24 GHz to 38 GHz, GaAs, MMIC,
Double Balanced Mixer
Data Sheet HMC560A
Rev. 0 Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Downconverter
Conversion loss
9 dB typical for 24 GHz to 29 GHz
11 dB typical for 29 GHz to 38 GHz
LO to RF isolation
40 dB typical for 24 GHz to 29 GHz
38 dB typical for 29 GHz to 38 GHz
LO to IF isolation
27 dB typical for 24 GHz to 29 GHz
44 dB typical for 29 GHz to 38 GHz
RF to IF isolation
20 dB typical for 24 GHz to 29 GHz
28 dB typical for 29 GHz to 38 GHz
Input IP3
18 dBm typical for 24 GHz to 29 GHz
19 dBm typical for 29 GHz to 38 GHz (downconverter)
IF frequency: dc to 18 GHz
Passive, no dc bias required
APPLICATIONS
Point to point radios
Point to multipoint radios and very small aperture terminal
(VSAT) radios
Test equipment and sensors
Military end use
FUNCTIONAL BLOCK DIAGRAM
1
2
GND
LO
GND
GND GNDIF
RF
4
6 57
3
HMC560A
24243-001
Figure 1.
GENERAL DESCRIPTION
The HMC560A chip is a gallium arsenide (GaAs), monolithic
microwave integrated circuit (MMIC), double balanced mixer
that can be used as an upconverter or downconverter from
24 GHz to 38 GHz in a small chip area. This mixer requires
no external component or matching circuitry.
The HMC560A provides high local oscillator (LO) to RF and
LO to intermediate frequency (IF) suppression, 40 dB and
44 dB, respectively, due to optimized balun structures. The
mixer operates with LO amplitudes from 9 dBm to 15 dBm.
HMC560A Data Sheet
Rev. 0 | Page 2 of 29
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Specifications ............................................................... 3
Absolute Maximum Ratings ............................................................ 4
Electrostatic Discharge (ESD) Ratings ...................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Interface Schematics .................................................................... 5
Typical Performance Characteristics ............................................. 6
Downconverter Performance, IF = 1 GHz ................................ 6
Downconverter Performance, IF = 10 GHz .............................. 9
Downconverter Performance, IF = 18 GHz ............................ 12
Upconverter Performance, IF = 1 GHz ................................... 15
Upconverter Performance, IF = 10 GHz ................................. 17
Upconverter Performance, IF = 18 GHz ................................. 19
Isolation and Return Loss ......................................................... 21
IF Bandwidth—Downconverter ............................................... 23
Spurious Performance ............................................................... 25
Theory of Operation ...................................................................... 26
Applications Information .............................................................. 27
Typical Application Circuit ....................................................... 27
Mounting and Bonding Techniques ........................................ 28
Handling Precautions ................................................................ 28
Mounting ..................................................................................... 28
Wire Bonding .............................................................................. 28
Outline Dimensions ....................................................................... 29
Ordering Guide .......................................................................... 29
