©2012 Fairchild Semiconductor Corporation 1www.fairchildsemi.com
FSB50825AS Rev. 1.6
FSB50825AS Motion SPM® 5 Series
tm
April 2015
FSB50825AS
Motion SPM® 5 Series
Features
UL Certified No. E209204 (UL1557)
250 V RDS(on) = 0.45 Max FRFET MOSFET 3-
Phase Inverter with Gate Drivers and Protection
Built-in Bootstrap Diodes Simplify PCB Layout
Separate Open-Source Pins from Low-Side MOSFETs
for Three-Phase Current-Sensing
Active-HIGH Interface, Works with 3.3 / 5 V Logic,
Schmitt-trigger Input
Optimized for Low Electromagnetic Interference
HVIC Temperature-Sensing Built-in for Temperature
Monitoring
HVIC for Gate Driving and Under-Voltage Protection
Isolation Rating: 1500 Vrms / 1 min.
Moisture Sensitive Level (MSL) 3
RoHS Compliant
Applications
3-Phase Inverter Driver for Small Power AC Motor
Drives
Related Source
RD-FSB50450A - Reference Design for Motion SPM 5
Series Ver.2
AN-9082 - Motion SPM5 Series Thermal Performance
by Contact Pressure
AN-9080 - User’s Guide for Motion SPM 5 Series V2
General Description
The FSB50825AS is an advanced Motion SPM® 5
module providing a fully-featured, high-performance
inverter output stage for AC Induction, BLD C and PMSM
motors. These modules integrate optimized gate drive of
the built-in MOSFETs(FRFET® technology) to minimize
EMI and losses, while also providing multiple on-module
protection features including under-voltag e lockouts and
thermal monitoring. The built-in high-speed
HVIC requires only a single supply voltage and
translates the incoming logic-level gate inputs to the
high-voltage, high-current drive signals required to
properly drive the module's internal MOSFETs.
Separate open-source MOSFET terminals are available
for each phase to support the widest variety of control
algorithms.
Package Marking & Ordering Information
Device Marking Device Package Reel Size Packing Type Quantity
FSB50825AS FSB50825AS SPM5Q-023 330mm Tape-Reel 450
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 2www.fairchildsemi.com
FSB50825AS Rev. 1.6
Absolute Maximum Ratings
Inverter Part (each MOSFET unless otherwise specified.)
Control Part (each HVIC unless otherwise specified.)
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)
Thermal Resistance
Total System
1st Notes:
1. For the m easurement point of case temperatur e TC, please refer to Figure 4.
2. Marking “ * “ is calculation value or design factor.
Symbol Parameter Conditions Rating Unit
VDSS Drain-Source Voltage of Each MOSFET 250 V
*ID 25 Each MOSFET Drain Current, Continuous TC = 25°C 3.6 A
*ID 80 Each MOSFET Drain Current, Continuous TC = 80°C 2.7 A
*IDP Each MOSFET Drain Current, Peak TC = 25°C, PW < 100 s 9.0 A
*IDRMS Each MOSFET Drain Current, Rms TC = 80°C, FPWM < 20 kHz 1.9 Arms
*PDMaximum Power Dissipation TC = 25°C, For Each MOSFET 14.2 W
Symbol Parameter Conditions Rating Unit
VCC Control Supply Voltage Applied Between VCC and COM 20 V
VBS High-side Bias Voltage Applied Between VB and VS20 V
VIN Input Signal Vo ltage Applied Between IN and COM -0.3 ~ VCC + 0.3 V
Symbol Parameter Conditions Rating Unit
VRRMB Maximum Repetitive Reverse Voltage 250 V
* IFB Forward Current TC = 25°C 0.5 A
* IFPB Forward Current (Peak) TC = 25°C, Under 1ms Pulse Width 1.5 A
Symbol Parameter Conditions Rating Unit
RJC Junction to Case Thermal Resistance Each MOSFET under Inverter Oper-
ating Condition (1st Note 1) 8.8 °C/W
Symbol Parameter Conditions Rating Unit
TJOperating Junction Temperature -40 ~ 150 °C
TSTG Storage Temperature -40 ~ 125 °C
VISO Isolation Voltage 60 Hz, Sinusoidal, 1 Minute, Con-
nect Pins to Heat Sink Plate 1500 Vrms
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 3www.fairchildsemi.com
FSB50825AS Rev. 1.6
Pin descriptions
Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)
1st Notes:
3. Source t e rminal of e ach low-s i de MOS FET is no t c onn ect e d to sup p ly gr ou nd o r b ia s voltag e gr ound in si de M ot io n S P M® 5 product. External connections should be made as
indicated in Figure 3.
