24 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer HMC560A Data Sheet FUNCTIONAL BLOCK DIAGRAM Downconverter Conversion loss 9 dB typical for 24 GHz to 29 GHz 11 dB typical for 29 GHz to 38 GHz LO to RF isolation 40 dB typical for 24 GHz to 29 GHz 38 dB typical for 29 GHz to 38 GHz LO to IF isolation 27 dB typical for 24 GHz to 29 GHz 44 dB typical for 29 GHz to 38 GHz RF to IF isolation 20 dB typical for 24 GHz to 29 GHz 28 dB typical for 29 GHz to 38 GHz Input IP3 18 dBm typical for 24 GHz to 29 GHz 19 dBm typical for 29 GHz to 38 GHz (downconverter) IF frequency: dc to 18 GHz Passive, no dc bias required APPLICATIONS Point to point radios Point to multipoint radios and very small aperture terminal (VSAT) radios Test equipment and sensors Military end use Rev. 0 LO 2 3 RF GND 1 4 GND 7 HMC560A 6 5 GND IF GND 24243-001 FEATURES Figure 1. GENERAL DESCRIPTION The HMC560A chip is a gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), double balanced mixer that can be used as an upconverter or downconverter from 24 GHz to 38 GHz in a small chip area. This mixer requires no external component or matching circuitry. The HMC560A provides high local oscillator (LO) to RF and LO to intermediate frequency (IF) suppression, 40 dB and 44 dB, respectively, due to optimized balun structures. The mixer operates with LO amplitudes from 9 dBm to 15 dBm. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 (c)2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC560A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Upconverter Performance, IF = 1 GHz ................................... 15 Applications ....................................................................................... 1 Upconverter Performance, IF = 10 GHz ................................. 17 Functional Block Diagram .............................................................. 1 Upconverter Performance, IF = 18 GHz ................................. 19 General Description ......................................................................... 1 Isolation and Return Loss ......................................................... 21 Revision History ............................................................................... 2 IF Bandwidth--Downconverter ............................................... 23 Specifications..................................................................................... 3 Spurious Performance ............................................................... 25 Electrical Specifications ............................................................... 3 Theory of Operation ...................................................................... 26 Absolute Maximum Ratings............................................................ 4 Applications Information .............................................................. 27 Electrostatic Discharge (ESD) Ratings ...................................... 4 Typical Application Circuit ....................................................... 27 ESD Caution .................................................................................. 4 Mounting and Bonding Techniques ........................................ 28 Pin Configuration and Function Descriptions ............................. 5 Handling Precautions ................................................................ 28 Interface Schematics .................................................................... 5 Mounting ..................................................................................... 28 Typical Performance Characteristics ............................................. 6 Wire Bonding.............................................................................. 28 Downconverter Performance, IF = 1 GHz ................................ 6 Outline Dimensions ....................................................................... 29 Downconverter Performance, IF = 10 GHz .............................. 9 Ordering Guide .......................................................................... 29 Downconverter Performance, IF = 18 GHz ............................ 