REVISION HISTORY
9/2020—Revision 0: Initial Version
Data Sheet HMC560A
Rev. 0 | Page 3 of 29
SPECIFICATIONS
ELECTRICAL SPECIFICATIONS
TA = 25°C, IF = 1 GHz, LO drive level = 13 dBm, and all measurements performed as a downconverter with the upper sideband selected,
unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
FREQUENCY
RF Pad 24 38 GHz
IF Pad DC 18 GHz
LO Pad 22 38 GHz
LO AMPLITUDE 9 13 15 dBm
24 GHz TO 29 GHz PERFORMANCE
Downconverter
Conversion Loss 9 12 dB
Single-Sideband Noise Figure Measurements taken with external LO amplifier 12 dB
Input Third-Order Intercept (IP3) 1 MHz separation between inputs 13 18 dBm
Input 1 dB Compression Point (P1dB) 10 dBm
Input Second-Order Intercept (IP2) 1 MHz separation between inputs 42 dBm
Upconverter
Conversion Loss 9 dB
Input IP3 1 MHz separation between inputs 18 dBm
Input P1dB 8 dBm
Isolation
RF to IF 13 20 dB
LO to RF 40 dB
LO to IF 20 27 dB
29 GHz TO 38 GHz PERFORMANCE
Downconverter
Conversion Loss 11 14 dB
Single-Sideband Noise Figure Measurements taken with external LO amplifier 14 dB
Input IP3 1 MHz separation between inputs 14 19 dBm
Input P1dB 12 dBm
Input IP2 1 MHz separation between inputs 38 dBm
Upconverter
Conversion Loss 10 dB
Input IP3 1 MHz separation between inputs 18 dBm
Input P1dB 9 dBm
Isolation
RF to IF 24 28 dB
LO to RF 38 dB
LO to IF 34 44 dB
HMC560A Data Sheet
Rev. 0 | Page 4 of 29
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Input Power
RF 25 dBm
LO 23 dBm
IF 25 dBm
IF Source and Sink Current 2 mA
Continuous Power Dissipation, PDISS (TA =
85°C, Derate 5.3 mW/°C Above 85°C)
344 mW
Temperature
Channel 150°C/W
Storage Range −65°C to +150°C
Operating Range −40°C to +85°C
Stresses at or above listed under Absolute Maximum Ratings
may cause permanent damage to the product. This is a stress
rating only; functional operation of the product at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ELECTROSTATIC DISCHARGE (ESD) RATINGS
The following ESD information is provided for handling of
ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged device model (FICDM) per JESD22-
C101F.
ESD Ratings for HMC560A
Table 3. HMC560A, 7-Pad Bare Die (CHIP)
ESD Model Withstand Threshold (V) Class
HBM 500 1B
FICDM 1250 C3
ESD CAUTION
Data Sheet HMC560A
Rev. 0 | Page 5 of 29
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
GND
LO
GND
GND GNDIF
RF
NOTES
1. THE DIE BOTTOM MUST BE ATTACHED DIRECTLY
TO THE GROUND PLANE EUTECTICALLY OR WITH
CONDUCTIVE EPOXY.
4
6 57
3
HMC560A
TOP VIEW
(Not to Scale)
2
4243-002
Figure 2. Pad Configuration
Table 4. Pad Function Descriptions
Pad No. Mnemonic Description
1, 4, 5, 7 GND Not Internally Connected. No connection is required. The GND pads can be connected to RF and dc ground
without affecting performance. See Figure 3 for the GND interface schematic.
2 LO Local Oscillator Port. LO is ac-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.
3 RF Radio Frequency Port. RF is ac-coupled and matched to 50 Ω. See Figure 5 for the RF interface schematic.
6 IF
Intermediate Frequency Port. IF is dc-coupled. For applications not requiring operation to dc, dc block the IF
port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For
operation to dc, the IF pad must not source or sink more than 2 mA of current or die malfunction and
possible die failure may result. See Figure 6 for the IF interface schematic.
Die Bottom The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy.
