36-75 Vdc DC/DC converter
Output up to 30 A/90 W
PKB 4000 Series
E
Contents
Product Program ......................2
Mechanical Information . . . . . . . . . . . . . . . . . 3
Absolute Maximum Ratings . . . . . . . . . . . . . 4
Input ...............................4
Product Qualification Specification . . . . . . . . 5
Safety Specification . . . . . . . . . . . . . . . . . . . 6
PKB 4318 PIOBNB 1.2 V Data . . . . . . . . . 7
PKB 4418 PIOANB 1.5 V Data . . . . . . . . 10
PKB 4418 PINB - 1.8 V Data . . . . . . . . . . . 13
PKB 4619 PINB 2.5 V Data . . . . . . . . . . . 16
PKB 4610 PINB 3.3 V Data . . . . . . . . . . . 19
PKB 4810 PINB 3.3 V Data . . . . . . . . . . . 22
PKB 4711 PINB 5 V Data . . . . . . . . . . . . 25
PKB 4713 PINB 12 V Data . . . . . . . . . . . 28
PKB 4913 PINB 12 V Data . . . . . . . . . . . 31
PKB 4715 PINB - 15 V Data . . . . . . . . . . . . 34
EMC Specification . . . . . . . . . . . . . . . . . . . . 37
Operating Information . . . . . . . . . . . . . . . . . 38
Thermal Consideration . . . . . . . . . . . . . . . . 40
Soldering Information . . . . . . . . . . . . . . . . . 41
Delivery Package Information . . . . . . . . . . . 41
Compatibility with RoHS requirements . . . . 41
Reliability ...........................41
Quality Statement . . . . . . . . . . . . . . . . . . . . 41
Limitation of Liability . . . . . . . . . . . . . . . . . . 41
Sales Offices and Contact Information . . . . 42
Safety Approvals
Datasheet
Key Features
Industry standard Eighth-brick
58.40 x 22.70 x 8.10 mm (2.300 x 0.896 x 0.319 in.)
RoHS compliant
High efficiency, typ. 91.5 % at 3.3 Vout half load
2250 Vdc input to output isolation.
Meets isolation requirements equivalent to basic
insulation according
to IEC/EN/UL 60950
More than 3.5 million hours predicted MTBF at +40 ºC
ambient temperature
The PKB series of high efficiency DC/DC converters are
designed to provide high quality on-board power solu-
tions in distributed power architectures used in Internet-
working equipment in wireless and wired communications
applications. The PKB 4000 series has industry standard
footprint and pin-out and is max 8.10 mm (0.319 in) high.
This makes it extremely well suited for narrow board pitch
applications with board spacing down to 15 mm (0.6 in).
Included as standard features are output over-voltage
protection, input under-voltage protection, over tempera-
ture protection, soft-start, output short circuit protection,
remote sense, remote control and output voltage adjust
function.
These converters are designed to meet high reliability
requirements and are manufactured in highly automated
manufacturing lines and meet world-class quality levels.
Ericsson Power Modules is an ISO 9001/14001 certified
supplier.
Note: As an example a positive logic, increased stand-off, short pin product would be PKB 4610 PIPNBMLA
Product Program
VI
VO/IO max PO max Ordering No. Comment
Output 1
48/60 V
1.2 V/30 A 36 W PKB 4318 PIOBNB
1.5 V/30 A 45 W PKB 4418 PIOANB
1.8 V/25 A 45 W PKB 4418 PINB
2.5 V/25 A 62.5 W PKB 4619 PINB
3.3 V/20 A 66 W PKB 4610 PINB
3.3 V/25 A 82.5 W PKB 4810 PINB
5.0 V/15 A 75 W PKB 4711 PINB
12 V/6 A 72 W PKB 4713 PINB
12 V/7.5 A 90 W PKB 4913 PINB
15 V/5 A 75 W PKB 4715 PINB
Option Suffix Example
Positive Remote Control logic P PKB 4610 PIPNB
Increased stand-off and height M PKB 4610 PINBM
Lead length 3.69 mm (0.145 in) LA PKB 4610 PINBLA
Lead length 4.57 mm (0.180 in) LB PKB 4610 PINBLB
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
2
Mechanical Information
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
3
Fundamental Circuit Diagram
1
2
3
1SJNBSZ 4FDPOEBSZ
Control
Isolated
Feedback
8
4
7
6
5
Choke
Resistor
Capacitor
Control
Absolute Maximum Ratings
Characteristics Conditions min typ max Unit
VIInput voltage range 36 75 Vdc
VIoff Turn-off input voltage Ramping from higher voltage 30 33.5 35 Vdc
VIon Turn-on input voltage Ramping from lower voltage 32 34.5 36 Vdc
CIInput capacitance 2.18 µF
PIi Input idling power Io= 0, VI = 53 V 3 W
PRC Input standby power (turned off with RC) VI = 53 V, RC activated 0.15 W
Input TPcb <TPcb max unless otherwise specified
Characteristics min typ max Unit
Tpcb Maximum Operating Pcb Temperature (see Thermal Consideration section) -40 +110 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.5 +80 Vdc
VISO Isolation voltage (input to output test voltage) 2250 Vdc
Vtr Input voltage transient (Tp 100 ms) 100 Vdc
VRC
Negative logic (referenced to -In) 40 Vdc
Positive logic (referenced to -In) -0.5 6 Vdc
Vadj Maximum input -0.5 2xVoi Vdc
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute
Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with
one parameter at a time exceeding the limits of Output data or Electrical Characteristics.
If exposed to stress above these limits, function and performance may degrade in an
unspecified manner.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
4
Characteristics
Random Vibration IEC 68-2-64 Fn
Frequency
Spectral density
Duration
5 ... 500 Hz
0.1 g2/Hz
10 min each of 3 directions
Mechanical shock
(half sinus) IEC 68-2-27 Ea
Peak acceleration
Duration
Pulse shape
100 g
6 ms
half sine
Temperature cycling IEC 68-2-14 NaTemperature
Number of cycles
-40 ... +125 ˚C
300
Heat/Humidity IEC 68-2-67 Cy Temperature
Humidity
Duration
+85 ˚C
85 % RH
1000 hours
Solder heat stability IEC 68-2-20 Tb 1A Temperature, solder
Duration
260 ˚C
10 ...13 s
Resistance to cleaning agents IEC 68-2-45 XA
Method 2
Water
Isopropyl alcohol
Glycol ether
Method
+55 ±5 ˚C
+35 ±5 ˚C
+35 ±5 ˚C
with rubbing
Storage test IEC 68-2-2 BaTemperature
Duration
125 ˚C
1000 h
