K10P32M50SF0
K10 Sub-Family
Supports the following:
MK10DN32VFM5, MK10DX32VFM5,
MK10DN64VFM5, MK10DX64VFM5,
MK10DN128VFM5, MK10DX128VFM5
Features
Operating Characteristics
Voltage range: 1.71 to 3.6 V
Flash write voltage range: 1.71 to 3.6 V
Temperature range (ambient): -40 to 105°C
Performance
Up to 50 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
Memories and memory interfaces
Up to 128 KB program flash.
Up to 32 KB FlexNVM on FlexMemory devices
2 KB FlexRAM on FlexMemory devices
Up to 16 KB RAM
Serial programming interface (EzPort)
Clocks
3 to 32 MHz crystal oscillator
32 kHz crystal oscillator
Multi-purpose clock generator
System peripherals
Multiple low-power modes to provide power
optimization based on application requirements
4-channel DMA controller, supporting up to 41
request sources
External watchdog monitor
Software watchdog
Low-leakage wakeup unit
Security and integrity modules
Hardware CRC module to support fast cyclic
redundancy checks
128-bit unique identification (ID) number per chip
Analog modules
16-bit SAR ADC
Two analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
Timers
Programmable delay block
Eight-channel motor control/general purpose/PWM
timer
Two-channel quadrature decoder/general purpose
timer
Periodic interrupt timers
16-bit low-power timer
Carrier modulator transmitter
Real-time clock
Communication interfaces
SPI module
I2C module
Three UART modules
I2S module
Freescale Semiconductor Document Number: K10P32M50SF0
Data Sheet: Technical Data Rev. 4 5/2012
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2011–2012 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
1.1 Determining valid orderable parts......................................3
2 Part identification......................................................................3
2.1 Description.........................................................................3
2.2 Format...............................................................................3
2.3 Fields.................................................................................3
2.4 Example............................................................................4
3Terminology and guidelines......................................................4
3.1 Definition: Operating requirement......................................4
3.2 Definition: Operating behavior...........................................5
3.3 Definition: Attribute............................................................5
3.4 Definition: Rating...............................................................6
3.5 Result of exceeding a rating..............................................6
3.6 Relationship between ratings and operating
requirements......................................................................6
3.7 Guidelines for ratings and operating requirements............7
3.8 Definition: Typical value.....................................................7
3.9 Typical value conditions....................................................8
4Ratings......................................................................................9
4.1 Thermal handling ratings...................................................9
4.2 Moisture handling ratings..................................................9
4.3 ESD handling ratings.........................................................9
4.4 Voltage and current operating ratings...............................9
5General.....................................................................................10
5.1 AC electrical characteristics..............................................10
5.2 Nonswitching electrical specifications...............................10
5.2.1 Voltage and current operating requirements.........10
5.2.2 LVD and POR operating requirements.................11
5.2.3 Voltage and current operating behaviors..............12
5.2.4 Power mode transition operating behaviors..........13
5.2.5 Power consumption operating behaviors..............14
5.2.6 EMC radiated emissions operating behaviors.......18
5.2.7 Designing with radiated emissions in mind...........19
5.2.8 Capacitance attributes..........................................19
5.3 Switching specifications.....................................................19
5.3.1 Device clock specifications...................................19
5.3.2 General switching specifications...........................20
5.4 Thermal specifications.......................................................21
5.4.1 Thermal operating requirements...........................21
5.4.2 Thermal attributes.................................................21
6 Peripheral operating requirements and behaviors....................22
6.1 Core modules....................................................................22
6.1.1 JTAG electricals....................................................22
6.2 System modules................................................................25
6.3 Clock modules...................................................................25
6.3.1 MCG specifications...............................................25
6.3.2 Oscillator electrical specifications.........................27
6.3.3 32 kHz Oscillator Electrical Characteristics...........29
6.4 Memories and memory interfaces.....................................30
6.4.1 Flash electrical specifications................................30
6.4.2 EzPort Switching Specifications............................34
6.5 Security and integrity modules..........................................35
6.6 Analog...............................................................................35
6.6.1 ADC electrical specifications.................................35
6.6.2 CMP and 6-bit DAC electrical specifications.........40
6.7 Timers................................................................................43
6.8 Communication interfaces.................................................43
6.8.1 DSPI switching specifications (limited voltage
range)....................................................................43
6.8.2 DSPI switching specifications (full voltage range).45
6.8.3 I2C switching specifications..................................47
6.8.4 UART switching specifications..............................47
6.8.5 I2S/SAI Switching Specifications..........................47
6.9 Human-machine interfaces (HMI)......................................51
6.9.1 TSI electrical specifications...................................51
7 Dimensions...............................................................................53
7.1 Obtaining package dimensions.........................................53
8 Pinout........................................................................................53
8.1 K10 Signal Multiplexing and Pin Assignments..................53
8.2 K10 Pinouts.......................................................................54
9 Revision History........................................................................55
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
2 Freescale Semiconductor, Inc.
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK10 and MK10 .