INTERFACE SCHEMATICS
GND
24243-003
Figure 3. GND Interface Schematic
LO
24243-004
Figure 4. LO Interface Schematic
RF
24243-006
Figure 5. RF Interface Schematic
IF
24243-005
Figure 6. IF Interface Schematic
HMC560A Data Sheet
Rev. 0 | Page 6 of 29
TYPICAL PERFORMANCE CHARACTERISTICS
DOWNCONVERTER PERFORMANCE, IF = 1 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-007
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-008
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-013
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-010
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-011
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-015
Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 7 of 29
80
0
20
40
60
70
10
30
50
20 403632 38343028262422
INPUT IP2 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-014
Figure 13. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
80
0
20
40
60
70
10
30
50
20 403632 38343028262422
INPUT IP2 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-016
Figure 14. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 8 of 29
Lower Sideband (High-Side LO)
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-017
Figure 15. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-018
Figure 16. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-023
Figure 17. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-020
Figure 18. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-021
Figure 19. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-024
Figure 20. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 9 of 29
DOWNCONVERTER PERFORMANCE, IF = 10 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
24 403632 3834302826
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-025
Figure 21. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
25
20
0
5
10
15
24 403632 3834302826
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-026
Figure 22. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
24 403632 3834302826
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-027
Figure 23. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
24 403632 3834302826
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-028
Figure 24. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
25
20
0
5
10
15
24 403632 3834302826
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-029
Figure 25. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
24 403632 3834302826
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-030
Figure 26. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 10 of 29
80
0
20
40
60
70
10
30
50
INPUT IP2 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24 403632 3834302826
RF FREQUENCY (GHz)
24243-031
Figure 27. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
80
0
20
40
60
70
10
30
50
INPUT IP2 (dBm)
24 403632 3834302826
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-032
Figure 28. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 11 of 29
Lower Sideband (High-Side LO)
0
–20
–15
–10
–5
20 34323028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-033
Figure 29. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 34323028262422
RF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-034
Figure 30. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 34323028262422
RF FREQUENCY (GHz)
20
0
5
10
15
INPUT P1dB (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-035
Figure 31. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 34323028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-036
Figure 32. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 34323028262422
RF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-037
Figure 33. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 34323028262422
RF FREQUENCY (GHz)
20
0
5
10
15
INPUT P1dB (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-038
Figure 34. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 12 of 29
DOWNCONVERTER PERFORMANCE, IF = 18 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
CONVERSION GAIN (dB)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-039
Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
20
0
5
10
15
25
INPUT IP3 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-040
Figure 36. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
INPUT P1dB (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-041
Figure 37. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
CONVERSION GAIN (dB)
32 403836 3937353433
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-042
Figure 38. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
32 403836 3937353433
RF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-043
Figure 39. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
INPUT P1dB (dBm)
32 403836 3937353433
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-044
Figure 40. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 13 of 29
32 403836 3937353433
RF FREQUENCY (GHz)
80
0
20
40
60
70
10
30
50
INPUT IP2 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-045
Figure 41. Input IP2 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
32 403836 3937353433
RF FREQUENCY (GHz)
80
0
20
40
60
70
10
30
50
INPUT IP2 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-046
Figure 42. Input IP2 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 14 of 29
Lower Sideband (High-Side LO)
0
–20
–15
–10
–5
20 262524232221
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-047