Cold (in operation) IEC 68-2-1 AdTemperature, TA
Duration
-40 ˚C
2 h
Operational life test Duration 1000 h
Product Qualification Specification
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
5
Ericsson Power Modules DC/DC converters and DC/DC regulators
are designed in accordance with safety standards
IEC/EN/UL 60 950, Safety of Information Technology Equipment.
IEC/EN/UL60950 contains requirements to prevent injury or
damage due to the following hazards:
Electrical shock
Energy hazards
Fire
Mechanical and heat hazards
Radiation hazards
Chemical hazards
On-board DC-DC converters are defined as component power
supplies. As components they cannot fully comply with the
provisions of any Safety requirements without “Conditions of
Acceptability”. It is the responsibility of the installer to ensure that
the final product housing these components complies with the
requirements of all applicable Safety standards and Directives for
the final product.
Component power supplies for general use should comply with
the requirements in IEC60950, EN60950 and UL60950 “Safety of
information technology equipment”.
There are other more product related standards, e.g.
IEC61204-7 “Safety standard for power supplies",
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment
power”, and ETS300132-2 “Power supply interface at the input to
telecommunications equipment; part 2: DC”,
but all of these standards are based on IEC/EN/UL60950 with
regards to safety.
Ericsson Power Modules DC/DC converters and DC/DC regulators
are UL 60 950 recognized and certified in accordance with EN 60
950.
The flammability rating for all construction parts of the products
meets UL 94V-0.
The products should be installed in the end-use equipment, in
accordance with the requirements of the ultimate application.
Normally the output of the DC/DC converter is considered as SELV
(Safety Extra Low Voltage) and the input source must be isolated by
minimum Double or Reinforced Insulation from the primary circuit
(AC mains) in accordance with IEC/EN/UL 60 950.
Safety Specification
Isolated DC/DC converters.
The input voltage to the DC/DC regulator is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
It is recommended that a slow blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC regulator.
Non-isolated DC/DC regulators.
24 V dc systems.
The input voltage to the DC/DC converter is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
48 and 60 V dc systems.
If the input voltage to Ericsson Power Modules DC/DC converter
is 75 V dc or less, then the output remains SELV (Safety Extra Low
Voltage) under normal and abnormal operating conditions.
Single fault testing in the input power supply circuit should be
performed with the DC/DC converter connected to demonstrate
that the input voltage does not exceed 75 V dc.
If the input power source circuit is a DC power system, the source
may be treated as a TNV2 circuit and testing has demonstrated
compliance with SELV limits and isolation requirements equivalent
to Basic Insulation in accordance with IEC/EN/UL 60 950.
It is recommended that a fast blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC converter. If an input filter is
used in the circuit the fuse should be placed in front of the input
filter.
In the rare event of a component problem in the input filter or in the
DC/DC converter that imposes a short circuit on the input source,
this fuse will provide the following functions:
• Isolate the faulty DC/DC converter from the input power source
so as not to affect the operation of other parts of the system.
• Protect the distribution wiring from excessive current and power
loss thus preventing hazardous overheating.
The galvanic isolation is verified in an electric strength test. The test
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for
60 seconds (refer to product specification). Leakage current is less
than 1µA at nominal input voltage.
General information.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
6
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 1.18 1.2 1.22 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 1.08 1.32 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 1.16 1.23 V
Idling voltage IO = 0 1.16 1.23 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±350 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax, VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi, VI = 53 V
IO = (0.1...1.0) x IOmax. 15 35 ms
IOOutput current 0 30 A
POmax Max output power At VO = VOnom 36 W
Ilim Current limit threshold TPcb < TPcbmax 36 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 42 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 50 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 66 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 1.4 1.7 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 87 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 84 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 87 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 83 84 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 6.4 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 160 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4318 PIOBNB − 1.2 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
7
Efficiency
Output Characteristic
Output Current Derating
Power Dissipation
PKB 4318 PIOBNB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Available load current vs. ambient air temperature and air-
flow at VI = 53 V. DC/DC converter mounted vertically with
airflow blowing from output pins toward input pins.
Efficiency vs. load current and input voltage at TPcb = +25 °C
   






