© 2016 IXYS CORPORATION, All Rights Reserved DS100762A(12/16)
IXYT25N250CHV
IXYH25N250CHV
TO-268HV (IXYT)
G
C (Tab)
E
TO-247HV (IXYH)
C (Tab)
G
E
C
G = Gate C = Drain
E = Source Tab = Drain
Advance Technical Information
High Voltage
XPTTM IGBT
VCES = 2500V
IC110 = 25A
VCE(sat) 


4.0V
tfi(typ) = 246ns
Features
High Voltage Package
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Low Gate Drive Requirement
High Power Density
Applications
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
Symbol Test Conditions Maximum Ratings
VCES TJ = 25°C to 175°C 2500 V
VCGR TJ = 25°C to 175°C, RGE = 1M 2500 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC = 25°C 95 A
IC110 TC = 110°C 25 A
ICM TC = 25°C, 1ms 235 A
SSOA VGE = 15V, TVJ = 150°C, RG = 5 ICM = 100 A
(RBSOA) Clamped Inductive Load 1500 V
PCTC = 25°C 937 W
TJ-55 ... +175 °C
TJM 175 °C
Tstg -55 ... +175 °C
TLMaximum Lead Temperature for Soldering 300 °C
TSOLD Plastic Body for 10s 260 °C
MdMounting Torque 1.13/10 Nm/lb.in
Weight TO-268HV 4 g
TO-247HV 6 g
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250μA, VGE = 0V 2500 V
VGE(th) IC= 250μA, VCE = VGE 3.0 5.0 V
ICES VCE = VCES, VGE = 0V 25 μA
TJ = 100°C 100 μA
IGES VCE = 0V, VGE = ±20V ±100 nA
VCE(sat) IC= 25A, VGE = 15V, Note 1 3.4 4.0 V
TJ = 150°C 4.7 V
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYT25N250CHV
IXYH25N250CHV
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or moreof the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Note: 1. Pulse test, t 300s, duty cycle, d 2%.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experi-
ence, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 25A, VCE = 10V, Note 1 16 27 S
RGi Gate Input Resistance 2.8
Cies 3060 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 114 pF
Cres 43 pF
Qg(on) 147 nC
Qge IC = 25A, VGE = 15V, VCE = 0.5 • VCES 16 nC
Qgc 68 nC
td(on) 15 ns
tri 34 ns
Eon 8.3 mJ
td(off) 230 ns
tfi 246 ns
Eoff 7.3 mJ
td(on) 18 ns
tri 33 ns
Eon 11.0 mJ
td(off) 225 ns
tfi 350 ns
Eoff 10.5 mJ
RthJC 0.16 °C/W
RthCS 0.15 °C/W
Inductive load, TJ = 150°C
IC = 25A, VGE = 15V
VCE = 0.5 • VCES, RG = 5
Note 2
Inductive load, TJ = 25°C
IC = 25A, VGE = 15V
VCE = 0.5 • VCES, RG = 5
Note 2
TO-268HV Outline
TO-247HV Outline
PINS:
1 - Gate 2 - Emitter
3, 4 - Collector
EE1
L2
D1
D3
A1
L4
D2
C2
b
2
1
A
H
C
3
D
2 1
ee
A2
L3
L
3
E
RA
QS
A3
e
D
cb
A1
L1
D3
D1
D2
E2
E3
3X
2X
4X
3X
A2
b1
0P
E1
0P1
4
31 2
e1
L
PINS:
1 - Gate 2 - Emitter
3 - Collector
© 2016 IXYS CORPORATION, All Rights Reserved
IXYT25N250CHV
IXYH25N250CHV
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
10
20
30
40
50
00.511.522.533.544.555.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 25V
19V
15V
13V
11V 9V
5V
7V
Fig. 2. Extende d Output Characteristics @ T
J
= 25ºC
0
50
100
150
200
250
0 5 10 15 20 25 30
V
CE
- Volts
I
C
-
Amperes
V
GE
= 25V
19V
15V
5V
11V
7V
9V
13V
Fig. 3. Output Characteristics @ T
J
= 150ºC
0
10
20
30
40
50
012345678
V
CE
- Volts
I
C
- Amperes
V
GE
= 25V
19V
15V
13V
11V 9V
5V
7V
Fig. 4. Dependence of V
CE(sat)
on
Junc tion Tempe ratu re
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50 -25 0 25 50 75 100 125 150 175
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 25A
I
C
= 12.5A
I
C
= 50A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Em itter Voltage
2
3
4
5
6
7
5 7 9 11 13 15 17 19 21 23 25
VGE - Volts
VCE - Volts
I
C
= 50A
T
J
= 25ºC
25A
12.5A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
70
80
90
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
VGE - Volts
IC - Amperes
T
J
= 150ºC
25ºC
- 40ºC
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYT25N250CHV
IXYH25N250CHV
Fig. 12. Maximum Transient Thermal Impedance
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
Pulse Width - Seconds
Z
(th)JC
- K / W
Fig. 11. Forward-Bias Safe Operating Area
0.01
0.1
1
10
100
1000
1 10 100 1000 10000
V
DS
- Volts
I
D
- Amperes
T
J
= 175ºC
T
C
= 25ºC
Single Pulse
1ms
10ms
V
CE(sat)
Limi
t
DC
100µs
25µs
100ms
Fig. 7. Trans conductance
0
4
8
12
16
20
24
28
32
36
40
44
0 102030405060708090
I
C
- Amperes
g f s -
Siemens
T
J
= - 40ºC
25ºC
150ºC
Fig. 10. Reverse-Bias Safe Operating Area
0
20
40
60
80
100
120
100 400 700 1000 1300 1600 1900 2200 2500
V
CE
- Volts
I
C
- Amperes
T
J
= 150ºC
R
G
= 5
dv / dt < 10V / ns
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 1250V
I
C
= 25A
I
G
= 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarad
s
f
= 1 MHz
Cies
Coes
Cres
© 2016 IXYS CORPORATION, All Rights Reserved
IXYT25N250CHV
IXYH25N250CHV
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
2
6
10
14
18
22
26
5 10152025303540455055
R
G
- Ohms
Eoff - MilliJoules
8
12
16
20
24
28
32
Eon - MilliJoules
E
off
E
on
T
J
= 150ºC , V
GE
= 15V
V
CE
= 1250V
I
C
= 25A
I
C
= 50A
Fig . 16. Induc tive Tur n-off Switching T imes vs.
Gate Resistance
100
150
200
250
300
350
400
450
500
5 10152025303540455055
R
G
- Ohms
t
f i
- Nanoseconds
0
150
300
450
600
750
900
1050
1200
t
d(off) - Nanoseconds
t
f i
t
d(off)
T
J
= 150ºC, V
GE
= 15V
V
CE
= 1250V
I
C
= 50AI
C
= 25A
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
0
4
8
12
16
20
24
10 15 20 25 30 35 40 45 50
I
C
- Amperes
Eoff - MilliJoules
0
4
8
12
16
20
24
Eon - MilliJoules
E
off
E
on
R
G
= 5

