Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Overview KEMET's X8L dielectric features a 150C maximum operating temperature and is considered "general purpose high temperature." These components are fixed, ceramic dielectric capacitors suited for high temperature bypass and decoupling applications or frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X8L exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature up to 125C. Beyond 125C X8L displays a wider variation in capacitance. Capacitance change is limited to 15% from -55C to +125C and +15, -40% from 125C to 150C. These devices are available with KEMET's Flexible termination technology which inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures. Although flexible termination technology does not eliminate the potential for mechanical damage that may propagate during extreme environmental and handling conditions, it does provide superior flex performance over standard termination systems. In addition to commercial grade, automotive grade devices are available and meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements. Driven by the demand for a more robust and reliable component, X8L dielectric capacitors were developed for critical applications where reliability at higher operating temperatures are a concern. These capacitors are widely used in automotive circuits as well as general high temperature applications. Concerned with flex cracks resulting from excessive tensile and shear stresses produced during board flexure and thermal cycling? Click image above for interactive 3D content Open PDF in Adobe Reader for full functionality Ordering Information C Ceramic 1210 X 106 K Case Size Specification/ Capacitance Capacitance Code (pF) (L" x W") Series1 Tolerance 0402 0603 0805 1206 1210 C = Standard X = Flexible termination Two significant digits and number of zeros J = 5% K = 10% M = 20% 8 N A C TU Rated Voltage (VDC) Dielectric Failure Rate/ Design Termination Finish2 Packaging/Grade (C-Spec) N = X8L A = N/A 9 = 6.3 8 = 10 4 = 16 3 = 25 5 = 50 C = 100% Matte Sn L = SnPb (5% Pb minimum) See "Packaging C-Spec Ordering Options Table" The flexible termination option is not available on EIA 0402 case size product. "C" must be used in the 6th character position when ordering this case size. 2 Additional termination finish options may be available. Contact KEMET for details. 2 SnPb termination finish option is not available on Automotive Grade product. 1 One world. One KEMET (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 1 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Packaging C-Spec Ordering Options Table Packaging/Grade Ordering Code (C-Spec) Packaging Type Commercial Grade1 Bulk Bag 7" Reel/Unmarked 13" Reel/Unmarked 7" Reel/Marked 13" Reel/Marked 7" Reel/Unmarked/2 mm pitch2 13" Reel/Unmarked/2 mm pitch2 Not Required (Blank) TU 7411 (EIA 0603 and smaller case sizes) 7210 (EIA 0805 and larger case sizes) TM 7040 (EIA 0603) 7215 (EIA 0805 and larger case sizes) 7081 7082 Automotive Grade3 7" Reel 13" Reel/Unmarked 7" Reel/Unmarked/2 mm pitch2 13" Reel/Unmarked/2 mm pitch2 AUTO AUTO7411 (EIA 0603 and smaller case sizes) AUTO7210 (EIA 0805 and larger case sizes) 3190 3191 Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging. The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. 2 The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information". 3 Reeling tape options (Paper or Plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel Packaging Quantities" and "Tape & Reel Packaging Information". 3 For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information". 3 All Automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking". 