<">
<>
7
7
7
7
    




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
   





<">
<7>
   

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
8
Output Ripple Transient
PKB 4318 PIOBNB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 30 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(7.5-22.5-7.5 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load step (10 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((1.2(100+Δ%))/ 0.6Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 1.248 Vdc
5.11(1.2(100+4)/0.6x4-(100+2x4)/4) = 128 kOhm
Eg Decrease 2% =>Vout = 1.176 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 30 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 50 ms/div.
Turn-off at IO = 30 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (50 V/div).
Time scale: 0.2 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
9
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 1.48 1.5 1.53 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 1.20 1.65 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 1.47 1.54 V
Idling voltage IO = 0 1.47 1.54 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±350 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax. VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi, VI = 53 V
IO = (0.1...1.0) x IOmax. 15 35 ms
IOOutput current 0 30 A
POmax Max output power At VO = VOnom 45 W
Ilim Current limit threshold TPcb < TPcbmax 36 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 42 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 50 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 65 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 1.8 2.1 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 89 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 86 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 89 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 85 86 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 7.3 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 160 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4418 PIOANB − 1.5 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
10
Efficiency
Output Characteristic
Output Current Derating
Power Dissipation
PKB 4418 PIOANB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Available load current vs. ambient air temperature and air-
flow at VI = 53 V. DC/DC converter mounted vertically with
airflow blowing from output pins toward input pins.
Efficiency vs. load current and input voltage at TPcb = +25 °C
   






<">
<>
7
7
7
7
    




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
   





<">
<7>
   


<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
11
Output Ripple Transient
PKB 4418 PIOANB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 30 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(7.5-22.5-7.5 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200 mV/div.).
Bottom trace: load step (15 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((1.5(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 1.56 Vdc
5.11(1.5(100+4)/1.225x4-(100+2x4)/4) = 25 kOhm
Eg Decrease 2% =>Vout = 1.47 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 30 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 20 ms/div.
Turn-off at IO = 30 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (50 V/div).
Time scale: 0.2 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
12
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 1.76 1.8 1.83 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 1.44 1.98 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 1.77 1.84 V
Idling voltage IO = 0 1.77 1.84 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±250 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax, VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax, VI = 53 V 15 35 ms
IOOutput current 0 25 A
POmax Max output power At VO = VOnom 45 W
Ilim Current limit threshold TPcb < TPcbmax 30 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 35 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 30 50 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 68 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 2.1 2.5 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 90 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 88.5 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 90 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 87 88.5 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 6.4 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 195 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4418 PINB - 1.8 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
13
Efficiency
Output Characteristic
Power Dissipation
Output Current Derating
PKB 4418 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
   






<">
<>
7
7
7
7
   





<">
<7>
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
   

<">
<8>
7
7
7
7
    




<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
Available load current vs. ambient air temperature and
airflow at VI = 53 V. DC/DC converter mounted vertically
with airflow blowing from output pins toward input pins.
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
14
Output Ripple Transient
PKB 4418 PINB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 25 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(6.25-18.75-6.25 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200 mV/div.).
Bottom trace: load current (10 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated
by using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((1.8(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 1.87 Vdc
5.11(1.8(100+4)/1.225x4-(100+2x4)/4) = 57.3 kOhm
Eg Decrease 2% =>Vout = 1.76 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 25 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 10 ms/div.
Turn-off at IO = 25 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (1.0 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 0.1 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
15
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 2.45 2.50 2.55 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 2.00 2.75 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 2.4 2.6 V
Idling voltage IO = 0 2.45 2.55 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±250 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 30 µs
trRamp-up time IO = (0.1...1.0) x IOmax. 18 30 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax. 35 60 ms
IOOutput current 0 25 A
POmax Max output power At VO = VOnom 62.5 W
Ilim Current limit threshold TPcb < TPcbmax 30 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 36 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 40 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 59 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 2.9 4.0 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 90 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 90 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 90 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 87 90 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 6.9 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 195 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4619 PINB − 2.5 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
16
Available load current vs. ambient air temperature and airflow
at VI = 53 V. DC/DC converter mounted vertically with airflow
and test conditions as per the Thermal consideration section.
    




<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BUDPOW
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Efficiency
Output Characteristic
Power Dissipation
Output Current Derating
PKB 4619 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
   






<">
<>
7
7
7
7
0 5 10 15 20 25 30 35
2.00
2.25
2.50
2.75
3.00
[A]
[V]
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
17
Output Ripple Transient
PKB 4619 PINB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 25 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(6-18-6 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (6 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated
by using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((2.5(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 2.600 Vdc
5.11(2.5(100+4)/1.225x4-(100+2x4)/4) = 133.17 kOhm
Eg Decrease 2% =>Vout = 2.450 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 25 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 5 ms/div.
Turn-off at IO = 25 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 0.2 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
18
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 3.23 3.30 3.37 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 2.64 3.63 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 3.20 3.40 V
Idling voltage IO = 0 3.20 3.40 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±350 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax. 18 30 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax. 35 60 ms
IOOutput current 0 20 A
POmax Max output power At VO = VOnom 66 W
Ilim Current limit threshold TPcb < TPcbmax 24 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 28 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 40 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 68 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 4.0 4.7 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 89.5 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 88 89.5 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 7.7 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 160 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4610 PINB − 3.3 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
19
Efficiency
Output Characteristic
Power Dissipation
Output Current Derating
PKB 4610 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
  






<">
<>
7
7
7
7
  







<">
<7>
  

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Available load current vs. ambient air temperature and airflow at
VI = 53 V. DC/DC converter mounted vertically with airflow and
test conditions as per the Thermal Consideration section.
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<«$8>
    



