIOx pins and does not have a default
setting
POWER MANAGEMENT
The SLP_CNT register (see Tabl e 152) provides controls for
both power-down mode and sleep mode. The trade-off between
power-down mode and sleep mode is between idle power and
recovery time. Power-down mode offers the best idle power
consumption but requires the most time to recover. Also, all
volatile settings are lost during power-down but are preserved
during sleep mode.
For timed sleep mode, turn to Page 3 (DIN = 0x8003), write the
amount of sleep time to SLP_CNT[7:0] and then, set SLP_CNT[8]
= 1 (DIN = 0x9101) to start the sleep period. For a timed power-
down period, change the last command to set SLP_CNT[9] = 1
(DIN = 0x9102). To power down or sleep for an indefinite period,
set SLP_CNT[7:0] = 0x00 first, then set either SLP_CNT[8] or
SLP_CNT[9] to 1. Note that the command takes effect when the
CS pin goes high. To awaken the device from sleep or power-down
mode, use one of the following options to restore normal operation:
Assert CS from high to low.
Pulse RST low, then high again.
Cycle the power.
Data Sheet ADIS16480
Rev. H | Page 41 of 44
For example, set SLP_CNT[7:0] = 0x64 (DIN = 0x9064), then
set SLP_CNT[8] = 1 (DIN = 0x9101) to start a sleep period of
100 seconds.
Table 152. SLP_CNT (Page 3, Base Address = 0x10)
Bits Description
[15:10] Not used
9 Power-down mode
8 Normal sleep mode
[7:0] Programmable time bits; 1 sec/LSB;
0x00 = indefinite
If the sleep mode and power-down mode bits are both set high,
the normal sleep mode (SLP_CNT[8]) bit takes precedence.
General-Purpose Registers
The USER_SCR_x registers (see Table 153, Table 154, Table 155,
and Table 156) provide four 16-bit registers for storing data.
Table 153. USER_SCR_1 (Page 2, Base Address = 0x74)
Bits Description
[15:0] User-defined
Table 154. USER_SCR_2 (Page 2, Base Address = 0x76)
Bits Description
[15:0] User-defined
Table 155. USER_SCR_3 (Page 2, Base Address = 0x78)
Bits Description
[15:0] User-defined
Table 156. USER_SCR_4 (Page 2, Base Address = 0x7A)
Bits Description
[15:0] User-defined
Real-Time Clock Configuration/Data
The VDDRTC power supply pin (see Table 6, Pin 23) provides
a separate supply for the real-time clock (RTC) function. This
enables the RTC to keep track of time, even when the main supply
(VDD) is off. Configure the RTC function by selecting one of
two modes in CONFIG[0] (see Tabl e 107). The real-time clock
data is available in the TIME_MS_OUT register (see Table 157),
TIME_DH_OUT register (see Table 158), and TIME_YM_OUT
register (see Table 159). When using the elapsed timer mode,
the time data registers start at 0x0000 when the device starts up
(or resets) and begin keeping time in a manner that is similar to
a stopwatch.
When using the clock/calendar mode, write the current time to
the real-time registers in the following sequence: seconds
(TIME_MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]),
hours (TIME_DH_OUT[5:0]), day (TIME_ DH_OUT[12:8]),
month (TIME_YM_OUT[3:0]), and year (TIME_YM_
OUT[14:8]). The updates to the timer do not become active
until there is a successful write to the TIME_ YM_OUT[14:8]
byte. The real-time clock registers reflect the newly updated
values only after the next seconds tick of the clock that follows
the write to TIME_YM_OUT[14:8] (year). Writing to TIME_
YM_OUT[14:8] activates all timing values; therefore, always
write to this location last when updating the timer, even if the
year information does not require updating.
Write the current time to each time data register after setting
CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8A01). Note that
CONFIG[1] provides a bit for managing daylight savings time.
After the CONFIG and TIME_xx_OUT registers are configured,
set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8208, DIN =
0x8300) to back up these settings in flash, and use a separate
3.3 V source to supply power to the VDDRTC function. Note
that access to time data in the TIME_xx_OUT registers requires
normal operation (VDD = 3.3 V and full startup), but the timer
function only requires that VDDRTC = 3.3 V when the rest of
the ADIS16480 is turned off.
Table 157. TIME_MS_OUT (Page 0, Base Address = 0x78)
Bits Description
[15:14] Not used
[13:8] Minutes, binary data, range = 0 to 59
[7:6] Not used
[5:0] Seconds, binary data, range = 0 to 59
Table 158. TIME_DH_OUT (Page 0, Base Address = 0x7A)
Bits Description
[15:13] Not used
[12:8] Day, binary data, range = 1 to 31
[7:6] Not used
[5:0] Hours, binary data, range = 0 to 23
Table 159. TIME_YM_OUT (Page 0, Base Address = 0x7C)
Bits Description
[15] Not used
[14:8] Year, binary data, range = 0 to 99, relative to 2000 A.D.
[7:4] Not used
[3:0] Month, binary data, range = 1 to 12
ADIS16480 Data Sheet
Rev. H | Page 42 of 44
APPLICATIONS INFORMATION
MOUNTING TIPS
For best performance, follow these simple rules when installing
the ADIS16480 into a system:
1. Eliminate opportunity for translational force (x-axis and
y-axis direction, see Figure 6) application on the electrical
connector.
2. Isolate mounting force to the four corners, on the part of
the package surface that surrounds the mounting holes.
3. Use uniform mounting forces on all four corners. The
suggested torque setting is 40 inch-ounces (0.285 N-m).