1 1 Benefits * * * * * * * -55C to +150C operating temperature range Lead (Pb)-free, RoHS and REACH compliant EIA 0402, 0603, 0805, 1206, and 1210 case sizes DC voltage ratings of 10 V, 16 V, 25 V, and 50 V Capacitance offerings ranging from 0.012 F to 10 F Available capacitance tolerances of 5%, 10%, and 20% Commercial and Automotive (AEC-Q200) grades available * Non-polar device, minimizing installation concerns * 100% pure matte tin-plated termination finish allowing for excellent solderability * SnPb termination finish option available upon request (5% Pb minimum) * Flexible termination option available upon request Applications Typical applications include use in extreme environments such as down-hole oil exploration, under-hood automotive, military and aerospace. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 2 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Automotive C-Spec Information KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP). Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.) Product Change Notification (PCN) The KEMET product change notification system is used to communicate primarily the following types of changes: * Product/process changes that affect product form, fit, function, and/or reliability * Changes in manufacturing site * Product obsolescence Process/Product change Obsolescence* Days Prior To Implementation KEMET assigned Yes (with approval and sign off) Yes 180 days minimum AUTO Yes (without approval) Yes 90 days minimum 1 1 Customer Notification Due To: KEMET Automotive C-Spec KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET. Production Part Approval Process (PPAP) The purpose of the Production Part Approval Process is: * To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts. * To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization. * To demonstrate that the established manufacturing process has the potential to produce the part. 1 PPAP (Product Part Approval Process) Level KEMET Automotive C-Spec 1 2 3 4 5 KEMET assigned1 AUTO KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET. Part number specific PPAP available Product family PPAP only (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 3 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Dimensions - Standard Termination - Millimeters (Inches) L W B T S EIA Size Code Metric Size Code 0402 1005 0603 1608 0805 2012 1206 3216 1210 3225 L Length W Width 1.00 (0.040) 0.05 (0.002) 1.60 (0.063) 0.15 (0.006) 2.00 (0.079) 0.20 (0.008) 3.20 (0.126) 0.20 (0.008) 3.20 (0.126) 0.20 (0.008) 0.50 (0.020) 0.05 (0.002) 0.80 (0.032) 0.15 (0.006) 1.25 (0.049) 0.20 (0.008) 1.60 (0.063) 0.20 (0.008) 2.50 (0.098) 0.20 (0.008) T Thickness B Bandwidth See Table 2 for Thickness 0.30 (0.012) 0.10 (0.004) 0.35 (0.014) 0.15 (0.006) 0.50 (0.02) 0.25 (0.010) 0.50 (0.02) 0.25 (0.010) 0.50 (0.02) 0.25 (0.010) S Separation Minimum Mounting Technique 0.30 (0.012) Solder Reflow Only 0.70 (0.028) 0.75 (0.030) N/A Solder Wave or Solder Reflow Solder Reflow Only Dimensions - Flexible Termination - Millimeters (Inches) EIA Size Code Metric Size Code 0603 1608 0805 2012 1206 3216 1210 3225 L Length W Width 1.60 (0.063) 0.17 (0.007) 2.00 (0.079) 0.30 (0.012) 3.30 (0.130) 0.40 (0.016) 3.30 (0.130) 0.40 (0.016) 0.80 (0.032) 0.15 (0.006) 1.25 (0.049) 0.30 (0.012) 1.60 (0.063) 0.35 (0.013) 2.60 (0.102) 0.30(0.012) T Thickness B Bandwidth See Table 2 for Thickness 0.45 (0.018) 0.15 (0.006) 0.50 (0.020) 0.25 (0.010) 0.60 (0.024) 0.25 (0.010) 0.60 (0.024) 0.25 (0.010) (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com S Separation Minimum 0.58 (0.023) 0.75 (0.030) N/A Mounting Technique Solder Wave or Solder Reflow Solder Reflow Only C1008_X8L_150C_SMD * 11/9/2018 4 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Qualification/Certification Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability. Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com. Environmental Compliance Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option). Electrical Parameters/Characteristics Item Parameters/Characteristics Operating Temperature Range Capacitance Change with Reference to +25C and 0 VDC Applied (TCC) Aging Rate (Maximum % Capacitance Loss/Decade Hour) 1 2 3 4 Dielectric Withstanding Voltage (DWV) Dissipation Factor (DF) Maximum Limit at 25C Insulation Resistance (IR) Minimum Limit at 25C -55C to +150C 15% (-55C to 125C), +15, -40% (125C to 150C) 3.0% 250% of rated voltage (51 seconds and charge/discharge not exceeding 50 mA) 3.5% ( 16V) and 2.5% ( 25V) 500 megohm microfarads or 10 G (Rated voltage applied for 1205 seconds at 25C) Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours. DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor. 3 Capacitance and dissipation factor (DF) measured under the following conditions: 1kHz 50Hz and 1.0 0.2 Vrms if capacitance 10F 120Hz 10Hz and 0.5 0.1 Vrms if capacitance >10F 4 To obtain IR limit, divide M-F value by the capacitance and compare to G limit. Select the lower of the two limits. Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON". 1 2 Post Environmental Limits High Temperature Life, Biased Humidity, Moisture Resistance Dielectric X8L Rated DC Voltage 25 16 Capacitance Value All Dissipation Factor (Maximum %) 3.0 5.0 Capacitance Shift Insulation Resistance 20% 10% of Initial Limit (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 5 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 1 - Capacitance Range/Selection Waterfall (0402 - 1210 Case Sizes) Cap Cap Code Case Size/ Series C0402C Voltage Code 9 8 4 Rated Voltage (VDC) 6.3 10 16 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 564 684 824 105 125 155 185 225 275 335 395 475 565 685 825 106 Cap Cap Code J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M C0805C C1206C C1210C 3 9 8 4 3 5 9 8 4 3 5 9 8 4 3 5 9 8 4 3 5 25 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 Product Availability and Chip Thickness Codes See Table 2 for Chip Thickness Dimensions Capacitance Tolerance 12,000 pF 15,000 pF 18,000 pF 22,000 pF 27,000 pF 33,000 pF 39,000 pF 47,000 pF 56,000 pF 68,000 pF 82,000 pF 0.10 F 0.12 F 0.15 F 0.18 F 0.22 F 0.27 F 0.33 F 0.39 F 0.47 F 0.56 F 0.68 F 0.82 F 1.0 F 1.2 F 1.5 F 1.8 F 2.2 F 2.7 F 3.3 F 3.9 F 4.7 F 5.6 F 6.8 F 8.2 F 10 F C0603C BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF DG DG DP DP DP DE DE DG DG DG DG DG DG DP DP DP DE DE DG DG DG DG DG DG DP DP DP DE DE DH DH DG DG DG DG DP DP DP DE DE DH DH DG DG DG EG EG EG EG ED EH EH EF EF EH EH EH EH ED EH EH EF EF EH EH EH EH ED EH EH EH EH EH EH EH EH ED EH EH EH EH EG FD FD FF FG FL FM FG FG FG FG FG FM FG FG FH FM FK FS FD FD FF FG FL FM FG FG FG FG FG FM FG FG FH FM FK FS FD FD FF FG FL FM FG FG FG FG FH FM FK FS FH FM FK FS FD FD FF FG FL FM FG FG FG FG FH FM FK FS FD FD FF FG FL FM Rated Voltage (VDC) 6.3 10 16 25 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 Voltage Code 9 8 4 3 9 8 4 3 5 9 8 4 3 5 9 8 4 3 5 9 8 4 3 5 Case Size/Series C0402C C0603C (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C0805C C1206C C1210C C1008_X8L_150C_SMD * 11/9/2018 6 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 2A - Chip Thickness/Tape & Reel Packaging Quantities Paper Quantity1 Plastic Quantity Thickness Code Case Size1 Thickness Range (mm) 7" Reel 13" Reel 7" Reel 13" Reel BB CF DP DE DG DH ED EF EG EH FD FF FG FL FH FM FK FS 0402 0603 0805 0805 0805 0805 1206 1206 1206 1206 1210 1210 1210 1210 1210 1210 1210 1210 0.50 0.05 0.80 0.07 0.90 0.10 1.00 0.10 1.25 0.15 1.25 0.20 1.00 0.10 1.20 0.15 1.60 0.15 1.60 0.20 0.95 0.10 1.10 0.10 1.25 0.15 1.40 0.15 1.55 0.15 1.70 0.20 2.10 0.20 2.50 0.30 10,000 4,000 4,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50,000 15,000 15,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,500 2,500 2,500 2,500 2,500 2,000 2,000 4,000 2,500 2,500 2,000 2,000 2,000 2,000 1,000 0 0 0 10,000 10,000 10,000 10,000 10,000 8,000 8,000 10,000 10,000 10,000 8,000 8,000 8,000 8,000 4,000 Thickness Code Case Size1 Thickness Range (mm) 7" Reel 13" Reel 7" Reel 13" Reel Paper Quantity1 Plastic Quantity Package quantity based on finished chip thickness specifications. 