<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BUDPOW
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
20
Output Ripple Transient
PKB 4610 PINB - Typical Characteristics
Output voltage response to load current step-change
(5-15-5 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (10 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((3.3(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 3.43 Vdc
5.11(3.3(100+4)/1.225x4-(100+2x4)/4) = 220 kOhm
Eg Decrease 2% =>Vout = 3.23 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up enabled by connecting VI.
IO = 20 A resistive load, TPcb = +25 °C, VI = 53 V.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 5 ms/div.
Turn-off enabled by disconnecting VI.
IO = 20 A resistive load, TPcb = +25 °C, VI = 53 V.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 1 ms/div.
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 20 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
21
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 3.23 3.30 3.37 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 2.64 3.63 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 3.20 3.40 V
Idling voltage IO = 0 3.20 3.40 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±375 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax. 18 30 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax. 35 60 ms
IOOutput current 0 25 A
POmax Max output power At VO = VOnom 82.5 W
Ilim Current limit threshold TPcb < TPcbmax 29 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 35 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 40 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 68 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 4.0 4.7 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 89 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 88 89 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 10 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 160 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4810 PINB − 3.3 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
22
Efficiency
Output Characteristic
Power Dissipation
Output Current Derating
PKB 4810 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
   






<">
<>
7
7
7
7
   







<">
<7>
   


<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Available load current vs. ambient air temperature and airflow at
VI = 53 V. DC/DC converter mounted vertically with airflow and
test conditions as per the Thermal Consideration section.
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<«$8>
    




<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BUDPOW
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
23
Output Ripple Transient
PKB 4810 PINB - Typical Characteristics
Output voltage response to load current step-change
(6.25-18.75-6.25 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (10 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated
by using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((3.3(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 3.43 Vdc
5.11(3.3(100+4)/1.225x4-(100+2x4)/4) = 220 kOhm
Eg Decrease 2% =>Vout = 3.23 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up enabled by connecting VI.
IO = 25 A resistive load, TPcb = +25 °C, VI = 53 V.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 5 ms/div.
Turn-off enabled by disconnecting VI.
IO = 25 A resistive load, TPcb = +25 °C, VI = 53 V.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 0.2 ms/div.
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 25 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
24
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 4.90 5.0 5.10 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 4.00 5.50 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 4.85 5.15 V
Idling voltage IO = 0 4.85 5.15 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±300 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax. 18 30 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax. 40 60 ms
IOOutput current 0 15 A
POmax Max output power At VO = VOnom 75 W
Ilim Current limit threshold TPcb < TPcbmax 17.5 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 23 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 30 80 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 65 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 6.0 7.0 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 92 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 91.2 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 92 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 90 91.2 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 7.8 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 195 kHz
TPcb = –40 … +90 °C, VI = 36 ... 75 V, sense pins connected to output pins unless otherwise specified.
PKB 4711 PINB − 5 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
25
Available load current vs. ambient air temperature and airflow
at VI = 53 V. DC/DC converter mounted vertically with airflow
and test conditions as per the Thermal Consideration section.
Efficiency
Output Characteristic
Power Dissipation
Output Current Derating
PKB 4711 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
 






<">
<>
7
7
7
7
  






<">
<7>
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<«$8>
    


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BUDPOW
 

<">
<8>
7
7
7
7
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
26
Output Ripple Transient
PKB 4711 PINB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 15 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(3.75-11.25-3.75 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (3.75 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((5(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 5.2 Vdc
5.11(5(100+4)/1.225x4-(100+2x4)/4) = 404 kOhm
Eg Decrease 2% =>Vout = 4.9 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 15 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 5 ms/div.
Turn-off at IO = 15 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 0.2 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
27
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 11.80 12 12.25 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 9.6 13.2 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 11.75 12.30 V
Idling voltage IO = 0 11.75 12.30 V
Line regulation IO = IOmax 3 20 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±250 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 100 µs
trRamp-up time IO = (0.1...1.0) x IOmax, VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax, VI = 53 V 15 20 ms
IOOutput current 0 6 A
POmax Max output power At VO = VOnom 72 W
Ilim Current limit threshold TPcb < TPcbmax 7.2 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 9 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 50 100 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 36 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 15 17 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 92 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 92 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 92 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 90 92 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 6.3 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 195 kHz
TPcb = –40…+90°C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.
PKB 4713 PINB − 12 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
28
Efficiency
Output Characteristic
PKB 4713 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C






<">
<>
7
7
7
7






<">
<7>
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
Output Current Derating
Available load current vs. ambient air temperature and air-
flow at VI = 53 V. DC/DC converter mounted vertically with
airflow blowing from output pins toward input pins.
    
<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Power Dissipation

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
29
Output Ripple Transient
PKB 4713 PINB - Typical Characteristics
Output voltage ripple (20 mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 6 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(1.5-4.5-1.5 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (5 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((12(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 12.48 Vdc
5.11(12(100+4)/1.225x4-(100+2x4)/4) = 1164 kOhm
Eg Decrease 2% =>Vout = 11.76 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 6 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 10 ms/div.
Turn-off at IO = 6 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 0.5 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
30
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 11.80 12 12.25 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 9.6 13.2 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 11.75 12.30 V
Idling voltage IO = 0 11.75 12.30 V
Line regulation IO = IOmax 3 20 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±300 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 100 µs
trRamp-up time IO = (0.1...1.0) x IOmax, VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax, VI = 53 V 15 20 ms
IOOutput current 0 7.5 A
POmax Max output power At VO = VOnom 90 W
Ilim Current limit threshold TPcb < TPcbmax 8.8 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 11 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 50 100 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 56 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 15 17 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 90.5 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 89 90.5 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 9.4 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 200 kHz
TPcb = –40…+90°C, VI = 38...75V, sense pins connected to output pins unless otherwise specified.
PKB 4913 PINB − 12 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
31
Efficiency
Output Characteristic
PKB 4913 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C
     






<">
<>
7
7
7
7
     





<">
<7>
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      
<NT>
<$8>
Output Current Derating
Available load current vs. ambient air temperature and air-
flow at VI = 53 V. DC/DC converter mounted vertically with
airflow blowing from output pins toward input pins.
    