12 REVISION HISTORY 9/2020--Revision 0: Initial Version Rev. 0 | Page 2 of 29 Data Sheet HMC560A SPECIFICATIONS ELECTRICAL SPECIFICATIONS TA = 25C, IF = 1 GHz, LO drive level = 13 dBm, and all measurements performed as a downconverter with the upper sideband selected, unless otherwise noted. Table 1. Parameter FREQUENCY RF Pad IF Pad LO Pad LO AMPLITUDE 24 GHz TO 29 GHz PERFORMANCE Downconverter Conversion Loss Single-Sideband Noise Figure Input Third-Order Intercept (IP3) Input 1 dB Compression Point (P1dB) Input Second-Order Intercept (IP2) Upconverter Conversion Loss Input IP3 Input P1dB Isolation RF to IF LO to RF LO to IF 29 GHz TO 38 GHz PERFORMANCE Downconverter Conversion Loss Single-Sideband Noise Figure Input IP3 Input P1dB Input IP2 Upconverter Conversion Loss Input IP3 Input P1dB Isolation RF to IF LO to RF LO to IF Test Conditions/Comments Min 24 DC 22 9 Measurements taken with external LO amplifier 1 MHz separation between inputs 13 1 MHz separation between inputs 1 MHz separation between inputs 13 20 Measurements taken with external LO amplifier 1 MHz separation between inputs 14 1 MHz separation between inputs 1 MHz separation between inputs 24 34 Rev. 0 | Page 3 of 29 Typ Max Unit 13 38 18 38 15 GHz GHz GHz dBm 12 dB dB dBm dBm dBm 9 12 18 10 42 9 18 8 dB dBm dBm 20 40 27 dB dB dB 11 14 19 12 38 14 dB dB dBm dBm dBm 10 18 9 dB dBm dBm 28 38 44 dB dB dB HMC560A Data Sheet ABSOLUTE MAXIMUM RATINGS ELECTROSTATIC DISCHARGE (ESD) RATINGS Table 2. Parameter Input Power RF LO IF IF Source and Sink Current Continuous Power Dissipation, PDISS (TA = 85C, Derate 5.3 mW/C Above 85C) Temperature Channel Storage Range Operating Range Rating The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only. 25 dBm 23 dBm 25 dBm 2 mA 344 mW Human body model (HBM) per ANSI/ESDA/JEDEC JS-001. Field induced charged device model (FICDM) per JESD22C101F. ESD Ratings for HMC560A Table 3. HMC560A, 7-Pad Bare Die (CHIP) 150C/W -65C to +150C -40C to +85C Stresses at or above listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD Model HBM FICDM ESD CAUTION Rev. 0 | Page 4 of 29 Withstand Threshold (V) 500 1250 Class 1B C3 Data Sheet HMC560A PIN CONFIGURATION AND FUNCTION DESCRIPTIONS LO GND 2 HMC560A 3 RF 1 TOP VIEW (Not to Scale) 4 GND 7 6 5 NOTES 1. THE DIE BOTTOM MUST BE ATTACHED DIRECTLY TO THE GROUND PLANE EUTECTICALLY OR WITH CONDUCTIVE EPOXY. 24243-002 GND IF GND Figure 2. Pad Configuration Table 4. Pad Function Descriptions Pad No. 1, 4, 5, 7 Mnemonic GND 2 3 6 LO RF IF Die Bottom Description Not Internally Connected. No connection is required. The GND pads can be connected to RF and dc ground without affecting performance. See Figure 3 for the GND interface schematic. Local Oscillator Port. LO is ac-coupled and matched to 50 . See Figure 4 for the LO interface schematic. Radio Frequency Port. RF is ac-coupled and matched to 50 . See Figure 5 for the RF interface schematic. Intermediate Frequency Port. IF is dc-coupled. For applications not requiring operation to dc, dc block the IF port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, the IF pad must not source or sink more than 2 mA of current or die malfunction and possible die failure may result. See Figure 6 for the IF interface schematic. The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy. INTERFACE SCHEMATICS RF 24243-006 24243-003 GND IF 24243-004 LO 24243-005 Figure 5. RF Interface Schematic Figure 3. GND Interface Schematic Figure 6. IF Interface Schematic Figure 4. LO Interface Schematic Rev. 0 | Page 5 of 29 HMC560A Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE, IF = 1 GHz Upper Sideband (Low-Side LO) 0 0 -15 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 25 20 20 INPUT IP3 (dBm) 25 10 0 20 TA = +85C TA = +25C TA = -40C 22 24 26 28 30 32 34 36 38 RF FREQUENCY (GHz) 15 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 26 28 30 32 34 36 38 34 40 RF FREQUENCY (GHz) 36 38 40 LO = 15dBm LO = 13dBm LO = 11dBm LO = 9dBm 22 24 26 28 30 32 34 36 38 40 10 LO LO LO LO 5 0 20 24243-013 24 32 Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 22 30 RF FREQUENCY (GHz) 20 0 20 28 10 0 20 Figure 8. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 5 26 15 5 40 24 Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 22 RF FREQUENCY (GHz) 30 5 INPUT P1dB (dBm) -15 -20 20 24243-008 INPUT IP3 (dBm) Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -10 22 24 26 28 30 32 RF FREQUENCY (GHz) Figure 9. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 34 = 15dBm = 13dBm = 11dBm = 9dBm 36 38 40 24243-015 -20 20 -5 = 15dBm = 13dBm = 11dBm = 9dBm 24243-011 -10 LO LO LO LO 24243-010 CONVERSION GAIN (dB) -5 24243-007 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 6 of 29 HMC560A 80 70 70 60 60 INPUT IP2 (dBm) 80 50 40 30 TA = +85C TA = +25C TA = -40C 20 = 15dBm = 13dBm = 11dBm = 9dBm 50 40 30 10 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 0 20 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 13. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 14. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 7 of 29 24243-016 10 0 20 LO LO LO LO 20 24243-014 INPUT IP2 (dBm) Data Sheet HMC560A Data Sheet Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -10 -15 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) -15 25 25 20 20 INPUT IP3 (dBm) 30 10 TA = +85C TA = +25C TA = -40C 5 0 20 22 24 26 28 30 32 34 36 38 40 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 30 32 34 36 38 40 RF FREQUENCY (GHz) 36 LO LO LO LO 22 24 26 28 30 32 34 38 40 = 15dBm = 13dBm = 11dBm = 9dBm 36 38 40 10 5 0 20 24243-023 28 34 Figure 19. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 15 26 32 RF FREQUENCY (GHz) 20 24 30 10 20 22 28 15 0 20 Figure 16. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 26 5 RF FREQUENCY (GHz) 5 24 Figure 18. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 22 RF FREQUENCY (GHz) 24243-018 INPUT IP3 (dBm) -10 -20 20 Figure 15. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm INPUT P1dB (dBm) -5 = 15dBm = 13dBm = 11dBm = 9dBm LO LO LO LO 22 24 26 28 30 32 34 = 15dBm = 13dBm = 11dBm = 9dBm 36 38 40 RF FREQUENCY (GHz) Figure 17. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 20. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 8 of 29 24243-024 -20 20 LO LO LO LO 24243-021 -5 24243-017 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-020 0 Data Sheet HMC560A DOWNCONVERTER PERFORMANCE, IF = 10 GHz Upper Sideband (Low-Side LO) 0 CONVERSION GAIN (dB) -10 -15 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) -15 25 25 20 20 INPUT IP3 (dBm) 30 10 TA = +85C TA = +25C TA = -40C 5 0 24 26 28 30 32 34 36 38 40 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 34 36 38 LO LO LO LO 26 28 30 32 34 40 RF FREQUENCY (GHz) 40 36 = 15dBm = 13dBm = 11dBm = 9dBm 38 40 10 LO LO LO LO 5 0 24 24243-027 32 38 Figure 25. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 15 30 36 RF FREQUENCY (GHz) 20 28 34 10 20 26 32 15 0 24 Figure 22. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 24 30 5 RF FREQUENCY (GHz) 5 28 Figure 24. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 26 RF FREQUENCY (GHz) 24243-026 INPUT IP3 (dBm) -10 -20 24 Figure 21. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm INPUT P1dB (dBm) -5 = 15dBm = 13dBm = 11dBm = 9dBm 26 28 30 32 34 36 = 15dBm = 13dBm = 11dBm = 9dBm 38 40 RF FREQUENCY (GHz) Figure 23. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 26. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 9 of 29 24243-030 -20 24 LO LO LO LO 24243-029 -5 24243-025 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-028 0 HMC560A Data Sheet 80 70 INPUT IP2 (dBm) 50 40 30 50 40 30 20 20 10 10 0 24 = 15dBm = 13dBm = 11dBm = 9dBm 60 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 24243-031 INPUT IP2 (dBm) 60 LO LO LO LO Figure 27. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 28. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 10 of 29 24243-032 70 80 TA = +85C TA = +25C TA = -40C Data Sheet HMC560A Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 22 24 26 28 30 32 34 RF FREQUENCY (GHz) Figure 29. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -15 22 24 26 28 30 32 34 RF FREQUENCY (GHz) Figure 32. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 INPUT IP3 (dBm) 25 15 10 TA = +85C TA = +25C TA = -40C 24 26 28 30 32 = 15dBm = 13dBm = 11dBm = 9dBm 22 24 15 10 34 RF FREQUENCY (GHz) 0 20 26 28 30 Figure 30. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 15 15 INPUT P1dB (dBm) 20 10 5 10 LO LO LO LO 5 26 28 30 32 34 RF FREQUENCY (GHz) 24243-035 TA = +85C TA = +25C TA = -40C 24 34 Figure 33. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 22 32 RF FREQUENCY (GHz) 24243-037 22 LO LO LO LO 5 24243-034 INPUT IP3 (dBm) -10 25 0 20 = 15dBm = 13dBm = 11dBm = 9dBm 30 5 INPUT P1dB (dBm) -5 -20 20 30 0 20 LO LO LO LO Figure 31. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 22 24 26 28 RF FREQUENCY (GHz) 30 = 15dBm = 13dBm = 11dBm = 9dBm 32 34 24243-038 -20 20 24243-033 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-036 0 Figure 34. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 11 of 29 HMC560A Data Sheet DOWNCONVERTER PERFORMANCE, IF = 18 GHz Upper Sideband (Low-Side LO) 0 LO LO LO LO CONVERSION GAIN (dB) -10 -15 33 34 35 36 37 38 39 40 RF FREQUENCY (GHz) -15 25 20 20 INPUT IP3 (dBm) 25 10 0 32 TA = +85C TA = +25C TA = -40C 33 34 35 36 37 38 39 35 36 37 40 38 39 40 15 10 LO LO LO LO 5 RF FREQUENCY (GHz) 0 32 33 34 35 36 37 = 15dBm = 13dBm = 11dBm = 9dBm 38 39 40 RF FREQUENCY (GHz) Figure 36. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 39. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 LO LO LO LO 15 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 33 34 35 36 37 38 39 = 15dBm = 13dBm = 11dBm = 9dBm 10 5 40 RF FREQUENCY (GHz) 24243-041 5 0 32 34 Figure 38. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 33 RF FREQUENCY (GHz) 30 5 INPUT P1dB (dBm) -10 -20 32 24243-040 INPUT IP3 (dBm) Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -5 Figure 37. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 32 33 34 35 36 37 38 39 40 RF FREQUENCY (GHz) Figure 40. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 12 of 29 24243-044 -20 32 = 15dBm = 13dBm = 11dBm = 9dBm 24243-043 -5 24243-039 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-042 0 HMC560A 80 70 70 60 60 50 40 30 TA = +85C TA = +25C TA = -40C 20 40 30 LO LO LO LO 20 10 0 32 50 10 33 34 35 36 37 38 39 40 RF FREQUENCY (GHz) Figure 41. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 32 33 34 35 36 37 38 = 15dBm = 13dBm = 11dBm = 9dBm 39 40 RF FREQUENCY (GHz) Figure 42. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 13 of 29 24243-046 INPUT IP2 (dBm) 80 24243-045 INPUT IP2 (dBm) Data Sheet HMC560A Data Sheet Lower Sideband (High-Side LO) 0 0 LO = 15dBm LO = 13dBm LO = 11dBm -10 -15 21 22 23 24 25 26 RF FREQUENCY (GHz) Figure 43. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 23 24 25 26 Figure 46. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C LO LO LO LO 25 INPUT IP3 (dBm) 15 10 5 = 15dBm = 13dBm = 11dBm = 9dBm 20 15 10 5 22 23 24 25 26 RF FREQUENCY (GHz) 0 20 24243-048 21 15 15 INPUT P1dB (dBm) 20 10 TA = +85C TA = +25C TA = -40C 23 24 25 24 26 RF FREQUENCY (GHz) 25 26 10 LO LO LO LO 5 24243-049 22 23 Figure 47. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 21 22 RF FREQUENCY (GHz) Figure 44. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 5 21 24243-051 INPUT IP3 (dBm) 22 30 20 0 20 21 RF FREQUENCY (GHz) TA = +85C TA = +25C TA = -40C 25 INPUT P1dB (dBm) -15 -20 20 30 0 20 -10 Figure 45. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 21 22 23 24 RF FREQUENCY (GHz) = 15dBm = 13dBm = 11dBm = 9dBm 25 26 24243-052 -20 20 -5 24243-050 CONVERSION GAIN (dB) -5 24243-047 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C Figure 48. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 14 of 29 Data Sheet HMC560A UPCONVERTER PERFORMANCE, IF = 1 GHz Upper Sideband (Low-Side LO) 0 CONVERSION GAIN (dB) -10 -15 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) -15 25 20 20 INPUT IP3 (dBm) 25 10 0 20 TA = +85C TA = +25C TA = -40C 22 24 26 28 30 32 34 36 38 RF FREQUENCY (GHz) 28 30 32 34 36 38 40 10 0 20 LO LO LO LO 22 = 15dBm = 13dBm = 11dBm = 9dBm 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 50. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 53. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = +85C TA = +25C TA = -40C LO LO LO LO 15 INPUT P1dB (dBm) 15 10 = 15dBm = 13dBm = 11dBm = 9dBm 10 5 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 24243-055 5 0 20 26 15 5 40 24 Figure 52. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 22 RF FREQUENCY (GHz) 30 5 INPUT P1dB (dBm) -10 -20 20 24243-054 INPUT IP3 (dBm) Figure 49. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -5 = 15dBm = 13dBm = 11dBm = 9dBm Figure 51. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 22 24 26 28 30 32 RF FREQUENCY (GHz) 34 36 38 40 24243-058 -20 20 LO LO LO LO 24243-057 -5 24243-053 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-056 0 Figure 54. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 15 of 29 HMC560A Data Sheet Lower Sideband (High-Side LO) 0 LO LO LO LO CONVERSION GAIN (dB) -5 -10 -15 20 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 55. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 30 -15 20 26 28 30 32 34 10 36 38 40 Figure 58. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 5 LO LO LO LO = 15dBm = 13dBm = 11dBm = 9dBm 36 38 20 15 10 22 24 26 28 30 32 34 36 38 40 0 24243-060 20 20 22 24 26 28 30 32 34 40 RF FREQUENCY (GHz) Figure 56. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 24243-063 5 RF FREQUENCY (GHz) Figure 59. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 LO LO LO LO TA = +85C TA = +25C TA = -40C 15 = 15dBm = 13dBm = 11dBm = 9dBm INPUT P1dB (dBm) 15 10 5 10 5 20 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 24243-061 INPUT P1dB (dBm) 24 25 15 0 22 RF FREQUENCY (GHz) INPUT IP3 (dBm) INPUT IP3 (dBm) -10 30 20 0 -5 -20 TA = +85C TA = +25C TA = -40C 25 = 15dBm = 13dBm = 11dBm = 9dBm Figure 57. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 60. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 16 of 29 24243-064 -20 24243-059 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-062 0 Data Sheet HMC560A UPCONVERTER PERFORMANCE, IF = 10 GHz Upper Sideband (Low-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 28 30 32 34 36 38 40 RF FREQUENCY (GHz) -15 25 20 20 INPUT IP3 (dBm) 25 10 0 24 TA = +85C TA = +25C TA = -40C 26 28 30 32 34 36 38 30 32 34 36 38 40 LO LO LO LO = 15dBm = 13dBm = 11dBm = 9dBm 15 10 5 40 RF FREQUENCY (GHz) 0 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) Figure 62. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm Figure 65. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 LO LO LO LO 15 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 26 28 30 32 34 36 38 = 15dBm = 13dBm = 11dBm = 9dBm 10 5 40 RF FREQUENCY (GHz) 24243-067 5 0 24 28 Figure 64. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 15 26 RF FREQUENCY (GHz) 30 5 INPUT P1dB (dBm) -10 -20 24 24243-066 INPUT IP3 (dBm) Figure 61. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -5 = 15dBm = 13dBm = 11dBm = 9dBm 24243-069 26 LO LO LO LO Figure 63. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 24 26 28 30 32 34 RF FREQUENCY (GHz) 36 38 40 24243-070 -20 24 24243-065 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-068 0 Figure 66. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 17 of 29 HMC560A Data Sheet Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 20 22 24 26 28 30 32 34 RF FREQUENCY (GHz) Figure 67. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 30 20 15 10 22 LO LO LO LO 25 INPUT IP3 (dBm) 24 26 28 30 32 34 = 15dBm = 13dBm = 11dBm = 9dBm 20 15 10 5 22 24 26 28 30 32 34 RF FREQUENCY (GHz) 0 24243-072 20 22 24 26 28 30 32 34 RF FREQUENCY (GHz) Figure 68. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 20 20 24243-075 INPUT IP3 (dBm) 20 Figure 70. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 5 Figure 71. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 TA = +85C TA = +25C TA = -40C 15 INPUT P1dB (dBm) 15 10 5 10 LO LO LO LO 5 20 22 24 26 28 30 32 34 RF FREQUENCY (GHz) 24243-073 INPUT P1dB (dBm) -15 RF FREQUENCY (GHz) TA = +85C TA = +25C TA = -40C 25 0 -10 -20 30 0 -5 Figure 69. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 22 24 26 28 RF FREQUENCY (GHz) 30 = 15dBm = 13dBm = 11dBm = 9dBm 32 34 24243-076 -20 LO = 15dBm LO = 13dBm LO = 11dBm LO = 9dBm 24243-074 TA = +85C TA = +25C TA = -40C 24243-071 CONVERSION GAIN (dB) 0 Figure 72. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 18 of 29 Data Sheet HMC560A UPCONVERTER PERFORMANCE, IF = 18 GHz Upper Sideband (Low-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 33 34 35 36 37 38 39 40 RF FREQUENCY (GHz) Figure 73. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm 33 34 35 36 37 38 LO LO LO LO 25 INPUT IP3 (dBm) 39 40 10 = 15dBm = 13dBm = 11dBm = 9dBm 20 15 10 5 34 35 36 37 38 39 40 RF FREQUENCY (GHz) 0 32 24243-078 33 33 34 35 36 37 38 39 40 RF FREQUENCY (GHz) Figure 74. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 24243-081 INPUT IP3 (dBm) -15 Figure 76. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 5 Figure 77. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 LO LO LO LO 15 INPUT P1dB (dBm) 15 10 TA = +85C TA = +25C TA = -40C 5 33 34 35 36 37 38 39 = 15dBm = 13dBm = 11dBm = 9dBm 10 5 40 RF FREQUENCY (GHz) 24243-079 INPUT P1dB (dBm) -10 30 15 0 32 = 15dBm = 13dBm = 11dBm = 9dBm RF FREQUENCY (GHz) TA = +85C TA = +25C TA = -40C 20 0 32 -5 -20 32 30 25 LO LO LO LO Figure 75. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 32 33 34 35 36 37 RF FREQUENCY (GHz) 38 39 40 24243-082 -20 32 24243-077 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-080 0 Figure 78. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 19 of 29 HMC560A Data Sheet Lower Sideband (High-Side LO) 0 CONVERSION GAIN (dB) -5 -10 -15 21 22 23 24 25 26 RF FREQUENCY (GHz) Figure 79. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm -10 -15 21 22 23 24 25 26 RF FREQUENCY (GHz) Figure 82. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 25C 30 TA = +85C TA = +25C TA = -40C 25 LO = 15dBm LO = 13dBm LO = 11dBm 25 20 INPUT IP3 (dBm) INPUT IP3 (dBm) -5 -20 20 30 15 10 5 20 15 10 5 21 22 23 24 25 26 RF FREQUENCY (GHz) 0 20 24243-084 0 20 LO = 15dBm LO = 13dBm LO = 11dBm 21 22 23 24 25 26 RF FREQUENCY (GHz) Figure 80. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm 24243-087 -20 20 24243-083 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-086 0 Figure 83. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25C 20 20 TA = +85C TA = +25C TA = -40C 10 5 0 20 10 LO LO LO LO 5 21 22 23 24 25 26 RF FREQUENCY (GHz) Figure 81. Input P1dB vs. RF Frequency at Various Temperatures, LO = 13 dBm 0 20 21 22 23 24 RF FREQUENCY (GHz) = 15dBm = 13dBm = 11dBm = 9dBm 25 26 24243-088 INPUT P1dB (dBm) 15 24243-085 INPUT P1dB (dBm) 15 Figure 84. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 20 of 29 Data Sheet HMC560A ISOLATION AND RETURN LOSS 80 80 TA = +85C TA = +25C TA = -40C 60 50 40 30 20 22 24 26 28 30 32 34 36 38 40 50 40 30 20 0 24243-095 24 26 28 30 32 34 36 38 40 Figure 88. LO to RF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C 80 TA = +85C TA = +25C TA = -40C 70 LO LO LO LO 70 LO TO IF ISOLATION (dB) 60 50 40 30 20 60 = 15dBm = 13dBm = 11dBm = 9dBm 50 40 30 20 10 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 0 20 24243-096 22 Figure 86. LO to IF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm 22 24 26 28 30 32 34 36 38 40 RF FREQUENCY (GHz) 24243-099 10 Figure 89. LO to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C 80 80 TA = +85C TA = +25C TA = -40C 70 LO LO LO LO 70 RF TO IF ISOLATION (dB) 60 50 40 30 20 10 60 = 15dBm = 13dBm = 11dBm = 9dBm 50 40 30 20 10 22 24 26 28 30 32 RF FREQUENCY (GHz) 34 36 38 40 0 20 24243-097 0 20 22 RF FREQUENCY (GHz) 80 0 20 20 Figure 87. RF to IF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm 22 24 26 28 30 32 RF FREQUENCY (GHz) 34 36 38 40 24243-100 20 Figure 85. LO to RF Isolation vs. RF Frequency at Various Temperatures, LO = 13 dBm LO TO IF ISOLATION (dB) 60 10 RF FREQUENCY (GHz) RF TO IF ISOLATION (dB) = 15dBm = 13dBm = 11dBm = 9dBm 24243-098 10 0 LO LO LO LO 70 LO TO RF ISOLATION (dB) LO TO RF ISOLATION (dB) 70 Figure 90. RF to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 21 of 29 HMC560A Data Sheet 0 0 -5 IF RETURN LOSS (dB) -10 -15 LO = 15dBm LO = 13dBm LO = 11dBm LO = 9dBm 20 22 24 26 28 30 32 34 36 38 40 Figure 91. LO Return Loss vs. LO Frequency at Various LO Power Levels, TA = 25C RF RETURN LOSS (dB) = 15dBm = 13dBm = 11dBm = 9dBm 24 26 28 30 32 RF FREQUENCY (GHz) 34 36 38 40 24243-102 -20 22 0 2 4 6 8 10 12 14 16 18 20 Figure 93. IF Return Loss vs. IF Frequency at Various LO Power Levels, TA = 25C, LO = 15 GHz -15 20 -20 IF FREQUENCY (GHz) -10 -25 -15 -30 0 -5 -10 -25 LO FREQUENCY (GHz) LO LO LO LO = 15dBm = 13dBm = 11dBm = 9dBm 24243-103 -20 24243-101 LO RETURN LOSS (dB) -5 -25 LO LO LO LO Figure 92. RF Return Loss vs. RF Frequency at Various LO Power Levels, TA = 25C, LO = 15 GHz Rev. 0 | Page 22 of 29 Data Sheet HMC560A IF BANDWIDTH--DOWNCONVERTER Upper Sideband, LO Frequency = 24 GHz 0 CONVERSION GAIN (dB) -5 -10 -15 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 94. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 13 dBm = 15dBm = 13dBm = 11dBm = 9dBm -10 -15 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 96. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25C 30 TA = +85C TA = +25C TA = -40C 25 25 INPUT IP3 (dBm) 20 15 10 5 20 15 LO LO LO LO 10 = 15dBm = 13dBm = 11dBm = 9dBm 5 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) 24243-105 INPUT IP3 (dBm) -5 -20 30 0 LO LO LO LO Figure 95. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm 0 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 97. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 23 of 29 24243-107 -20 24243-104 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-106 0 HMC560A Data Sheet Lower Sideband, LO Frequency = 36 GHz 0 CONVERSION GAIN (dB) -5 -10 -15 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 98. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 13 dBm = 15dBm = 13dBm = 11dBm = 9dBm -10 -15 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 100. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25C 30 TA = +85C TA = +25C TA = -40C 25 LO LO LO LO 25 INPUT IP3 (dBm) 20 15 10 5 = 15dBm = 13dBm = 11dBm = 9dBm 20 15 10 5 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) 24243-109 INPUT IP3 (dBm) -5 -20 30 0 LO LO LO LO Figure 99. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm 0 0 2 4 6 8 10 12 14 16 18 20 IF FREQUENCY (GHz) Figure 101. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25C Rev. 0 | Page 24 of 29 24243-111 -20 24243-108 CONVERSION GAIN (dB) TA = +85C TA = +25C TA = -40C 24243-110 0 Data Sheet HMC560A SPURIOUS PERFORMANCE Downconversion, Lower Sideband LO Harmonics Spur values are (M x RF) - (N x LO). RF = 35 GHz, LO = 36 GHz, RF power = -10 dBm, and LO power = +13 dBm. Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable. LO = 13 dBm, and all values in dBc are below the input LO level and measured at the RF port. N/A means not applicable. Table 5. LO Harmonics at RF N x LO NLO Spur at RF Port (dBc) LO Frequency (GHz) 24 28 30 32 36 40 1 40 36 36 38 38 48 2 33 N/A N/A N/A N/A N/A 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A M x RF 0 19 1 0 2 35 3 0 4 1 2 N/A 70 54 67 N/A 3 N/A N/A 67 65 N/A 4 N/A N/A N/A 73 N/A N/A Upconversion, Upper Sideband LO = 13 dBm, and all values in dBc are below the input LO level and measured at the IF port. N/A means not applicable. Spur values are (M x IF input (IFIN)) + (N x LO). IFIN = 1 GHz, LO = 24 GHz, IFIN power = -10 dBm, and LO power = +13 dBm. Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable. Table 6. LO Harmonics at IF N x LO NLO Spur at IF Port (dBc) 1 76 2 66 3 4 -4 0 82 N/A N/A -3 84 69 68 N/A N/A -2 57 49 51 N/A N/A -1 16 0 31 N/A N/A 0 0 7 1 N/A N/A +1 16 0 34 N/A N/A +2 57 49 53 N/A N/A M x N Spurious Outputs +3 85 73 N/A N/A N/A Downconversion, Upper Sideband +4 82 76 N/A N/A N/A LO Frequency (GHz) 24 28 30 32 36 40 1 27 37 47 50 45 43 2 68 N/A N/A N/A N/A N/A 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A M x IFIN Upconversion, Lower Sideband Spur values are (M x RF) - (N x LO). RF = 25 GHz, LO = 24 GHz, RF power = -10 dBm, and LO power = +13 dBm. Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable. Spur values are (M x IFIN) + (N x LO). IFIN = 1 GHz, LO = 36 GHz, IFIN power = -10 dBm, and LO power = +13 dBm. Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable. N x LO M x RF 1 0 11 1 0 2 34 3 38 2 61 63 62 3 N/A N/A 75 4 N/A N/A N/A N x LO 4 56 N/A 66 -4 0 80 N/A N/A N/A 67 76 -3 83 59 N/A N/A N/A 74 80 -2 55 46 N/A N/A N/A -1 14 0 N/A N/A N/A 0 0 5 N/A N/A N/A +1 14 0 N/A N/A N/A +2 55 47 N/A N/A N/A +3 82 63 N/A N/A N/A +4 79 64 N/A N/A N/A M x IFIN Rev. 0 | Page 25 of 29 1 72 2 3 4 HMC560A Data Sheet THEORY OF OPERATION The HMC560A is a GaAs, MMIC, double balanced mixer that can be used as an upconverter or a downconverter from 24 GHz to 38 GHz. A single HMC560A can replace multiple narrow-band mixers in a design with a small printed circuit board (PCB) footprint. When used as a downconverter, the HMC560A downconverts RF between 24 GHz and 38 GHz to IF values between dc and 18 GHz. When used as an upconverter, the mixer upconverts IF values between dc and 18 GHz to RF values between 24 GHz and 38 GHz. The mixer performs well with LO drive level values of 13 dBm or greater and provides excellent LO to RF and LO to IF suppression due to optimized balun structures. Rev. 0 | Page 26 of 29 Data Sheet HMC560A APPLICATIONS INFORMATION RF SOURCE LO SOURCE Figure 102 shows the typical application circuit