Pin Number Pin Name Pin Description
1 COM IC Common Supply Ground
2V
B(U) Bias Voltage for U-Phase High-Side MOSFET Driving
3V
CC(U) Bias Voltage for U-Phase IC and Low-Side MOSFET Driving
4IN
(UH) Signal Input for U-Phase High-Side
5IN
(UL) Signal Input for U-Phase Low-Side
6 N.C No Connection
7V
B(V) Bias Voltage for V-Phase High Side MOSFET Driving
8V
CC(V) Bias Voltage for V-Phase IC and Low Side MOSFET Driving
9IN
(VH) Signal Input for V-Phase High-Side
10 IN(VL) Signal Input for V-Phase Low-Side
11 VTS Output for HVIC Temperature Sensing
12 VB(W) Bias Voltage for W-Phase High-Side MOSFET Driving
13 VCC(W) Bias Voltage for W-Phase IC and Low-Side MOSFET Driving
14 IN(WH) Signal Input for W-Phase High-Side
15 IN(WL) Signal Input for W-Phase Low-Side
16 N.C No Connection
17 P Positive DC-Link Input
18 U, VS(U) Output for U-Phase & Bias Voltage Ground for High-Side MOSFET Driving
19 NUNegative DC-Link Input for U-Phase
20 NVNegative DC-Link Input for V-Phase
21 V, VS(V) Output for V-Phase & Bias Voltage Ground for High-Side MOSFET Driving
22 NWNegative DC-Link Input for W-Phase
23 W, VS(W) Output for W Phase & Bias Voltage Ground for High-Side MOSFET Driving
(1) COM
(2) VB(U)
(3) VCC(U)
(4) I N (UH)
(5) I N (UL)
(6) N.C
(7) VB(V)
(8) VCC(V)
(9) I N (VH)
(10) IN(VL)
(11) VTS
(12 ) V B(W)
(13) VCC(W)
(14) IN (WH)
(15) IN (WL)
(16)
(17) P
(18) U, VS(U)
(19) NU
(20) NV
(21) V, VS(V)
(22) NW
(23) W, VS(W)
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
VTS
COM
VCC
LIN
HIN
VB
HO
VS
LO
N.C
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 4www.fairchildsemi.com
FSB50825AS Rev. 1.6
Electrical Characteristics (TJ = 25°C, VCC = VBS = 15 V unless otherwise specified.)
Inverter Part (each MOSFET unless otherwise specified.)
Control Part (each HVIC unless otherwise specified.)
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)
2nd Notes:
1. BVDSS is the absolute maximum voltage rating between drain and source terminal of each MOSFET inside Motion SPM® 5 product. VPN should be sufficiently less than this
value consideri ng the ef fect of the stray inductanc e so that VPN should not exceed BVDSS in any case.
2. tON and tOFF include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field
applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.
3. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test
circuit that is same as the switching test circuit.