<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Power Dissipation
     


<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
32
Output Ripple Transient
PKB 4913 PINB - Typical Characteristics
Output voltage ripple (20 mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 7.5 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(1.875-5.625-1.875 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (200mV/div.).
Bottom trace: load current (5 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((12(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 12.48 Vdc
5.11(12(100+4)/1.225x4-(100+2x4)/4) = 1164 kOhm
Eg Decrease 2% =>Vout = 11.76 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 7.5 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 5 ms/div.
Turn-off at IO = 7.5 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 0.5 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
33
Characteristics Conditions Output Unit
min typ max
VOi
Output voltage initial setting
and accuracy TPcb = +25 °C, VI = 53 V, IO = IOmax 14.70 15 15.30 V
Output adjust range IO = IOmax, VI = 53 V, TPcb = 25 ºC 12.0 16.5 V
VO
Output voltage tolerance band IO = 0.1...1 x IOmax 14.55 15.45 V
Idling voltage IO = 0 14.55 15.45 V
Line regulation IO = IOmax 3 10 mV
Load regulation VI = 53 V, IO = (0.01...1.0) x IOmax 3 10 mV
Vtr Load transient
voltage deviation
IO = (0.1 ... 1.0) x IOmax, VI = 53 V
Load step = 0.5 x IOmax ±400 mV
ttr Load transient recovery time IO = (0.1...1.0) x IOmax, VI = 53 V
loadstep = 0.5 x IOmax 50 µs
trRamp-up time IO = (0.1...1.0) x IOmax, VI = 53 V 10 15 ms
tsStart-up time VI connection to 0.9 x VOi ,
IO = (0.1...1.0) x IOmax, VI = 53 V 15 20 ms
IOOutput current 0 5 A
POmax Max output power At VO = VOnom 75 W
Ilim Current limit threshold TPcb < TPcbmax 6 A
Isc Short circuit current TPcb = 25 ºC, VO < 0.5 V 7.5 A
VOac Output ripple & noise See ripple and noise, IOmax, VOnom 50 150 mVp-p
SVR Supply voltage rejection (ac) TPcb = +25 °C, VI = 53 V
f = 100Hz sinewave, 1 Vp-p 65 dB
OVP Over voltage protection VI = 53 V, IO = (0.1 ... 1.0) x IOmax,
TPcb = +25 °C. 18 20 V
ηEfficiency - 50% load TPcb = +25 °C, VI = 48 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 48 V, IO = IOmax 92 %
ηEfficiency - 50% load TPcb = +25 °C, VI = 53 V, IO = 0.5 x IOmax 91.5 %
ηEfficiency - 100% load TPcb = +25 °C, VI = 53 V, IO = IOmax 90 92 %
PdPower Dissipation TPcb = +25 °C, VI = 53 V, IO = IOmax 6.3 W
fsSwitching frequency IO = 0 ... 1.0 x IOmax 195 kHz
TPcb = –40…+90 °C, VI = 38...75 V, sense pins connected to output pins unless otherwise specified.
PKB 4715 PINB - 15 V Data
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
34
Efficiency
Output Characteristic
PKB 4715 PINB - Typical Characteristics
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.
Efficiency vs. load current and input voltage at TPcb = +25 °C






<">
<>
7
7
7
7
Output Current Derating
Available load current vs. ambient air temperature and air-
flow at VI = 53 V. DC/DC converter mounted vertically with
airflow blowing from output pins toward input pins.
    
<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW







<">
<7>
Power Dissipation

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
TPcb = +25 °C
Thermal Resistance
Thermal resistance vs. airspeed measured at the converter.
Tested in windtunnel with airflow and test conditions as per
the Thermal consideration section.
      