1 If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information". (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 7 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 2B - Bulk Packaging Quantities Loose Packaging Packaging Type Bulk Bag (default) Packaging C-Spec1 N/A 2 Case Size Packaging Quantities (pieces/unit packaging) EIA (in) Metric (mm) 0402 0603 0805 1206 1210 1808 1005 1608 2012 3216 3225 4520 1812 1825 2220 2225 4532 4564 5650 5664 Minimum Maximum 50,000 1 20,000 The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial Grade product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for Automotive Grade products. 2 A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-Static Bulk Bag and Automotive Grade products). The 15th through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. 1 (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 8 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 3A - Land Pattern Design Recommendations per IPC-7351 - Standard Termination EIA Size Code Metric Size Code 0402 Density Level A: Maximum (Most) Land Protrusion (mm) Density Level B: Median (Nominal) Land Protrusion (mm) Density Level C: Minimum (Least) Land Protrusion (mm) C Y X V1 V2 C Y X V1 V2 C Y X V1 V2 1005 0.50 0.72 0.72 2.20 1.20 0.45 0.62 0.62 1.90 1.00 0.40 0.52 0.52 1.60 0.80 0603 1608 0.90 1.15 1.10 4.00 2.10 0.80 0.95 1.00 3.10 1.50 0.60 0.75 0.90 2.40 1.20 0805 2012 0.99 1.44 1.66 4.47 2.71 0.89 1.24 1.56 3.57 2.11 0.79 1.04 1.46 2.42 1.81 1206 3216 1.59 1.62 2.06 5.85 3.06 1.49 1.42 1.96 4.95 2.46 1.39 1.22 1.86 4.25 2.16 1210 3225 1.59 1.62 3.01 5.90 4.01 1.49 1.42 2.91 4.95 3.41 1.39 1.22 2.81 4.25 3.11 Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes. Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351). Image below based on Density Level B for an EIA 1210 case size. V1 Y Y X X C C V2 Grid Placement Courtyard (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 9 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 3B - Land Pattern Design Recommendations per IPC-7351 - Flexible Termination EIA Size Code Metric Size Code 0603 Density Level A: Maximum (Most) Land Protrusion (mm) Density Level B: Median (Nominal) Land Protrusion (mm) Density Level C: Minimum (Least) Land Protrusion (mm) C Y X V1 V2 C Y X V1 V2 C Y X V1 V2 1608 0.85 1.25 1.10 4.00 2.10 0.75 1.05 1.00 3.10 1.50 0.65 0.85 0.90 2.40 1.20 0805 2012 1.00 1.35 1.55 4.40 2.60 0.90 1.15 1.45 3.50 2.00 0.75 0.95 1.35 2.80 1.70 1206 3216 1.60 1.65 1.90 5.90 2.90 1.50 1.45 1.80 5.00 2.30 1.40 1.25 1.70 4.30 2.00 1210 3225 1.60 1.65 2.80 5.90 3.80 1.50 1.45 2.70 5.00 3.20 1.40 1.25 2.60 4.30 2.90 Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes. Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351). Image below based on Density Level B for an EIA 1210 case size. V1 Y Y X C V2 X C Grid Placement Courtyard (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 10 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Soldering Process Recommended Soldering Technique: * Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206 * All other EIA case sizes are limited to solder reflow only Recommended Reflow Soldering Profile: KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/ J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions. Termination Finish SnPb TP 100% Matte Sn Preheat/Soak Temperature Minimum (TSmin) Temperature Maximum (TSmax) Time (tS) from TSmin to TSmax 100C 150C 60 - 120 seconds 150C 200C 60 - 120 seconds Ramp-Up Rate (TL to TP) 3C/second maximum 3C/second maximum Liquidous Temperature (TL) 183C 217C Time Above Liquidous (tL) 60 - 150 seconds 60 - 150 seconds Peak Temperature (TP) 235C 260C Time Within 5C of Maximum Peak Temperature (tP) 20 seconds maximum 