Figure 43. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 262524232221
RF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-048
Figure 44. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 262524232221
RF FREQUENCY (GHz)
20
0
5
10
15
INPUT P1dB (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-049
Figure 45. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 262524232221
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
24243-050
Figure 46. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 262524232221
RF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-051
Figure 47. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 262524232221
RF FREQUENCY (GHz)
20
0
5
10
15
INPUT P1dB (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-052
Figure 48. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 15 of 29
UPCONVERTER PERFORMANCE, IF = 1 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-053
Figure 49. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-054
Figure 50. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-055
Figure 51. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 403632 38343028262422
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-056
Figure 52. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
0
10
20
5
15
25
20 403632 38343028262422
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-057
Figure 53. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
20 403632 38343028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-058
Figure 54. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 16 of 29
Lower Sideband (High-Side LO)
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34 36 38 40
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-059
Figure 55. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
5
10
15
20
25
30
20 22 24 26 28 30 32 34 36 38 40
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-060
Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
5
10
15
20
20 22 24 26 28 30 32 34 36 38 40
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-061
Figure 57. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34 36 38 40
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-062
Figure 58. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
0
5
10
15
20
25
30
20 22 24 26 28 30 32 34 36 38 40
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-063
Figure 59. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
0
5
10
15
20
20 22 24 26 28 30 32 34 36 38 40
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-064
Figure 60. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 17 of 29
UPCONVERTER PERFORMANCE, IF = 10 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
24 403632 3834302826
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-065
Figure 61. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
25
20
0
5
10
15
24 403632 3834302826
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-066
Figure 62. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
24 403632 3834302826
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-067
Figure 63. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
24 403632 3834302826
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-068
Figure 64. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
30
25
20
0
5
10
15
24 403632 3834302826
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-069
Figure 65. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
24 403632 3834302826
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-070
Figure 66. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 18 of 29
Lower Sideband (High-Side LO)
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-071
Figure 67. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
5
10
15
20
30
25
20 22 24 26 28 30 32 34
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-072
Figure 68. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
5
10
15
20
20 22 24 26 28 30 32 34
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-073
Figure 69. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-074
Figure 70. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
0
5
10
15
20
25
30
20 22 24 26 28 30 32 34
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-075
Figure 71. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
20 34323028262422
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-076
Figure 72. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 19 of 29
UPCONVERTER PERFORMANCE, IF = 18 GHz
Upper Sideband (Low-Side LO)
0
–20
–15
–10
–5
CONVERSION GAIN (dB)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-077
Figure 73. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
25
20
0
5
10
15
INPUT IP3 (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-078
Figure 74. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
INPUT P1dB (dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
32 403836 3937353433
RF FREQUENCY (GHz)
24243-079
Figure 75. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
CONVERSION GAIN (dB)
32 403836 3937353433
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-080
Figure 76. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
32 403836 3937353433
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
30
25
20
0
5
10
15
INPUT IP3 (dBm)
24243-081
Figure 77. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
INPUT P1dB (dBm)
32 403836 3937353433
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-082