These three rules help prevent nonuniform force profiles, which
can warp the package and introduce bias errors in the sensors.
Figure 27 provides an example that leverages washers to set the
package off the mounting surface and uses 2.85 mm pass-through
holes and backside washers/nuts for attachment. Figure 28 and
Figure 29 provide some details for mounting hole and connector
alignment pin drill locations. For more information on mounting
the ADIS16480, see the AN-1295 Application Note.
MOUNTING SCREWS
M2 × 0. 4mm,
WASHE RS ( OPT IONAL)
M2, 4×
ADIS16480
WASHE RS ( OPT IONAL)
M2, 4×
NUTS
M2 × 0. 4mm,
MATING CONNECT OR
CLM-112-02
PCB
PASS- THROUGH HOLES
DIAMETER 2.85mm
SPACERS/WASHERS
SUGGESTED, 4×
10278-227
Figure 27. Mounting Example
0.560 BSC
ALIGNMENT HOLES
FOR MATING SOCKET
PASS- THRO UGH HOLE
FO R M OUNT ING S CRE WS
DIAMETER OF THE HOLE
MUST ACCOMM ODATE
DIME NS IO NAL TOLE RANCE
BETWEE N THE CO NNE CTOR
AND HOL E S .
19.800 BSC
39.600 BSC
42.600
21.300 BSC
5 BSC5 BSC
1.642 BSC
NOTES
1. ALL DIMENSIONS I Nmm UNITS.
2. T HE CONNECTOR FACES DOW N AND ARE NOT V ISIBLE FROM THI S V IEW .
10278-129
ADIS16480 OUT LINE
Figure 28. Suggested PCB Layout Pattern, Connector Down
0.4334 [11.0]
0.0240 [0.610]
0.019685
[0.5000]
(TYP)
0.054 [1.37]
0.0394 [1.00]
0.0394 [1.00]0.1800
[4.57]
NONPLATED
THROUGH HOLE
0.022± DIA (TYP) 0.022 DIA THROUGH HOLE (TYP)
NONPLATED THROUGH HOLE
10278-130
Figure 29. Suggested Layout and Mechanical Design When Using Samtec
P/N CLM-112-02-G-D-A for the Mating Connector
Data Sheet ADIS16480
Rev. H | Page 43 of 44
EVALUATION TOOLS
Breakout Board, ADIS16IMU1/PCB
The ADIS16IMU1/PCBZ (sold separately) provides a breakout
board function for the ADIS16480, which means that it provides
access to the ADIS16480 through larger connectors that support
standard 1 mm ribbon cabling. It also provides four mounting
holes for attachment of the ADIS16480 to the breakout board.
For more information on the ADIS16IMU1/PCBZ, see
www.analog.com/ADIS16IMU1/PCBZ.
PC-Based Evaluation, EVAL-ADIS2
Use the EVA L-ADIS2 and ADIS16IMU1/PCBZ to evaluate the
ADIS16480 on a PC-based platform.
POWER SUPPLY CONSIDERATIONS
The ADIS16480 has approximately ~24 μF of capacitance across
the VDD and GND pins. While this capacitor bank provides a
large amount of localized filtering, it also presents an opportunity
for excessive charging current when the VDD voltage ramps too
quickly. Use the following relationship to help determine the
appropriate VDD voltage profile, with respect to any current limit
functions that can cause the power supply to lose regulation and
potentially introduce unsafe conditions for the ADIS16480.
( )
dt
dV
Cti =
In addition to managing the initial voltage ramp, take note of the
transient current demand that the ADIS16480 requires during its
start-up/self-initialization process. Once VDD reaches 2.85 V, t h e
ADIS16480 begins its start-up process. Figure 30 offers a broad
perspective that communicates when to expect the spikes in
current, while Figure 31 provides more detail on the current/time
behavior during the peak transient condition, which typically
occurs approximately 350 ms after VDD reaches 2.85 V. In
Figure 31, notice that the peak current approaches 600 mA and
the transient condition lasts for approximately 1.75 ms.
10278-230
CH1 2.00V
CH4 100mA Ω
100ms/DIV
1
4
TVDD
CURRENT
Figure 30. Transient Current Demand, Start-up
10278-231
CH4 100mA Ω 1M POINTS
1.00ms 1.00MS/s CH1 2.72V
T 9.800%
4
T
CURRENT
Figure 31. Transient Current Demand, Peak Demand
X-RAY SENSITIVITY
Exposure to high dose rate X-rays, such as those in production
systems that inspect solder joints in electronic assemblies, may
affect accelerometer bias errors. For optimal performance, avoid
exposing the ADIS16480 to this type of inspection.
ADIS16480 Data Sheet
Rev. H | Page 44 of 44
OUTLINE DIMENSIONS
12-07-2012-E
BOTTOM VIEW
FRONT VIEW
44.254
44.000
43.746
42.854
42.600
42.346
1.942
1.642
1.342
47.254
47.000
46.746
14.254
14.000
13.746
39.854
39.600
39.346 20.10
19.80
19.50
Ø 2. 40 BS C
(4 PLACES)
15.00
BSC
8.25
BSC
2.20 BSC
(8 PL ACES)
DETAIL A
PIN 1
DETAIL B
5.50
BSC
5.50
BSC
1.00 BSC
2.84 BSC
6.50 BSC
DETAIL A
DETAIL B
1.00 BSC
PITCH 0.30 SQ BSC
3.454
3.200
2.946
Figure 32. 24-Lead Module with Connector Interface [MODULE]
(ML-24-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADIS16480BMLZ 40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-6
1 Z = RoHS Compliant Part.
©20122019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10278-0-1/19(H)