<NT>
<$8>
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
35
  
0
1
2
3
4
5





<>
<L7>
70JODSFBTF
70EFDSFBTF
Output Ripple Transient
PKB 4715 PINB - Typical Characteristics
Output voltage ripple (20mV/div.) at TPcb = +25 °C, VI = 53 V,
IO = 5 A resistive load with C = 10 µF tantalum and 0.1 µF
ceramic capacitor.
Band width = 20 MHz. Time scale: 2 µs/div.
Output voltage response to load current step-change
(1.25-3.75-1.25 A) at TPcb=+25 °C, Vin=53 V.
Top trace: output voltage (100 mV/div.).
Bottom trace: load current (5 A/div.)
Time scale: 0.1 ms/div.
Output Voltage Adjust
Output voltage adjust resistor value vs.
percentage change in output voltage.
Output Voltage Adjust
The resistor value for an adjusted output voltage is calculated by
using the following equations:
Output Voltage Adjust Upwards, Increase:
Radj= 5.11((15(100+Δ%))/ 1.225Δ%-(100+2Δ%)/Δ%) kOhm
Output Voltage Adjust Downwards, Decrease:
Radj= 5.11(100 / Δ%-2) kOhm
Eg Increase 4% =>Vout = 15.60 Vdc
5.11(15(100+4)/1.225x4-(100+2x4)/4) = 1489 kOhm
Eg Decrease 2% =>Vout = 14.70 Vdc
5.11(100/2-2)= 245 kOhm
Start-Up Turn-Off
Start-up at IO = 5 A resistive load at TPcb = +25 °C,
VI = 53 V. Start enabled by connecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: 5 ms/div.
Turn-off at IO = 5 A resistive load at TPcb = +25 °C,
VI = 53 V. Turn-off enabled by disconnecting VI.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: 0.2 ms/div.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
36
EMC Specification
The conducted EMI measurement was performed using a module
placed directly on the test bench.
The fundamental switching frequency is 195 kHz for
PKB 4711 PINB @ VI = 53V, IO = (0.1...1.0) x IOmax.
External filter (class B)
Required external input filter in order to meet class B in
EN 55022, CISPR 22 and FCC part 15J.
Test set-up.
DC
Power
Source
+
-
5µH 50
5µH 50
LISN
LISN
in
in out
out
rcvr
rcvr
50 ohm input
1 m Twisted Pair
50 ohm temination
Optional Connection
to Earth Ground
Filter
(if used)
Power Module
Resistive
Load
Printed Circuit Board
EMC
Reciver Computer
Layout Recommendation
The radiated EMI performance of the DC/DC converter will be opti-
mised by including a ground plane in the PCB area under the DC/DC
converter. This approach will return switching noise to ground as
directly as possible, with improvements to both emissions and sus-
ceptibility. It is also important to consider the stand-off of the PKB
4000 series DC/DC converter. If one ground trace is used, it should
be connected to the input return. Alternatively, two ground traces
may be used, with the trace under the input side of the DC/DC con-
verter connected to the input return and the trace under the output
side of the DC/DC converter connected to the output return. Make
sure to use appropriate safety isolation spacing between these two
return traces. The use of two traces as described will provide the
capability of routing the input noise and output noise back to their
respective returns.
Conducted EMI Input terminal value (typ)
BNC
Connector
to Scope
Ceramic
Capacitor
+Vout
+Sense
Trim
-Sense
-Vout
Load
Tantalum
Capacitor
* Conductor from Vout to capacitors = 50mm [1.97in]
+
0.1uF 10uF
Output ripple and noise test setup
Output ripple and noise
The circuit below has been used for the ripple and noise measure-
ments on the PKB 4000 Series DC/DC converters.
EMI without filter
EMI with filter
1,#
*O
*O
$ $ $ $
$
$
- -
$ 3
$¬'
$¬'
$O'
-¬)
-¬)
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
37
Operating Information
Input Voltage
The input voltage range 36…75Vdc meets the requirements of the
European Telecom Standard ETS 300 132-2 for normal input voltage
range in –48V and –60V DC systems, -40.5…-57.0V and –50.0…-
72V respectively. At input voltages exceeding 75V, the power loss
will be higher than at normal input voltage and TPcb must be limited
to absolute max +110°C. The absolute maximum continuous input
voltage is 80Vdc.
Turn-Off Input Voltage
The PKB 4000 Series DC/DC converters monitor the input voltage
and will turn on and turn off at predetermined levels. The minimum
hysteresis between turn on and turn off input voltage is 1V where
the turn on input voltage is the highest.
Output Voltage Adjust (Vadj)
All PKB 4000 Series DC/DC converters have an Output Voltage
adjust pin (Vadj). This pin can be used to adjust the output voltage
above or below Output voltage initial setting. When increasing the
output voltage, the voltage at the output pins (including any remote
sense offset) must be kept below the overvoltage trip point, to
prevent the converter from shut down. Also note that at increased
output voltages the maximum power rating of the converter remains
the same, and the output current capability will decrease corre-
spondingly. To decrease the output voltage the resistor should be
connected between Vadj pin and –Sense pin. To increase the voltage
the resistor should be connected between Vadj pin and +Sense pin.
The resistor value of the Output voltage adjust function is according
to information given under the output section.
Remote Control (RC)
All PKB 4000 Series DC/DC converters have remote sense that
can be used to compensate for moderate amounts of resistance in
the distribution system and allow for voltage regulation at the load
or other selected point. The remote sense lines will carry very little
current and do not need a large cross sectional area. However, the
sense lines on the PCB should be located close to a ground trace
or ground plane. In a discrete wiring situation, the use of twisted
pair wires or other technique to reduce noise susceptibility is highly
recommended. The remote sense circuitry will compensate for up to
10% voltage drop between the sense voltage and the voltage at the
output pins. The output voltage and the remote sense voltage offset
must be less than the minimum over voltage trip point. If the remote
sense is not needed the –Sense should be connected to –Out and
+Sense should be connected to +Out.
Remote Sense
Circuit configuration for output voltage adjust
+Out
-Out
+Sense
Vadj
-Sense
Load
Radj
Radj
Decrease
Load
Increase
+Out
-Out
+Sense
Vadj
-Sense
The PKB 4000 Series DC/DC converters
have a remote control function referenced
to the primary side (- In), with negative
and positive logic options available. The
RC function allows the converter to be
turned on/off by an external device like a
semiconductor or mechanical switch. The
RC pin has an internal pull up resistor to
+ In. The needed maximum sink current
is 1mA. When the RC pin is left open,