Figure 78. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 20 of 29
Lower Sideband (High-Side LO)
0
–20
–15
–10
–5
20 262524232221
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-083
Figure 79. Conversion Gain vs. RF Frequency at Various Temperatures,
LO = 13 dBm
30
20
0
5
10
15
25
20 262524232221
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-084
Figure 80. Input IP3 vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20
0
5
10
15
20 262524232221
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-085
Figure 81. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
20 262524232221
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
24243-086
Figure 82. Conversion Gain vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 262524232221
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
30
0
10
20
5
15
25
INPUT IP3 (dBm)
24243-087
Figure 83. Input IP3 vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20
0
5
10
15
20 262524232221
INPUT P1dB (dBm)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-088
Figure 84. Input P1dB vs. RF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 21 of 29
ISOLATION AND RETURN LOSS
0
10
20
30
40
50
60
70
80
20 22 24 26 28 30 32 34 36 38 40
LO TO RF ISOL
A
TION (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-095
Figure 85. LO to RF Isolation vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 403632 38343028262422
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
80
0
20
40
60
70
10
30
50
LO TO IF ISOLATION (dB)
24243-096
Figure 86. LO to IF Isolation vs. RF Frequency at Various Temperatures,
LO = 13 dBm
20 403632 38343028262422
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
80
0
20
40
60
70
10
30
50
RF TO IF ISOLATION (dB)
24243-097
Figure 87. RF to IF Isolation vs. RF Frequency at Various Temperatures,
LO = 13 dBm
0
10
20
30
40
50
60
70
80
20 22 24 26 28 30 32 34 36 38 40
L
O
TO RF ISOL
A
TION (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-098
Figure 88. LO to RF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 403632 38343028262422
RF FREQUENCY (GHz)
80
0
20
40
60
70
10
30
50
LO TO IF ISOLATION (dB)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-099
Figure 89. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
20 403632 38343028262422
RF FREQUENCY (GHz)
80
0
20
40
60
70
10
30
50
RF TO IF ISOLATION (dB)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-100
Figure 90. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 22 of 29
–25
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34 36 38 40
LO RETURN LOSS (dB)
LO FREQUENCY (GHz)
24243-101
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
Figure 91. LO Return Loss vs. LO Frequency at Various LO Power Levels,
TA = 25°C
24243-102
–25
–20
–15
–10
–5
0
20 22 24 26 28 30 32 34 36 38 40
RF RETURN LOSS (dB)
RF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
Figure 92. RF Return Loss vs. RF Frequency at Various LO Power Levels,
TA = 25°C, LO = 15 GHz
24243-103
–30
–25
–20
–15
–10
–5
0
0 2 4 6 8 10 12 14 16 18 20
IF RETURN LOSS (dB)
IF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
Figure 93. IF Return Loss vs. IF Frequency at Various LO Power Levels,
TA = 25°C, LO = 15 GHz
Data Sheet HMC560A
Rev. 0 | Page 23 of 29
IF BANDWIDTH—DOWNCONVERTER
Upper Sideband, LO Frequency = 24 GHz
0
–20
–15
–10
–5
0201612 1814108642
CONVERSION GAIN (dB)
IF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-104
Figure 94. Conversion Gain vs. IF Frequency at Various Temperatures,
LO = 13 dBm
0201612 1814108642
IF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
30
0
10
20
5
15
25
INPUT IP3 (dBm)
24243-105
Figure 95. Input IP3 vs. IF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
0201612 1814108642
CONVERSION GAIN (dB)
IF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-106
Figure 96. Conversion Gain vs. IF Frequency at Various LO Power Levels,
TA = 25°C
0201612 1814108642
IF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-107
Figure 97. Input IP3 vs. IF Frequency at Various LO Power Levels,
TA = 25°C
HMC560A Data Sheet
Rev. 0 | Page 24 of 29
Lower Sideband, LO Frequency = 36 GHz
0
–20
–15
–10
–5
0201612 1814108642
CONVERSION GAIN (dB)
IF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
24243-108
Figure 98. Conversion Gain vs. IF Frequency at Various Temperatures,
LO = 13 dBm
0201612 1814108642
IF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40°C
30
0
10
20
5
15
25
INPUT IP3 (dBm)
24243-109
Figure 99. Input IP3 vs. IF Frequency at Various Temperatures,
LO = 13 dBm
0
–20
–15
–10
–5
0201612 1814108642
CONVERSION GAIN (dB)
IF FREQUENCY (GHz)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-110
Figure 100. Conversion Gain vs. IF Frequency at Various LO Power Levels,
TA = 25°C
0201612 1814108642
IF FREQUENCY (GHz)
30
0
10
20
5
15
25
INPUT IP3 (dBm)
LO = 15dBm
LO = 13dBm
LO = 11dBm
LO = 9dBm
24243-111
Figure 101. Input IP3 vs. IF Frequency at Various LO Power Levels,
TA = 25°C
Data Sheet HMC560A
Rev. 0 | Page 25 of 29
SPURIOUS PERFORMANCE
LO Harmonics
LO = 13 dBm, and all values in dBc are below the input LO level
and measured at the RF port. N/A means not applicable.
Table 5. LO Harmonics at RF
N
LO Spur at RF Port (dBc)
LO Frequency (GHz) 1 2 3 4
24 40 33 N/A N/A
28 36 N/A N/A N/A
30 36 N/A N/A N/A
32 38 N/A N/A N/A
36 38 N/A N/A N/A
40 48 N/A N/A N/A
LO = 13 dBm, and all values in dBc are below the input LO level
and measured at the IF port. N/A means not applicable.
Table 6. LO Harmonics at IF
N
LO Spur at IF Port (dBc)