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K10
A Key attribute D = Cortex-M4 w/ DSP
F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
Table continues on the next page...
Ordering parts
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 3
Field Description Values
FFF Program flash memory size 32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
R Silicon revision Z = Initial
(Blank) = Main
A = Revision after main
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
ML = 104 MAPBGA (8 mm x 8 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CC Maximum CPU frequency (MHz) 5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
2.4 Example
This is an example part number:
MK10DN32VFM5
3 Terminology and guidelines
Terminology and guidelines
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
4 Freescale Semiconductor, Inc.
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
0.9 1.1 V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol Description Min. Max. Unit
IWP Digital I/O weak pullup/
pulldown current
10 130 µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
Terminology and guidelines
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 5
3.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
–0.3 1.2 V
3.5 Result of exceeding a rating
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
Terminology and guidelines
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
6 Freescale Semiconductor, Inc.
3.6 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
Terminology and guidelines
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 7
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol Description Min. Typ. Max. Unit
IWP Digital I/O weak
pullup/pulldown
current
10 70 130 µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
0.90 0.95 1.00 1.05 1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD (V)
I(μA)
DD_STOP
TJ
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD 3.3 V supply voltage 3.3 V
Terminology and guidelines
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
8 Freescale Semiconductor, Inc.
4 Ratings
4.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
Table continues on the next page...
Ratings
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 9
Symbol Description Min. Max. Unit
IDD Digital supply current 155 mA
VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VDD + 0.3 V
VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V
IDMaximum current single pin limit (applies to all port pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
have CL=30pF loads,
are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
have their passive filter disabled (PORTx_PCRn[PFE]=0)
5.2 Nonswitching electrical specifications
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
10 Freescale Semiconductor, Inc.
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICIO I/O pin DC injection current — single pin
VIN < VSS-0.3V (Negative current injection)
VIN > VDD+0.3V (Positive current injection)
-3
+3
mA
1
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
Negative current injection
Positive current injection
-25
+25
mA
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 11
Table 2. VDD supply LVD and POR operating requirements (continued)
Symbol Description Min. Typ. Max. Unit Notes
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
±80 mV
VLVDL Falling low-voltage detect threshold — low range
(LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
±60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
12 Freescale Semiconductor, Inc.
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Max. Unit Notes
VOH Output high voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA
VDD – 0.5
VDD – 0.5
V
V
Output high voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
VOL Output low voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA
0.5
0.5
V
V
Output low voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
IIN Input leakage current (per pin)
@ full temperature range
@ 25 °C
1.0
0.1
μA
μA
1
IOZ Hi-Z (off-state) leakage current (per pin) 1 μA
IOZ Total Hi-Z (off-state) leakage current (all input pins) 4 μA
RPU Internal pullup resistors 22 50 2
RPD Internal pulldown resistors 22 50 3
1. Tested by ganged leakage method
2. Measured at Vinput = VSS
3. Measured at Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table
assume this clock configuration:
CPU and system clocks = 50 MHz
Bus clock = 50 MHz
Flash clock = 25 MHz
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 13
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
300 μs 1
VLLS0 RUN 130 μs
VLLS1 RUN 130 μs
VLLS2 RUN 70 μs
VLLS3 RUN 70 μs
LLS RUN 6 μs
VLPS RUN 5.2 μs
STOP RUN 5.2 μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V
@ 3.0V
13.7
13.9
15.1
15.3
mA
mA
2
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
@ 3.0V
@ 25°C
@ 125°C
16.1
16.3
16.7
18.2
17.7
18.4
mA
mA
mA
3, 4
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
7.5 8.4 mA 2
IDD_WAIT Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
5.6 6.4 mA 5
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
14 Freescale Semiconductor, Inc.
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
867 μA 6
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
1.1 mA 7
IDD_VLPW Very-low-power wait mode current at 3.0 V 509 μA 8
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
310
384
629
426
458
1100
μA
μA
μA
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
3.5
20.7
85
22.6
52.9
220
μA
μA
μA
IDD_LLS Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
2.1
7.7
32.2
3.7
43.1
68
μA
μA
μA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
1.5
4.8
20
2.9
22.5
37.8
μA
μA
μA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
1.4
4.1
17.3
2.8
19.2
32.4
μA
μA
μA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.678
2.8
13.6
1.3
13.6
24.5
μA
μA
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
@ –40 to 25°C
@ 70°C
@ 105°C
0.367
2.4
13.2
1.0
13.3
24.1
μA
μA
μA
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 15
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
@ –40 to 25°C
@ 70°C
@ 105°C
0.176
2.2
13
0.859
13.1
23.9
μA
μA
μA
IDD_VBAT Average current with RTC and 32kHz disabled at
3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.19
0.49
2.2
0.22
0.64
3.2
μA
μA
μA
IDD_VBAT Average current when CPU is not accessing
RTC registers
@ 1.8V
@ –40 to 25°C
@ 70°C
@ 105°C
@ 3.0V
@ –40 to 25°C
@ 70°C
@ 105°C
0.57
0.90
2.4
0.67
1.0
2.7
0.67
1.2
3.5
0.94
1.4
3.9
μA
μA
μA
μA
μA
μA
9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral
clocks disabled.
3. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral
clocks enabled, and peripherals are in active operation.
4. Max values are measured with CPU executing DSP instructions
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
6. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
Code executing from flash.
7. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled
but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Includes 32kHz oscillator current and RTC operation.
5.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in FBE mode
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFL
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
16 Freescale Semiconductor, Inc.
Figure 2. Run mode supply current vs. core frequency
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 17
Figure 3. VLPR mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 64LQFP
Symbol Description Frequency
band (MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 19 dBμV 1 , 2
VRE2 Radiated emissions voltage, band 2 50–150 21 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 19 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 11 dBμV
VRE_IEC IEC level 0.15–1000 L 2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
18 Freescale Semiconductor, Inc.
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol Description Min. Max. Unit Notes
Normal run mode
fSYS System and core clock 50 MHz
fBUS Bus clock 50 MHz
fFLASH Flash clock 25 MHz
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
fFLASH Flash clock 1 MHz
fERCLK External reference clock 16 MHz
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 19
Table 9. Device clock specifications (continued)
Symbol Description Min. Max. Unit Notes
fLPTMR_pin LPTMR clock 25 MHz
fLPTMR_ERCLK LPTMR external reference clock 16 MHz
fI2S_MCLK I2S master clock 12.5 MHz
fI2S_BCLK I2S bit clock 4 MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CMT, and I2C signals.
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
50 ns 3
External reset pulse width (digital glitch filter disabled) 100 ns 3
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
13
7
36
24
ns
ns
ns
ns
4
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
20 Freescale Semiconductor, Inc.
Table 10. General switching specifications (continued)
Symbol Description Min. Max. Unit Notes
Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
5
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75pF load
5. 15pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol Description Min. Max. Unit
TJDie junction temperature –40 125 °C
TAAmbient temperature –40 105 °C
5.4.2 Thermal attributes
Board type Symbol Description 32 QFN Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
94 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
32 °C/W 1, 3
Table continues on the next page...
General
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 21
Board type Symbol Description 32 QFN Unit Notes
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
78 °C/W 1,3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
27 °C/W ,
RθJB Thermal
resistance, junction
to board
12 °C/W 5
RθJC Thermal
resistance, junction
to case
1.5 °C/W 6
ΨJT Thermal
characterization
parameter, junction
to package top
outside center
(natural
convection)
6 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental
Conditions—Forced Convection (Moving Air) with the board horizontal.
5. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
6. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
7. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 JTAG electricals
Table 12. JTAG voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 5.5 V
Table continues on the next page...
Peripheral operating requirements and behaviors
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
22 Freescale Semiconductor, Inc.
Table 12. JTAG voltage range electricals (continued)
Symbol Description Min. Max. Unit
J1 TCLK frequency of operation
JTAG
CJTAG
10
5
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
JTAG
CJTAG
100
200
ns
ns
ns
J4 TCLK rise and fall times 1 ns
J5 TMS input data setup time to TCLK rise
JTAG
CJTAG
53
112
ns
J6 TDI input data setup time to TCLK rise 8 ns
J7 TMS input data hold time after TCLK rise
JTAG
CJTAG
3.4
3.4
ns
J8 TDI input data hold time after TCLK rise 3.4 ns
J9 TCLK low to TMS data valid
JTAG
CJTAG
48
85
ns
J10 TCLK low to TDO data valid 48 ns
J11 Output data hold/invalid time after clock edge1 3 ns
1. They are common for JTAG and CJTAG. Input transition = 1 ns and Output load = 50pf
J2
J3 J3
J4 J4
TCLK (input)
Figure 4. Test clock input timing
Peripheral operating requirements and behaviors
K10 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc. 23