4. Vts is only for sensing-temperature of modu l e and can not shut down MOSFETs automatically.
5. Built-in bootstrap diode includes around 15 resistance characteristic. Please refer to Figure 2.
Symbol Parameter Conditions Min Typ Max Unit
BVDSS Drain - Source
Breakdown Voltage VIN = 0 V, ID = 1 mA (2nd Note 1) 250 - - V
IDSS Zero Gate Voltage
Drain Current VIN = 0 V, VDS = 250 V - - 1 mA
RDS(on) Static Drain - Source
Turn-On Resistance VCC = VBS = 15 V, VIN = 5 V, ID = 2.0 A - 0.33 0.45
VSD Drain - Source Diode
Forward Voltage VCC = VBS = 15V, VIN = 0 V, ID = -2.0 A - - 1.2 V
tON
Switching Times
VPN = 150 V, VCC = V BS = 15 V, ID = 2.0 A
VIN = 0 V 5 V, Inductive Load L = 3 mH
High- and Low-Side MOSFET Switching
(2nd Note 2)
- 950 - ns
tOFF - 520 - ns
trr - 150 - ns
EON - 100 - J
EOFF -10- J
RBSOA Reverse Bias Safe Oper-
ating Area
VPN = 200 V, VCC = VBS = 15 V, ID = IDP, VDS = BVDSS,
TJ = 150°C
High- and Low-Side MOSFET Switching (2nd Note 3) Full Square
Symbol Parameter Conditions Min Typ Max Unit
IQCC Quiescent VCC Current VCC = 15 V,
VIN = 0 V Applied Between VCC and COM - - 200 A
IQBS Quiescent VBS Current VBS = 15 V,
VIN = 0 V Applied Between VB(U) - U,
VB(V) - V, VB(W) - W - - 100 A
UVCCD Low-Side Under-Voltage
Protection (Figure 8) VCC Under-Voltage Protectio n Detection Level 7.4 8.0 9.4 V
UVCCR VCC Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
UVBSD High-Side Under-Voltage
Protection (Figure 9) VBS Under-Voltage Protection Detection Level 7.4 8.0 9.4 V
UVBSR VBS Under-Voltage Protection Reset Level 8.0 8.9 9.8 V
VTS HVIC Temperature Sens-
ing Voltage Output VCC = 15 V, THVIC = 25°C (2nd Note 4) 600 790 980 mV
VIH ON Threshold Voltage Logic HIGH Level Applied between IN and COM --2.9V
VIL OFF Threshold Voltage Logic LOW Level 0.8 - - V
Symbol Parameter Conditions Min Typ Max Unit
VFB Forward Voltage IF = 0.1 A, TC = 25°C (2nd Note 5) - 2.5 - V
trrB Reverse Recovery Time IF = 0.1 A, TC = 25°C - 80 - ns
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 5www.fairchildsemi.com
FSB50825AS Rev. 1.6
Recommended Operating Condition
Figure 2. Built-in Bootstrap Diode Characteristics (Typical)
Symbol Parameter Conditions Min. Typ. Max. Unit
VPN Supply Voltage Applied Between P and N - 150 200 V
VCC Control Supply Voltage Applied Between VCC and COM 13.5 15.0 16.5 V
VBS High-Side Bias Voltage Applied Between VB and VS13.5 15.0 16.5 V
VIN(ON) Input ON Threshold Voltage Applied Between IN and COM 3.0 -VCC V
VIN(OFF) Input OFF Threshold Voltage 0 -0.6 V
tdead Blanking Time for Preventing
Arm-Short VCC = VBS = 13.5 ~ 16.5 V, TJ 150°C 1.0 - - s
fPWM PWM Switching Frequency TJ 150°C - 15 - kHz
0123456789101112131415
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Built-in Bootstrap Diode VF-IF Characteristic
IF [A]
VF [V ]
Tc=25°C
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 6www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters
3rd Notes:
1. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.
2. RC-coupli ng (R 5 and C5) and C4 at each input of Motion SPM 5 product and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise.
3. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C1, C2
and C3 should have good high-frequency characteristics to absorb high-frequency ripple-current.
Figure 4. Case Temperature Measurement
3rd Notes:
4. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.