LO Frequency (GHz) 1 2 3 4
24 27 68 N/A N/A
28 37 N/A N/A N/A
30 47 N/A N/A N/A
32 50 N/A N/A N/A
36 45 N/A N/A N/A
40 43 N/A N/A N/A
M × N Spurious Outputs
Downconversion, Upper Sideband
Spur values are (M × RF) − (N × LO). RF = 25 GHz, LO =
24 GHz, RF power = −10 dBm, and LO power = +13 dBm.
Mixer spurious products are measured in dBc from the
IF output power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
1 11 0 34 38
N/A
2 61 63 62 56 66
3 N/A N/A
75 67 76
4 N/A N/A N/A
74 80
Downconversion, Lower Sideband
Spur values are (M × RF) − (N × LO). RF = 35 GHz, LO =
36 GHz, RF power = −10 dBm, and LO power = +13 dBm.
Mixer spurious products are measured in dBc from the
IF output power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
1 19 0 35 0 N/A
2 N/A 70 54 67 N/A
3 N/A N/A 67 65 N/A
4 N/A N/A N/A
73 N/A
Upconversion, Upper Sideband
Spur values are (M × IF input (IFIN)) + (N × LO). IFIN = 1 GHz,
LO = 24 GHz, IFIN power = −10 dBm, and LO power =
+13 dBm. Mixer spurious products are measured in dBc from
the RF output power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × IFIN
−4 82 76 66
N/A N/A
−3 84 69 68
N/A N/A
−2 57 49 51
N/A N/A
−1 16 0 31
N/A N/A
0 0 7 1
N/A N/A
+1 16 0 34
N/A N/A
+2 57 49 53
N/A N/A
+3 85 73
N/A N/A N/A
+4 82 76
N/A N/A N/A
Upconversion, Lower Sideband
Spur values are (M × IFIN) + (N × LO). IFIN = 1 GHz, LO =
36 GHz, IFIN power = −10 dBm, and LO power = +13 dBm.
Mixer spurious products are measured in dBc from the
RF output power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × IFIN
−4 80 72
N/A N/A N/A
−3 83 59
N/A N/A N/A
−2 55 46
N/A N/A N/A
−1 14 0
N/A N/A N/A
0 0 5
N/A N/A N/A
+1 14 0
N/A N/A N/A
+2 55 47
N/A N/A N/A
+3 82 63
N/A N/A N/A
+4 79 64
N/A N/A N/A
HMC560A Data Sheet
Rev. 0 | Page 26 of 29
THEORY OF OPERATION
The HMC560A is a GaAs, MMIC, double balanced mixer
that can be used as an upconverter or a downconverter from
24 GHz to 38 GHz. A single HMC560A can replace multiple
narrow-band mixers in a design with a small printed circuit
board (PCB) footprint.
When used as a downconverter, the HMC560A downconverts
RF between 24 GHz and 38 GHz to IF values between dc and
18 GHz.
When used as an upconverter, the mixer upconverts IF values
between dc and 18 GHz to RF values between 24 GHz and
38 GHz.
The mixer performs well with LO drive level values of 13 dBm
or greater and provides excellent LO to RF and LO to IF
suppression due to optimized balun structures.
Data Sheet HMC560A
Rev. 0 | Page 27 of 29
APPLICATIONS INFORMATION
TYPICAL APPLICATION CIRCUIT
Figure 102 shows the typical application circuit for the
HMC560A. The HMC560A is a passive device and does not
require any external components. The LO and RF pads are
internally ac-coupled. When IF operation is not required until
dc, it is recommended to use an ac-coupled capacitor at the
IF port if dc operation is not required
1
2
GND
LO
SOURCE
GND
GND GND
IF
OUTPUT
RF
SOURCE
4
6 57
3
HMC560A
24243-112
Figure 102. Typical Application Circuit
HMC560A Data Sheet
Rev. 0 | Page 28 of 29
MOUNTING AND BONDING TECHNIQUES
Attach the die directly to the ground plane eutectically or with
conductive epoxy. To bring RF to and from the chip, 50 Ω micro-
strip transmission lines on 0.127 mm (0.005˝) thick alumina,
thin film substrates are recommended (see Figure 103).
RF GROUND PLANE
0.102mm (0.004") THICK GaAs MMIC
WIRE BOND
0.127mm (0.005") THICK ALUMINA,
THIN FILM SUBSTRATE
0.076mm
(0.003")
24243-113
Figure 103. Bonding RF Pads to 5 mil Substrate
If using 0.254 mm (0.010˝) thick alumina, thin film substrates,
raise the die 0.150 mm (0.006˝) so that the surface of the die is
coplanar with the surface of the substrate. A way to accomplish
this is to attach the 0.102 mm (0.004˝) thick die to a 0.150 mm
(0.006˝) thick molybdenum heat spreader (moly tab), which is
then attached to the ground plane (see Figure 104). To minimize
bond wire length, place microstrip substrates as close to the die
as possible. Typical die to substrate spacing is 0.076 mm (0.003˝).
