Standard Power MOSFETs BUZ 73 A N-Channel Enhancement-Mode Power Field-Effect Transistors 5.8 A, 200 V Toston = 0.6 02 Features: a SOA is power-dissipation limited m Nanosecond switching speeds a Linear transfer characteristics w High input impedance w Majority carrier device The BUZ 73 A is an n-channel enhancement-mode silicon- gate power field-effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate- drive power. This type can be operated directly from inte- grated circuits. The BUZ 73 A is supplied in the JEDEC TO-220AB plastic package. MAXIMUM RATINGS, Absolute-Maximum Values (Tc = 25C): DRAIN-SOURCE VOLTAGE ....... 0. 0c sce c cece teen tence cree eens DRAIN-GATE VOLTAGE, Ros = 20kQ ...... GATE-SOURCE VOLTAGE ............ . DRAIN CURRENT, RMS Continuous Te = 25 C Pulsed Tc = 25C ....-..... POWER DISSIPATION @ Tc = 25C ......... OPERATING AND STORAGE TEMPERATURE .. DIN HUMIDITY CATEGORY DIN 40040 ...... IEC CLIMATIC CATEGORY DIN (EC 68-1 0... 3-38 File Number 2263 N-CHANNEL ENHANCEMENT MODE DB $s 92CS -535741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE |_t = cen E care 92CS-39528 JEDEC TO-220AB DRAIN (FLANGE) O TOP VIEW ween ee eet eens 200 Vv 200 Vv +20 v 5.8 A 23 A 40 Ww -55 to +150 C E eee nent e een eeee 55/150/56Standard Power MOSFETs ELECTRICAL CHARACTERISTICS At Case Temperature (T;) = 25 C Unless Otherwise Specified LIMIT: CHARACTERISTIC TEST CONDITIONS s UNITS MIN. TYP. MAX. Drain-Source Breakdown Voltage BVoss Ves =OV _ 200 _ Ip = 0.25 mA Vv Gate-Threshoild Voltage Vesen Vos = Ves _ 2.1 3 4 Ip = 1mMA Zero-Gate Voltage Drain Current loss T= 25C _ 20 250 T) = 125C _ 100 1000 uA Vos = 200 V, Ves = OV Gate-Source Leakage Current less Ves = 20V _ 10 100 nA Vos =OV Drain-Source On Resistance Toston) Ves = =10V _ 05 06 0 ID=3.5A Forward Transconductance Dis Vos = =25V 22 35 _ Ss IDb=3.5A Input Capacitance Ciss Ves =OV _ 450 600 Output Capacitance Coss Vos = 25 V _ 100 160 pF Reverse Transfer Capacitance Coss f= 1 MHz _ 50 80 Turn-On Time toa tation Voc = 30 V = 1s 20 (ton = tarom + tr) IDp=28A - 40 60 = ns Turn-Off Time tor tacom Ves = 10V a 70 90 = Res = 500 (to#t = tatot + tr) t _ 40 55 Thermal Resistance, Junction-to-Case Rac S34 oC Thermal Resistance, Junction-to-Ambient Resa =75 SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS CHARACTERISTIC TEST CONDITIONS LIMITS UNITS MIN. TYP. MAX. Continuous Reverse Drain Current lpr To = 25C _ _ 58 A Pulsed Reverse Drain Current IpaM _ _ 23 Diode Forward Voltage Vsp le = 2x tor _ Vas = 0 V, T, = 25C 14 Ww v Reverse Recovery Time te T) = 25C, lr = Iba _ 200 _ ns Reverse Recovered Charge Qar [Gle/dt = 100 A/us, Va=100V} 0.6 = uc 10? S < | 40 3 & 5 Zz lu x x 3 z 10 ie a 5 5 107 10 5 10! 5 10? 5 .103 DRAIN-TO-SOURCE VOLTAGE (Vos) V Fig. 1 - Maximum safe operating areas for all types. 3-39Standard Power MOSFETs BUZ 73 A 60 50 = | E40 4 z 5 9 o> S 3 f 30 ED 5 z= & 20 # = a 9 a 10 9 0 0 50 100 150 50 0 50 100. ~~:150 CASE TEMPERATURE (Tc) C JUNCTION TEMPERATURE (T ,) C Fig. 2 - Power vs. ternperature derating curve for ail types. Fig. 3 - Normalized gate threshold voltage as a function - of junction temperature for all types. 1.5 80 us TEST CL Veg = 104 ' Vos = 25 V, T, = 25C Ip = 3.5 A + 10 8 3 2 o 1.0 - 8 a z ta rd zi a oe gs B 6 x 23 z o> < e g z 4 = 0.5 uw 5, & < 9 Zz 5 2 9 0 -50 0 50 100 150 0 2 4 6 8 10 JUNCTION TEMPERATURE (T 4) C GATE-TO-SOURCE VOLTAGE (Ves) V Fig. 4 - Normalized drain-to-source on resistance to junction Fig. 5 - Typical transfer characteristics for all types. temperature for ail types. 5 5 80 us PULSE TEST eee. EST Vos = 25 V,T)= 25C Ok L | 2 3 10 = = 6 3 5 z wd bE i ral oO poh ot 3 3 ao} { , | | z a 4 a5 i a] | z 1 ~4$L + fie fe. 0 0 th _ it | Lt LL 0 0 20 30 0 2 4 6 8 10 12 DRAIN-TO-SOURCE VOLTAGE (Vos) V DRAIN CURRENT (Ip) A Fig. 6 - Typical output characteristics. Fig. 7 - Typical transconductance vs. drain current 3-40Standard Power MOSFETs BUZ73 A 10 a ! 5 a 8 ' 0 Z 55V 6V ~ 65V | 10 b c ys c 3 = w So = & & 49" 3 a Go wy 5 e z < c a 10? 0 5 10 5 0 10 20 30 40 DRAIN CURRENT (Ip) A DRAIN-TO-SOURCE VOLTAGE (Vos) V Fig. 8 - Typical on-resistance vs. drain current. Fig. 9 - Typical capacitance vs. drain-to-source voltage. Vas > 10 102 80 2s PULSE TEST 5 Ty=150C TYP. < < | L % 101 5 z 5 Ww c c 3 2 z 3 @ , > & Ty=25C TYP. < gz 10 c wi Oo > # 5 0 10-1 0 50 100 150 0 05 10 15 2.0 2.5 3.0 CASE TEMPERATURE (Tc) C SOURCE-TO-DRAIN VOLTAGE (Vgp) V Fig. 10 - Maximum drain current vs. case temperature. Fig. 11 - Typical source-drain diode forward voltage. 15 > lo puis = 10.5A f ay oO Z 40 = Ww w Oo z Be 5" . 2 & 02 g # bos if 2 10! 0,02 s 2 oar 3 w 5 f = e Ww & a > 65 to* 5 1003 5 FS OFS 10' 0 5 10 15 20 25 RECTANGULAR PULSE DURATION (t1) - S TOTAL GATE CHARGE (Qe) nC Fig. 12 - Maximum effective transient thermal impedance, junction- Fig. 13 - Typical gate charge vs. gate-to-source voltage. to-case vs. pulse duration. 3-41