V
GE
= 15V
V
CE
= 1250V
T
J
= 150ºC
T
J
= 25ºC
Fig. 15. Inductive Switching Energy Loss vs .
Junction Temperature
2
6
10
14
18
22
26
25 50 75 100 125 150
T
J
- Degrees Centigrade
Eoff - MilliJoules
4
8
12
16
20
24
28
Eon - MilliJoules
E
off
E
on
R
G
= 5

V
GE
= 15V
V
CE
= 1250V
I
C
= 25A
I
C
= 50A
Fig. 17. Inductive Turn-off Switching Times vs .
Collector Current
0
100
200
300
400
500
600
10 15 20 25 30 35 40 45 50
I
C
- Amperes
t
f i
- Nanoseconds
0
100
200
300
400
500
600
t
d(off)
- Nanoseconds
t
f i
t
d(off)
R
G
= 5
, V
GE
= 15V
V
CE
= 1250V
T
J
= 150ºC
T
J
= 25ºC
Fig. 18. Inductive Turn-off Switching Times vs .
Junction Temperature
60
140
220
300
380
460
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
f i
- Nanoseconds
100
150
200
250
300
350
t
d(off)
- Nanoseconds
t
f i
t
d(off)
R
G
= 5
, V
GE
= 15V
V
CE
= 1250V
I
C
= 50A
I
C
= 25A
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYT25N250CHV
IXYH25N250CHV
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
0
10
20
30
40
50
60
70
80
90
10 15 20 25 30 35 40 45 50
I
C
- Amperes
t
r i
- Nanoseconds
10
12
14
16
18
20
22
24
26
28
t d(on)
- Nanoseconds
t
r i
t
d(on)
R
G
= 5
, V
GE
= 15V
V
CE
= 1250V
T
J
= 150ºC
T
J
= 25ºC
Fig. 21. Inductive Turn-on Switching Times vs.
Junc tion Tempera ture
0
20
40
60
80
100
120
25 50 75 100 125 150
T
J
- Degrees Centigrade
t
r i
- Nanoseconds
12
14
16
18
20
22
24
t d(on)
- Nanoseconds
t
r i
t
d(on)
R
G
= 5
, V
GE
= 15V
V
CE
= 1250V
I
C
= 50A
I
C
= 25A
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
0
20
40
60
80
100
120
140
5 10152025303540455055
R
G
- Ohms
t r i
- Nanoseconds
0
10
20
30
40
50
60
70
t d(on)
- Nanoseconds
t
r i
t
d(on)
T
J
= 150ºC, V
GE
= 15V
V
CE
= 1250V
I
C
= 25A
I
C
= 50A
IXYS REF: IXY_25N250CV1HV(7T-AT628) 6-24-16
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.