the voltage generated on the RC pin is 12 - 15 V. The maximum
allowable leakage current of the switch is 20 µA.
The standard converter is provided with “negative logic” remote
control and the converter will be off until the RC pin is connected
to the - In. To turn on the converter the voltage between RC pin
and - In should be less than 1V. To turn off the converter the RC
pin should be left open, or connected to a voltage higher than 13
V referenced to - In. In situations where it is desired to have the
converter to power up automatically without the need for control
signals or a switch, the RC pin can be wired directly to - In.
The second option is “positive logic” remote control, which can
be ordered by adding the suffix “P” to the end of the part number.
The converter will turn on when the input voltage is applied with
the RC pin open. Turn off is achieved by connecting the RC pin to
the - In. To ensure safe turn off the voltage difference between RC
pin and the - In pin shall be less than 1V. The converter will restart
automatically when this connection is opened.
Circuit configuration
for RC function
+In
RC
-In
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
38
Operating Information
Over Temperature Protection (OTP)
The PKB 4000 Series DC/DC converters are protected from thermal
overload by an internal over temperature shutdown circuit. When
the PCB temperature on the topside between the signal transformer
and output choke (position P1 as defined in Thermal consideration
section) exceeds 120 °C the converter will shut down immediately.
The converter will make continuous attempts to start up (non-
latching mode) and resume normal operation automatically when the
temperature has dropped >10 ˚C below the temperature threshold.
Input And Output Impedance
The impedance of both the power source and the load will interact
with the impedance of the DC/DC converter. It is most important
to have a low characteristic impedance, both at the input and
output, as the converters have a low energy storage capability.
The PKB 4000 Series DC/DC converters have been designed to be
completely stable without the need for external capacitors on the
input or the output circuits. The performance in some applications
can be enhanced by addition of external capacitance as described
under maximum capacitive load. If the distribution of the input
voltage source to the converter contains significant inductance, the
addition of a 100 µF capacitor across the input of the converter will
help insure stability. This capacitor is not required when powering
the DC/DC converter from a low impedance source with short, low
inductance, input power leads.
Parallel Operation
The PKB 4000 Series DC/DC converters can be paralleled for redun-
dancy if external o-ring diodes are used in series with the outputs.
It is not recommended to parallel the PKB 4000 Series DC/DC
converters for increased power without using external current shar-
ing circuits.
Maximum Capacitive Load
When powering loads with significant dynamic current requirements,
the voltage regulation at the load can be improved by addition of
decoupling capacitance at the load. The most affective technique
is to locate low ESR ceramic capacitors as close to the load as
possible, using several capacitors to lower the effective ESR.
These ceramic capacitors will handle short duration high-frequency
components of dynamic load changes. In addition, higher values of
electrolytic capacitors should be used to handle the mid-frequency
components. It is equally important to use good design practise
when configuring the DC distribution system.
Low resistance and low inductance PCB layouts and cabling should
be used. Remember that when using remote sensing, all resistance,
inductance and capacitance of the distribution system is within the
feedback loop of the converter. This can affect on the converters
compensation and the resulting stability and dynamic response
performance. As a “rule of thumb”, 100µF/A of output current can
be used without any additional analysis. For example with a 25A
converter, values of decoupling capacitance up to 2500 µF can be
used without regard to stability. With larger values of capacitance,
the load transient recovery time can exceed the specified value. As
much of the capacitance as possible should be outside the remote
sensing loop and close to the load. The absolute maximum value of
output capacitance is 10 000 µF. For values larger than this, please
contact your local Ericsson Power Modules representative.
Current Limit Protection
The PKB 4000 Series DC/DC converters include current limiting
circuitry that allows them to withstand continuous overloads or short
circuit conditions on the output. The output voltage will decrease
towards zero for output currents in excess of max output current
(Iomax).
The converter will resume normal operation after removal of the
overload. The load distribution system should be designed to carry
the maximum output short circuit current specified.
Over Voltage Protection (OVP)
The PKB 4000 Series DC/DC converters have output overvoltage
protection. In the event of an overvoltage condition, the converter
will shut down immediately. The converter will make continuous at-
tempts to start up (non-latching mode) and resume normal operation
automatically.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
39
Thermal Consideration
General
The PKB 4000 series DC/DC converters are designed to operate
in a variety of thermal environments, however sufficient cooling
should be provided to help ensure reliable operation. Heat
is removed by conduction, convection and radiation to the
surrounding environment. Increased airflow enhances the heat
transfer via convection. The available load current vs. ambient air
temperature and airflow at Vin =53 V for each model is according
to the information given under the output section. The test is
done in a wind tunnel with a cross section of 305 x 305 mm, the
DC/DC converter vertically mounted on a 8 layer PCB with a size
of 254 x 254 mm, each layer with 35 µm (1 oz) copper. Proper
cooling can be verified by measuring the temperature of selected
devices. Peak temperature can occur at positions P1, P2 and
P3. The temperature at these positions should not exceed the
recommended max values.
Note that the recommended max value is the absolute maximum
rating (non destruction) and that the electrical output data is
guaranteed up to TPcb +90 °C.
Calculation of ambient temperature
By using the thermal resistance the maximum allowed