30 seconds maximum Ramp-Down Rate (TP to TL) 6C/second maximum 6C/second maximum TL Temperature Profile Feature tP Maximum ramp up rate = 3C/second Maximum ramp down rate = 6C/second tL Tsmax Tsmin 25 ts 25C to Peak Time Time 25C to Peak 6 minutes 8 minutes Temperature maximum maximum Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 11 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Table 4 - Performance & Reliability: Test Methods and Conditions Stress Reference Test or Inspection Method Terminal Strength JIS-C-6429 Appendix 1, Note: Force of 1.8 kg for 60 seconds. Board Flex JIS-C-6429 Appendix 2, Note: Standard termination system - 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system - 3.0 mm (minimum). Magnification 50 X. Conditions: Solderability J-STD-002 a) Method B, 4 hours at 155C, dry heat at 235C b) Method B at 215C category 3 c) Method D, category 3 at 260C Temperature Cycling JESD22 Method JA-104 Biased Humidity MIL-STD-202 Method 103 Moisture Resistance Thermal Shock High Temperature Life Storage Life Vibration Mechanical Shock Resistance to Solvents MIL-STD-202 Method 106 MIL-STD-202 Method 107 MIL-STD-202 Method 108 /EIA-198 MIL-STD-202 Method 108 MIL-STD-202 Method 204 MIL-STD-202 Method 213 MIL-STD-202 Method 215 1,000 cycles (-55C to +150C). Measurement at 24 hours +/- 4 hours after test conclusion. Load Humidity: 1,000 hours 85C/85%RH and rated voltage. Add 100K ohm resistor. Measurement at 24 hours +/- 4 hours after test conclusion. Low Volt Humidity: 1,000 hours 85C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/- 4 hours after test conclusion. t = 24 hours/cycle. Steps 7a and 7b not required. Measurement at 24 hours. +/- 4 hours after test conclusion. -55C/+150. Note: Number of cycles required - 300. Maximum transfer time - 20 seconds. Dwell time - 15 minutes. Air - Air. 1,000 hours at 150C with 2 X rated voltage applied. 150C, 0 VDC for 1,000 hours. 5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 - 2,000 Hz Figure 1 of Method 213, Condition F. Add aqueous wash chemical, OKEM Clean or equivalent. Storage and Handling Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature-reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 12 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Construction - Standard Termination Detailed Cross Section Dielectric Material (BaTiO3) Dielectric Barrier Layer Material (BaTiO3) (Ni) Termination Finish (100% Matte Sn / SnPb - 5% Pb min) End Termination/ External Electrode (Cu) Inner Electrodes (Ni) End Termination/ External Electrode (Cu) Barrier Layer (Ni) Termination Finish (100% Matte Sn / SnPb - 5% Pb min) Inner Electrodes (Ni) Construction - Flexible Termination Detailed Cross Section Dielectric Material (BaTiO3) Barrier Layer End Termination/ (Ni) External Electrode Termination Finish (Cu) (100% Matte Sn / Epoxy Layer SnPb - 5% Pb min) (Ag) Dielectric Material (BaTiO3) Inner Electrodes (Ni) End Termination/ External Electrode (Cu) Epoxy Layer (Ag) Barrier Layer (Ni) Inner Electrodes (Ni) (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com Termination Finish (100% Matte Sn / SnPb - 5% Pb min) C1008_X8L_150C_SMD * 11/9/2018 13 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Capacitor Marking (Optional): These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices, but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA-198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only. Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 F. Orientation of marking is vendor optional. KEMET ID 2-Digit Capacitance Code Laser marking option is not available on: * C0G, ultra stable X8R and Y5V dielectric devices. * EIA 0402 case size devices. * EIA 0603 case size devices with flexible termination option. * KPS commercial and automotive grade stacked devices. * X7R dielectric products in capacitance values outlined below. EIA Case Size Metric Size Code Capacitance 0603 0805 1206 1210 1808 1812 1825 2220 2225 1608 2012 3216 3225 4520 4532 4564 5650 5664 170 pF 150 pF 910 pF 2,000 pF 3,900 pF 6,700 pF 0.018 F 0.027 F 0.033 F (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 14 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Capacitor Marking (Optional) cont'd Capacitance (pF) For Various Alpha/Numeral Identifiers Numeral Alpha Character 9 A 0.10 1.0 10 100 1,000 10,000 B 0.11 1.1 11 110 1,100 11,000 C 0.12 1.2 12 120 1,200 12,000 D 0.13 1.3 13 130 1,300 E 0.15 1.5 15 150 1,500 0 1 2 3 4 5 6 7 8 100,000 1,000,000 10,000,000 100,000,000 110,000 1,100,000 11,000,000 110,000,000 120,000 1,200,000 12,000,000 120,000,000 13,000 130,000 1,300,000 13,000,000 130,000,000 15,000 150,000 1,500,000 15,000,000 150,000,000 160,000,000 Capacitance (pF) F 0.16 1.6 16 160 1,600 16,000 160,000 1,600,000 16,000,000 G 0.18 1.8 18 180 1,800 18,000 180,000 1,800,000 18,000,000 180,000,000 H 0.20 2.0 20 200 2,000 20,000 200,000 2,000,000 20,000,000 200,000,000 J 0.22 2.2 22 220 2,200 22,000 220,000 2,200,000 22,000,000 220,000,000 K 0.24 2.4 24 240 2,400 24,000 240,000 2,400,000 24,000,000 240,000,000 L 0.27 2.7 27 270 2,700 27,000 270,000 2,700,000 27,000,000 270,000,000 M 0.30 3.0 30 300 3,000 30,000 300,000 3,000,000 30,000,000 300,000,000 N 0.33 3.3 33 330 3,300 33,000 330,000 3,300,000 33,000,000 330,000,000 P 0.36 3.6 36 360 3,600 36,000 360,000 3,600,000 36,000,000 360,000,000 Q 0.39 3.9 39 390 3,900 39,000 390,000 3,900,000 39,000,000 390,000,000 R 0.43 4.3 43 430 4,300 43,000 430,000 4,300,000 43,000,000 430,000,000 470,000,000 S 0.47 4.7 47 470 4,700 47,000 470,000 4,700,000 47,000,000 T 0.51 5.1 51 510 5,100 51,000 510,000 5,100,000 51,000,000 510,000,000 U 0.56 5.6 56 560 5,600 56,000 560,000 5,600,000 56,000,000 560,000,000 V 0.62 6.2 62 620 6,200 62,000 620,000 6,200,000 62,000,000 620,000,000 W 0.68 6.8 68 680 6,800 68,000 680,000 6,800,000 68,000,000 680,000,000 X 0.75 7.5 75 750 7,500 75,000 750,000 7,500,000 75,000,000 750,000,000 Y 0.82 8.2 82 820 8,200 82,000 820,000 8,200,000 82,000,000 820,000,000 Z 0.91 9.1 91 910 9,100 91,000 910,000 9,100,000 91,000,000 910,000,000 a 0.25 2.5 25 250 2,500 25,000 250,000 2,500,000 25,000,000 250,000,000 b 0.35 3.5 35 350 3,500 35,000 350,000 3,500,000 35,000,000 350,000,000 d 0.40 4.0 40 400 4,000 40,000 400,000 4,000,000 40,000,000 400,000,000 e 0.45 4.5 45 450 4,500 45,000 450,000 4,500,000 45,000,000 450,000,000 f 0.50 5.0 50 500 5,000 50,000 500,000 5,000,000 50,000,000 500,000,000 m 0.60 6.0 60 600 6,000 60,000 600,000 6,000,000 60,000,000 600,000,000 n 0.70 7.0 70 700 7,000 70,000 700,000 7,000,000 70,000,000 700,000,000 t 0.80 8.0 80 800 8,000 80,000 800,000 8,000,000 80,000,000 800,000,000 y 0.90 9.0 90 900 9,000 90,000 900,000 9,000,000 90,000,000 900,000,000 (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 15 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Tape & Reel Packaging Information KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips. Bar code label Anti-static reel (R) Embossed plastic* or punched paper carrier. ET KEM Chip and KPS orientation in pocket (except 1825 commercial, and 1825 and 2225 Military) Sprocket holes Embossment or punched cavity 8 mm, 12 mm or 16 mm carrier tape 180 mm (7.00") or 330 mm (13.00") Anti-static cover tape (0.10 mm (0.004") maximum thickness) *EIA 01005, 0201, 0402 and 0603 case sizes available on punched paper carrier only. Table 5 - Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm) EIA Case Size Tape Size (W)* Embossed Plastic 7" Reel 13" Reel Pitch (P1)* Punched Paper 7" Reel 13" Reel Pitch (P1)* 01005 - 0402 8 2 2 0603 8 2/4 2/4 0805 8 4 4 4 4 1206 - 1210 8 4 4 4 4 1805 - 1808 12 4 4 1812 12 8 8 KPS 1210 12 8 8 KPS 1812 and 2220 16 12 12 Array 0612 8 4 4 *Refer to Figures 1 and 2 for W and P1 carrier tape reference locations. *Refer to Tables 6 and 7 for tolerance specifications. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com New 2 mm Pitch Reel Options* Packaging Ordering Code (C-Spec) Packaging Type/Options C-3190 C-3191 C-7081 C-7082 Automotive grade 7" reel unmarked Automotive grade 13" reel unmarked Commercial grade 7" reel unmarked Commercial grade 13" reel unmarked * 2 mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development. Benefits of Changing from 4 mm to 2 mm Pitching Spacing * Lower placement costs. * Double the parts on each reel results in fewer reel changes and increased efficiency. * Fewer reels result in lower packaging, shipping and storage costs, reducing waste. C1008_X8L_150C_SMD * 11/9/2018 16 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Figure 1 - Embossed (Plastic) Carrier Tape Dimensions P2 T T2 OD0 (10 pitches cumulative tolerance on tape 0.2 mm) P0 A0 E1 F K0 B1 E2 B0 S1 W P1 T1 Center Lines of Cavity OD1 Cover Tape B1 is for tape feeder reference only, including draft concentric about B0. Embossment For cavity size, see Note 1 Table 4 User Direction of Unreeling Table 6 - Embossed (Plastic) Carrier Tape Dimensions Metric will govern Constant Dimensions -- Millimeters (Inches) Tape Size D0 8 mm 12 mm 1.5 +0.10/-0.0 (0.059 +0.004/-0.0) 16 mm D1 Minimum Note 1 1.0 (0.039) 1.5 (0.059) R Reference S1 Minimum T Note 2 Note 3 Maximum 25.0 (0.984) 1.75 0.10 4.0 0.10 2.0 0.05 0.600 0.600 (0.069 0.004) (0.157 0.004) (0.079 0.002) (0.024) (0.024) 30 (1.181) E1 P0 P2 T1 Maximum 0.100 (0.004) Variable Dimensions -- Millimeters (Inches) Tape Size 8 mm 12 mm 16 mm B1 Maximum Note 4 4.35 Single (4 mm) (0.171) Single (4 mm) 8.2 and double (8 mm) (0.323) 12.1 Triple (12 mm) (0.476) Pitch E2 Minimum 6.25 (0.246) 10.25 (0.404) 14.25 (0.561) F P1 3.5 0.05 4.0 0.10 (0.138 0.002) (0.157 0.004) 5.5 0.05 8.0 0.10 (0.217 0.002) (0.315 0.004) 7.5 0.05 12.0 0.10 (0.138 0.002) (0.157 0.004) T2 Maximum 2.5 (0.098) 4.6 (0.181) 4.6 (0.181) W Maximum 8.3 (0.327) 12.3 (0.484) 16.3 (0.642) A0,B0 & K0 Note 5 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other. 2. The tape with or without components shall pass around R without damage (see Figure 6.) 3. If S1 < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.) 4. B1 dimension is a reference dimension for tape feeder clearance only. 5. The cavity defined by A0, B0 and K0 shall surround the component with sufficient clearance that: (a) the component does not protrude above the top surface of the carrier tape. (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed. (c) rotation of the component is limited to 20 maximum for 8 and 12 mm tapes and 10 maximum for 16 mm tapes (see Figure 3.) (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4.) (e) for KPS product, A0 and B0 are measured on a plane 0.3 mm above the bottom of the pocket. (f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 17 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Figure 2 - Punched (Paper) Carrier Tape Dimensions T Po ODo (10 pitches cumulative tolerance on tape 0.2 mm) A0 F P1 T1 T1 Top Cover Tape W E2 B0 Bottom Cover Tape E1 G Cavity Size, See Note 1, Table 7 Center Lines of Cavity Bottom Cover Tape User Direction of Unreeling Table 7 - Punched (Paper) Carrier Tape Dimensions Metric will govern Constant Dimensions -- Millimeters (Inches) Tape Size D0 E1 P0 P2 T1 Maximum G Minimum 8 mm 1.5 +0.10 -0.0 (0.059 +0.004 -0.0) 1.75 0.10 (0.069 0.004) 4.0 0.10 (0.157 0.004) 2.0 0.05 (0.079 0.002) 0.10 (0.004) maximum R Reference Note 2 0.75 (0.030) 25 (0.984) Variable Dimensions -- Millimeters (Inches) Tape Size Pitch 8 mm Half (2 mm) 8 mm Single (4 mm) E2 Minimum F P1 T Maximum W Maximum A0 B 0 6.25 (0.246) 3.5 0.05 (0.138 0.002) 2.0 0.05 (0.079 0.002) 4.0 0.10 (0.157 0.004) 1.1 (0.098) 8.3 (0.327) 8.3 (0.327) Note 1 1. The cavity defined by A0, B0 and T shall surround the component with sufficient clearance that: a) the component does not protrude beyond either surface of the carrier tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed. c) rotation of the component is limited to 20 maximum (see Figure 3.) d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.) e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements. 