RF GROUND PLANE
0.102mm (0.004") THICK GaAs MMIC
WIRE BOND
0.254mm (0.010") THICK ALUMINA,
THIN FILM SUBSTRATE
0.150mm
(0.006") THICK
MOLY TAB
0.076mm
(0.003")
24243-114
Figure 104. Bonding RF Pads to 10 mil Substrate
HANDLING PRECAUTIONS
To avoid permanent damage to the device, follow the
precautions in the following Storage, Cleanliness, Static
Sensitivity, Transients, and General Handling sections.
Storage
All bare dice are placed in either waffle- or gel-based ESD
protective containers and then sealed in an ESD protective bag
for shipment. After opening the sealed ESD protective bag,
store all dice in a dry nitrogen environment.
Cleanliness
Handle the chips in a clean environment. Do not attempt to
clean the chip using liquid cleaning systems.
Static Sensitivity
Follow ESD precautions to protect against ESD strikes.
Transients
Suppress instrument and bias supply transients while bias is
applied. Use shielded signal and bias cables to minimize
inductive pickup.
General Handling
Handle the chip along the edges with a vacuum collet or with a
sharp pair of bent tweezers. The surface of the chip has fragile
air bridges. Do not touch the chip with a vacuum collet,
tweezers, or fingers.
MOUNTING
The chip is back metallized and can be die mounted with gold
(Au)/tin (Sn) eutectic preforms or with electrically conductive
epoxy. The mounting surface must be clean and flat.
Eutectic Die Attach
An 80/20 gold and tin preform is recommended with a work
surface temperature of 255°C and a tool temperature of 265°C.
When hot 90/10 nitrogen(N)/hydrogen (H) gas is applied, the
tool tip temperature must be 290°C. Do not expose the chip to a
temperature greater than 320°C for more than 20 seconds. No
more than 3 seconds of scrubbing is required for attachment.
Epoxy Die Attach
Apply a minimum amount of epoxy to the mounting surface so
that a thin epoxy fillet is observed around the perimeter of the
chip when the chip is placed into position. Cure epoxy per the
schedule of the manufacturer.
WIRE BONDING
Ball or wedge bond with 0.025 mm (0.00098˝) diameter pure
gold wire is recommended. Thermosonic wire bonding with a
nominal stage temperature of 150°C and a ball bonding force of
40 grams to 50 grams, or a wedge bonding force of 18 grams to
22 grams, is recommended. Use the minimum level of ultrasonic
energy to achieve reliable wire bonds. Wire bonds must begin
on the chip and terminate on the package or substrate. All
bonds must be as short as possible <0.31 mm (0.01220˝).
Data Sheet HMC560A
Rev. 0 | Page 29 of 29
OUTLINE DIMENSIONS
09-16-2019-A
TOP VIEW
(CIRCUIT SIDE)
0.710
0.102
SIDE VIEW
0.100 ×0.100
(Pads 1-7)
1.190
0.514 0.150 0.150 0.166
2
3
4
567
1
0.150 0.150
0.417
0.217
0.182
0.105
0.285
0.238 0.203
0.105
*This die utilizes fragile air bridges. Any pickup tools used must not contact this area.
*AIR BRIDGE
AREA
Figure 105. 7-Pad Bare Die [CHIP]
(C-7-10)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
HMC560A −40°C to +85°C 7-Pad Bare Die [CHIP] C-7-10
HMC560A-SX −40°C to +85°C 7-Pad Bare Die [CHIP] C-7-10
1 The HMC560A and HMC560A-SX are RoHS compliant parts.
©2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D24243-9/20(0)