ambient temperature can be calculated.
1. The powerloss is calculated by using the formula
((1/η) - 1) × output power = power losses.
η = efficiency of converter. E.g 89.5% = 0.895
2. Find the value of the thermal resistance for each product in the
diagram by using the airflow speed at the output section of the con-
verter. Take the thermal resistance x powerloss to get the temperature
increase.
3. Max allowed calculated ambient temperature is: Max
TPCB of DC/DC converter – temperature increase.
B. 7.74 W × 5.0 °C/W = 38.7 °C
C. 110 °C - 38.7 °C = max ambient temperature is 71.3 °C
The real temperature will be dependent on several factors, like PCB
size and type, direction of airflow, air turbulence etc. It is recommen-
ded to verify the temperature by testing.
A. (( ) - 1) × 66 W = 7.74 W
1
0.895
E.g PKB 4610 PINB at 1m/s:
Output side
Input side
AIRFLOW
P3
P2
P1
Position Device Tcritical Recommended
max value
P1 Pcb 110 °C
P2 mosfet Tsurface 120 °C
P3 mosfet Tsurface 120 °C
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
40
Reliability
The Mean Time Between Failure (MTBF) of the PKB 4000 series
DC/DC converter is calculated at full output power and an operating
ambient temperature (TA) of +40°C. Different methods could be
used to calculate the predicted MTBF and failure rate which may
give different results. Ericsson Power Modules currently uses two
different methods, Ericsson failure rate data system DependTool
and Telcordia SR332.
Predicted MTBF for the PKB 4000 series products is:
3.5 million hours according to DependTool.
1.5 million hours according to Telcordia SR332, issue 1,
Black box techique.
The Ericsson failure rate data system is based on field tracking
data. The data corresponds to actual failure rates of components
used in Information Technology and Telecom (IT&T) equipment in
temperature controlled environments (TA = -5...+65°C). Telcordia
SR332 is a commonly used standard method intended for reliability
calculations in IT&T equipment. The parts count procedure used
in this method was originally modeled on the methods from MIL-
HDBK-217F, Reliability Predictions of Electronic Equipment. It
assumes that no reliability data is available on the actual units and
devices for which the predictions are to be made, i.e. all predictions
are based on generic reliability parameters.
Quality Statement
The PKB 4000 series DC/DC converters are designed and
manufactured in an industrial environment where quality systems
and methods like ISO 9000, 6σ (sigma), and SPC are intensively
in use to boost the continuous improvements strategy. Infant
mortality or early failures in the products are screened out and
they are subjected to an ATE-based final test. Conservative design
rules, design reviews and product qualifications, plus the high
competence of an engaged work force, contribute to the high
quality of our products.
Limitation of Liability
Ericsson Power Modules does not make any other warranties,
expressed or implied including any warranty of merchantability or
fitness for a particular purpose (including, but not limited to, use in
life support applications, where malfunctions of product can cause
injury to a person's health or life).
Soldering Information
Delivery Package Information
PKB 4000 series standard delivery package is a 100 pcs box.
(one box contains 5 full clamshells)
Clamshell Specification
Material: PET
Max surface resistance: 10
12
Ohm/sq
Color: Transparent
Capacity: 20 pcs/clamshell
Weight: 135 g (typ)
Compatibility with RoHS requirements
The products are compatible with the relevant clauses and
requirements of the RoHS directive 2002/95/EC and have a
maximum concentration value of 0.1% by weight in homogeneous
materials for lead, mercury, hexavalent chromium, PBB and PBDE
and of 0.01% by weight in homogeneous materials for cadmium.
Exemptions in the RoHS directive utilized in Ericsson Power Modules
products include:
• Lead in high melting temperature type solder (used to solder the
die in semiconductor packages)
• Lead in glass of electronics components and in electronic ceramic
parts (e.g. fill material in chip resistors)
• Lead as an alloying element in copper alloy containing up to 4%
lead by weight (used in connection pins made of Brass)
The PKB 4000 Series DC/DC converters are intended for through
hole mounting on a PCB. When wave soldering is used max
temperature on the pins is specified to 260°C for 10 seconds.
Maximum preheat rate of 4°C/s and temperature of max 130°C is
suggested. When hand soldering, care should be taken to avoid
direct contact between the hot soldering iron tip and the pins for
more than a few seconds in order to prevent overheating.
No-clean flux is recommended to avoid entrapment of cleaning
fluids in cavities inside of the DC/DC power module. The residues
may affect long time reliability and isolation voltage.
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
41
Sales Offices and Contact Information
Company Headquarters
Ericsson Power Modules AB
LM Ericssons väg 30
SE-126 25 Stockholm
Sweden
Phone: +46-8-568-69620
Fax: +46-8-568-69599
China
Ericsson Simtek Electronics Co.
33 Fuhua Road
Jiading District
Shanghai 201 818
China
Phone: +86-21-5990-3258
Fax: +86-21-5990-0188
North and South America
Ericsson Inc. Power Modules
6300 Legacy Dr.
Plano, TX 75024
USA
Phone: +1-972-583-5254
+1-972-583-6910
Fax: +1-972-583-7839
Hong Kong (Asia Pacific)
Ericsson Ltd.
12/F. Devon House
979 King’s Road
Quarry Bay
Hong Kong
Phone: +852-2590-2453
Fax: +852-2590-7152
Italy, Spain (Mediterranean)
Ericsson Power Modules AB
Via Cadorna 71
20090 Vimodrone (MI)
Italy
Phone: +39-02-265-946-07
Fax: +39-02-265-946-69
All other countries
Contact Company Headquarters
or visit our website:
www.ericsson.com/powermodules
Information given in this data sheet is believed to be accurate and reliable.
No responsibility is assumed for the consequences of its use nor for any infringement
of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Ericsson Power Modules. These products are sold only according to
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in
writing. Specifications subject to change without notice.
Germany, Austria
Ericsson Power Modules AB
Mühlhauser Weg 18
85737 Ismaning
Germany
Phone: +49-89-9500-6905
Fax: +49-89-9500-6911
Japan
Ericsson Power Modules AB
Kimura Daini Building, 3 FL.
3-29-7 Minami-Oomachi, Shinagawa-ka
Tokyo 140-0013
Japan
Phone: +81-3-5733-5107
Fax: +81-3-5753-5162
EN/LZT 146 033 R9A ©Ericsson Power Modules, March 2007
PKB 4000 Datasheet
42