2. The tape with or without components shall pass around R without damage (see Figure 6.) (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 18 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Packaging Information Performance Notes 1. Cover Tape Break Force: 1.0 kg minimum. 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be: Tape Width Peel Strength 8 mm 0.1 to 1.0 newton (10 to 100 gf) 12 and 16 mm 0.1 to 1.3 newton (10 to 130 gf) The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165 to 180 from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 10 mm/minute. 3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA Standards 556 and 624. Figure 3 - Maximum Component Rotation T Maximum Component Rotation Top View Maximum Component Rotation Side View Typical Pocket Centerline Tape Maximum Width (mm) Rotation ( 8,12 20 16 - 200 10 Bo T) s Tape Width (mm) 8,12 16 - 56 72 - 200 Typical Component Centerline Ao Figure 4 - Maximum Lateral Movement 8 mm & 12 mm Tape 0.5 mm maximum 0.5 mm maximum Maximum Rotation ( 20 10 5 S) Figure 5 - Bending Radius Embossed Carrier 16 mm Tape Punched Carrier 1.0 mm maximum 1.0 mm maximum R (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com Bending Radius R C1008_X8L_150C_SMD * 11/9/2018 19 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Figure 6 - Reel Dimensions Full Radius, See Note W3 (Includes flange distortion at outer edge) Access Hole at Slot Location (O 40 mm minimum) W2 D A (See Note) N C (Arbor hole diameter) B (see Note) (Measured at hub) W1 (Measured at hub) If present, tape slot in core for tape start: 2.5 mm minimum width x 10.0 mm minimum depth Note: Drive spokes optional; if used, dimensions B and D shall apply. Table 8 - Reel Dimensions Metric will govern Constant Dimensions -- Millimeters (Inches) Tape Size A B Minimum C D Minimum 8 mm 178 0.20 (7.008 0.008) or 330 0.20 (13.000 0.008) 1.5 (0.059) 13.0 +0.5/-0.2 (0.521 +0.02/-0.008) 20.2 (0.795) 12 mm 16 mm Variable Dimensions -- Millimeters (Inches) Tape Size N Minimum W1 W2 Maximum W3 50 (1.969) 8.4 +1.5/-0.0 (0.331 +0.059/-0.0) 12.4 +2.0/-0.0 (0.488 +0.078/-0.0) 16.4 +2.0/-0.0 (0.646 +0.078/-0.0) 14.4 (0.567) 18.4 (0.724) 22.4 (0.882) Shall accommodate tape width without interference 8 mm 12 mm 16 mm (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 20 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) Figure 7 - Tape Leader & Trailer Dimensions Embossed Carrier Punched Carrier 8 mm & 12 mm only END Carrier Tape Round Sprocket Holes START Top Cover Tape Elongated Sprocket Holes (32 mm tape and wider) Trailer 160 mm minimum Components 100 mm minimum leader 400 mm minimum Top Cover Tape Figure 8 - Maximum Camber Elongated Sprocket Holes (32 mm & wider tapes) Carrier Tape Round Sprocket Holes 1 mm maximum, either direction Straight Edge 250 mm (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 21 Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Temperature 150C, X8L Dielectric, 10 - 50 VDC (Commercial & Automotive Grade) KEMET Electronics Corporation Sales Offices For a complete list of our global sales offices, please visit www.kemet.com/sales. Disclaimer All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute - and KEMET specifically disclaims - any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained. Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required. KEMET is a registered trademark of KEMET Electronics Corporation. (c) KEMET Electronics Corporation * KEMET Tower * One East Broward Boulevard Fort Lauderdale, FL 33301 USA * 954-766-2800 * www.kemet.com C1008_X8L_150C_SMD * 11/9/2018 22