Figure 5. Temperature Profile of VTS (Typical)
HIN LIN Output Note
0 0 Z Both FRFET Off
0 1 0 Low side F RFET On
10 V
DC High side F RFE T On
1 1 Forbidden Shoot through
Open Open Z Same as (0,0)
COM
VCC
LIN
HIN
VB
HO
VS
LO
P
NR3
Inverter
Output
C3
C1
MCU
+15 V
10F
These values depend on PWM control algorithm
* Example of Boot s t ra p Param te rs:
C1 = C2 = 1 F Ceramic Capacitor
R5
C5
VDC
C2
VTS
* Example Circuit : V phase
C4
V
One Leg Diagram of Mo ti on SPM® 5 Product
20 40 60 80 100 120 140 160
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VTS [V]
THVIC [oC]
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 7www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 6. Switching Time Definitions
Figure 7. Switching and RBSOA (Single-pulse) Test Circuit (Low-side)
Figure 8. Under-Voltage Protection (Low-Side)
Figure 9. Under-Voltage Protection (High-Side)
tON trr
Irr
100% of ID120% of ID
(a) Turn -on
tOFF
(b) Tu rn -o ff
ID
VDS
VDS
ID
VIN VIN
10% of ID
UVCCD
UVCCR
Input Signal
UV Protection
Status
Low-side Supply, VCC
MOSFET Current
RESET DETECTION RESET
UVBSD
UVBSR
Input Signal
UV Protection
Status
High-si de Supply, VBS
MOSFET Current
RESET DETECTION RESET
FSB50825AS Motion SPM® 5 Series
©2012 Fairchild Semiconductor Corporation 8www.fairchildsemi.com
FSB50825AS Rev. 1.6
Figure 10. Example of Application Circuit
4th Notes:
1. About pin position, refer to Figure 1.
2. RC-coupling (R5 and C5, R4 and C6) and C4 at each input of Motion SPM® 5 product and MCU are useful to prevent improper input signal caused by surge-noise.
3. The voltage -drop acros s R3 affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low-
side MOSFET. For this reason, the voltage-drop across R3 should be less than 1 V in the steady-state.
4. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.
5. All the filter capacitors should be connected close to Motion SPM 5 product, and they should have go od characteristics for rejecting high -frequency ripple current.
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
COM
VCC
LIN
HIN
VB
HO
VS
LO
(1) COM
(2) VB(U)
(3) VCC(U)
(4) IN (UH)
(5) IN (UL)
(6) N.C
(7) VB(V)
(8) VCC(V)
(9) IN (VH)
(10) IN(VL)
(11) V TS
(12) V B(W)
(13) VCC(W)
(14) IN(WH)
(15) IN(WL)
(16) N.C
(17) P
(18) U, V S(U)
(19) N U
(22) N W
Micom
C1
15 V
Supply
C3VDC
C2
R3
R4
C6
R5
C5
For current-sensing and protection
VTS
(21) V, V S(V)
(20) N V
(23) W, V S(W)
C4
M
© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following inclu des registered and unregistered tra demarks and service marks, ow ned by Fairch ild Semico nductor and /or its gl obal subsidiaries, and is not
intended to be an exhaustiv e list of all such trademarks.