for the HMC560A. The HMC560A is a passive device and does not require any external components. The LO and RF pads are internally ac-coupled. When IF operation is not required until dc, it is recommended to use an ac-coupled capacitor at the IF port if dc operation is not required GND 2 3 1 4 HMC560A 7 GND 6 GND 5 GND IF OUTPUT Figure 102. Typical Application Circuit Rev. 0 | Page 27 of 29 24243-112 TYPICAL APPLICATION CIRCUIT HMC560A Data Sheet MOUNTING AND BONDING TECHNIQUES Cleanliness Attach the die directly to the ground plane eutectically or with conductive epoxy. To bring RF to and from the chip, 50 microstrip transmission lines on 0.127 mm (0.005) thick alumina, thin film substrates are recommended (see Figure 103). Handle the chips in a clean environment. Do not attempt to clean the chip using liquid cleaning systems. Static Sensitivity Follow ESD precautions to protect against ESD strikes. Transients 0.102mm (0.004") THICK GaAs MMIC Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup. WIRE BOND 0.076mm (0.003") General Handling Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges. Do not touch the chip with a vacuum collet, tweezers, or fingers. 24243-113 RF GROUND PLANE 0.127mm (0.005") THICK ALUMINA, THIN FILM SUBSTRATE Figure 103. Bonding RF Pads to 5 mil Substrate MOUNTING If using 0.254 mm (0.010) thick alumina, thin film substrates, raise the die 0.150 mm (0.006) so that the surface of the die is coplanar with the surface of the substrate. A way to accomplish this is to attach the 0.102 mm (0.004) thick die to a 0.150 mm (0.006) thick molybdenum heat spreader (moly tab), which is then attached to the ground plane (see Figure 104). To minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm (0.003). 0.102mm (0.004") THICK GaAs MMIC WIRE BOND 0.076mm (0.003") Eutectic Die Attach An 80/20 gold and tin preform is recommended with a work surface temperature of 255C and a tool temperature of 265C. When hot 90/10 nitrogen(N)/hydrogen (H) gas is applied, the tool tip temperature must be 290C. Do not expose the chip to a temperature greater than 320C for more than 20 seconds. No more than 3 seconds of scrubbing is required for attachment. Epoxy Die Attach Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip when the chip is placed into position. Cure epoxy per the schedule of the manufacturer. 0.254mm (0.010") THICK ALUMINA, THIN FILM SUBSTRATE 24243-114 RF GROUND PLANE 0.150mm (0.006") THICK MOLY TAB The chip is back metallized and can be die mounted with gold (Au)/tin (Sn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat. WIRE BONDING Ball or wedge bond with 0.025 mm (0.00098) diameter pure gold wire is recommended. Thermosonic wire bonding with a nominal stage temperature of 150C and a ball bonding force of 40 grams to 50 grams, or a wedge bonding force of 18 grams to 22 grams, is recommended. Use the minimum level of ultrasonic energy to achieve reliable wire bonds. Wire bonds must begin on the chip and terminate on the package or substrate. All bonds must be as short as possible <0.31 mm (0.01220). Figure 104. Bonding RF Pads to 10 mil Substrate HANDLING PRECAUTIONS To avoid permanent damage to the device, follow the precautions in the following Storage, Cleanliness, Static Sensitivity, Transients, and General Handling sections. Storage All bare dice are placed in either waffle- or gel-based ESD protective containers and then sealed in an ESD protective bag for shipment. After opening the sealed ESD protective bag, store all dice in a dry nitrogen environment. Rev. 0 | Page 28 of 29 Data Sheet HMC560A OUTLINE DIMENSIONS 1.190 0.238 0.102 0.203 0.100 x 0.100 (Pads 1-7) 0.217 3 2 0.150 0.150 4 1 0.710 0.417 0.285 7 6 5 0.182 0.105 TOP VIEW SIDE VIEW (CIRCUIT SIDE) 0.514 0.150 0.150 0.166 09-16-2019-A 0.105 *AIR BRIDGE AREA *This die utilizes fragile air bridges. Any pickup tools used must not contact this area. Figure 105. 7-Pad Bare Die [CHIP] (C-7-10) Dimensions shown in millimeters ORDERING GUIDE Model1 HMC560A HMC560A-SX 1 Temperature Range -40C to +85C -40C to +85C Package Description 7-Pad Bare Die [CHIP] 7-Pad Bare Die [CHIP] The HMC560A and HMC560A-SX are RoHS compliant parts. (c)2020 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D24243-9/20(0) Rev. 0 | Page 29 of 29 Package Option C-7-10 C-7-10