AccuPower
AttitudeEngine™
Awinda
®
AX-CAP
®
*
BitSiC
Build it Now
CorePLUS
CorePOWER
CROSSVOLT
CTL
Current Transfer Logic
DEUXPEED
®
Dual Cool™
EcoSPARK
®
EfficientMax
ESBC
Fairchild
®
Fairchild Semiconductor
®
FACT Quiet Series
FACT
®
FastvCore
FETBench
FPS
F-PFS
FRFET
®
Global Power Resource
SM
GreenBridge
Green FPS
Green FPS e-Serie s
Gmax
GTO
IntelliMAX
ISOPLANAR
Making Small Speakers Sound Louder
and Better™
MegaBuck
MICROCOUPLER
MicroFET
MicroPak
MicroPak2
MillerDrive
MotionMax
MotionGrid
®
MTi
®
MTx
®
MVN
®
mWSaver
®
OptoHiT
OPTOLOGIC
®
OPTOPLANAR
®
®
Power Supply WebDesigner
PowerTrench
®
PowerXS™
Programmable Active Droop
QFET
®
QS
Quiet Series
RapidConfigure
Saving our world, 1mW/W/kW at a time™
SignalWise
SmartMax
SMART START
Solutions for Your Success
SPM
®
STEALTH
SuperFET
®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS
®
SyncFET
Sync-Lock™
®*
TinyBoost
®
TinyBuck
®
TinyCalc
TinyLogic
®
TINYOPTO
TinyPower
TinyPWM
TinyWire
TranSiC
TriFault Detect
TRUECURRENT
®
*
SerDes
UHC
®
Ultra FRFET
UniFET
VCX
VisualMax
VoltagePlus
XS™
Xsens™
仙童
®
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR
WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOE S NOT ASS UME ANY LIABIL ITY ARISIN G OUT OF THE APPLIC ATION OR USE OF
ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT C ONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF
OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE
WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
AUTHORIZED USE
Unless otherw ise speci fied in this da ta sh eet, this pr oduct is a stand ard commercial produ ct and is not intended for use in appl ication s that require extraordi nary
levels of qual ity and reliabili ty. This product may no t be used in the fo llowing app lications, un less spe cifically approv ed in w riting by a Fairchild offi cer: (1) au tomotiv e
or other tran sportati on, (2) m ilitary /aerospace, ( 3) any safety critical application – including life cri tical medi cal equipmen t – w here the failure of the F airchild produc t
reasonably would be expected to result in per sonal injury, dea th or property damag e. Customer’s use of this product is subje ct to agreement of this Authorized Use
policy. In the ev ent of an unauth orized use of Fair child’s p roduct, Fairch ild ac cepts no li ability in the event o f produc t failure. In other respects, this product shall be
subject to Fairchild’ s Worldwide Terms and Co nditions of Sale, unle ss a separa te agreement h as been signed by both Par ties.
ANTI-COUNTERFEITING POLICY
Fairchild Semico nductor Cor poration's An ti-Counter feiting Poli cy. Fairchi ld's Anti-Co unterfeiting Poli cy is also stated on our external websit e, www .fairchild semi.com,
under Terms of Use
Counterfeiting of semiconductor parts is a growing pro blem in the indu stry. All m anufactur ers of sem iconductor products a re ex periencing cou nterfeiting o f their
parts. Customers w ho inadverten tly purchase coun terfeit par ts experien ce many pr oblems such as lo ss of bra nd reputa tion, su bstandard per formance, failed
applications, and incr eased cost o f productio n and man ufacturing delays. Fairchild is taking strong mea sures to protect oursel v es and our cu stomers from the
proliferatio n of counterfeit parts. F airchild stron gly encourage s customers to pur chase Fairchild parts eith er directly from Fairchild or fr om Authorized Fair child
Distributors w ho are l isted by cou ntry on o ur web pag e cited ab ove. Produ cts customers b uy either from Fair child directly or from A uthorized Fair child Distributor s
are genuine par ts, hav e full tr aceability , meet Fairchild' s quality standards for hand ling and sto rage and prov ide access to Fa irch ild's fu ll range of up-to-da te techn ical
and product informati on. Fairchil d and o ur Author ized Distributo rs will stan d behind all warran ties and will a ppropriately address any warranty issues that may a rise.
Fairchild will not prov ide any w arranty cov erage or other assi stance fo r parts bough t from Una uthorized S ources. F airchild is c ommitted to com bat this global
problem and encourage our customers to do th eir part in stopping this p ractice by bu ying direct or from au thorized distributo rs.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production
Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I77
®
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Fairchild Semiconductor:
FSB50825AS