Standard Power MOSFETs IRF440, IRF441, IRF442, IRF443 File Number 2308 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7 Aand 8 A, 450 V - 500 V Ipsion = 0.85 Chand 1.1.9 Features: w SOA is power-dissipation limited m Nanosecond switching speeds w Linear transfer characteristics a High input impedance m Majority carrier device The IRF440, IRF441, IRF442, and IRF443 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- ing high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE Oo G $s 9208-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN souRCE (FLANGE) GATE g2cs- 3780 JEDEC TO-204AA Parameter iRF440 IRF441 (RF442 IRF443 Units Vos Drain - Source Voltage 500 450 500 450 v VpGrR Drain - Gate Voltage (Rgg = 20 ka) @ 500 450 500 450 Vv tp @ Tc = 25C Continuous Drain Current 8.0 8.0 7.0 7.0 A Ip @ Te = 100C Continuous Drain Current 5.0 5.0 4.0 4.0 A lpm Pulsed Drain Current @ 32 32 28 28 A Ves Gate - Source Voltage 20 Vv Pp @Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) wed Sim inductive Current, Clamped iSee Fig. 15 and 16) L = 100uH A 32 32 | 28 l 28 re Ore ct ge S510 180 *c Lead Temperature 300 (0.063 in. (1.6mm} from case for 10s) c 3-124Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions 8Voss Drain - Source Breakdown Voltage IRF440 _ _ = inraaz | 200 v Vgg = OV IRF441 _ IRF443 450 - ~ v Ip = 250pA Vgsith) Gate Threshold Voltage ALL 2.0 - 4.0 Vv Vos = Ves. Ip = 250nA Igss Gate-Source Leakage Forward ALL _ 100 nA Vag = 20V less Gate-Source Leakage Reverse ALL - 4-100 nA Vgs = -20V loss Zero Gate Voltage Drain Current ALL = _ 250 BA Vos = Max. Rating. Vag = OV = | 1000 [ 2A Vpg = Max. Rating x 0.8, Vgg = OV, To = 125C IDion) On-State Drain Current @ IRF440 8.0 _ _ A IRFA4 1 Vos?! xR Veg = 10V DS Dion) * DSion) max. YGS ~ IRF442 7.0 _ _ A (RF443 . Rosion) Static Drain-Source On-State (RF440 _ Resistance IRF441 9.8 | 0.85 a Vv 10V, Ip = 4.0A raga | Tay Q 6s Some IRF443 . . Sts Forward Transconductance @) ALL 4.0 6.5 _ $ (3) Vos > !bion) * osion) max. Ip = 404 Ciss Input Capacitance ALL - 1225 pF Vag = OV, Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL _ 200 _ pF See Fig. 10 Crss Reverse Transfer Capacitance ALL = 85 pF tdion) _Turn-On Delay Time ALL _ 17 35 ns Yop * 200V, Ip = 4.0A, 29 = 4.72 te Rise Time ALL _ 5 15 ns See Fig. 17 tajoff) _Turn-Off Delay Time ALL - 42 90 ns {MOSFET switching times are essentially ty Fall Time ALL _ 14 30 ns independent of operating temperature.) a Total Gate Charge Vac = 10V, In = 10A, Vog = 0.8 Max. Rating. 9 : ~ GS D Ds (Gate-Source Plus Gate-Drain) ALL 42 80 ne See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 20 30 nc independent of operating temperature.) Qgq Gate-Drain (Miller} Charge ALL - 22 33 ac Lo Internal Drain Inductance ALL ~_ 5.0 ~ nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. B Ls Internal Source Inductance ALL 12.6 _ nH Measured from the a source pin, 6mm (0.25 in.} from header 6 and source bonding pad. . Thermal Resistance Rinuc Junction-to-Case ALL - - 1.0 Tcyw Rincs _ Case-to-Sink ALL _ 0.1 _ C/W Mounting surface flat, smooth, and greased. Rthya _ Junction-to-Ambient ALL - - 30 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF440 _ _ 8.0 A Modified MOSFET symbol (Body Diode} IRF441 . showing the integral reverse P-N junction rectifier. {RF442 _ _ 7.0 A J a IRF443 Ism Pulse Source Current IRF440 _ 32 A (Body Diode) @ IRF441 ~ S IRF442 inFaa3 | | 38 A Vsp _ Diode Forward Voltage @ IRF440 = = IRF441 _ - 2.0 v Te = 25C, Ig = 8.0A, Veg = OV IRF442 a _ - IRF443 - ~ | 19 Vv To = 25C, Ig = 7.0A, Vgg = OV ter Reverse Recovery Time. ALL _ 1100} ns Ty = 150C, Ip = 8.0A, dip/dt = 100A/ys Orne Reverse Recovered Charge ALL - 6.4 = uc Ty'= 150C, ip = 8.0A, dig/dt = 100A/us ton Forward Turn-on Time ALL intrinsic turn-on time is negligible. Turn-on speed is substantially controlied by Lg + Lp. OTy = 28C to 150C @Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5}. Standard Power MOSFETs IRF440, IRF441, IRF442, IRF443 3-125Standard Power MOSFETs IRF440, IRF441, IRF442, IRF443 20 10V 7 v 80 ys PULSE Ma PULSE TEST ( 1 1 Vos > !o(on) x Rosion) max. Ip, GRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 0 20 40 60 80 100 0 2 4 6 8 10 Vos, ORAIN-TO-SGURCE VOLTAGE (VOLTS) Vgg, GATE-TO-SDURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 ~ Typical Transfer Characteristics 100 OPERATION (N THIS 50 AREA 1S LIMITED 80 us PULSE TEST RF440, 1 BY Ros(on) 20 a a Fd = ro Ltinesdo, 1 2 2 = = =< = os TRFA42, e & a x ac c x 3 Ba 2 z z 2 19 i] a a a Ty = 250C 957 Ty = 1509C MAX. Rinse = 1.0 K/W 0.2 |_ SINGLE PULSE IRF44, 3 RF440, 2 0.4 0 2 4 6 8 10 10 2 5 10 2 0 100 200 500 Vog, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area SINGLE PULSE (TRANSIENT THERMAL IMPEOANCE}) . =z a 2 3 zt ce FE to we 23 5S os ae we to oe ag 32 23. 88 Sy t S= 01 | eo be 2 ont = E 0.05 5 = = 1. DUTY FACTOR, D= + . 2, PER UNIT BASE = Renyc = 1.0 DEG. C/W. Znscltl/Prhac. o 8 3. Tym - Te = Pom Zengctt). 8 oh 2 5 4 2 5 3 2 6 we 2 5 wl 2 5 49 2 5 10 ty, SOUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-126Standard Power MOSFETs 16.0 Hs PULSE TEST It t 1 Vas > 'ovon) * Poston) max. 2 ~ S = mn Ps fy, TRANSCONOUCTANCE (SIEMENS) w N a 4 8 i2 16 20 Ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.26 1.16 > a So wo a 0.85 BVogs, ORAIN-TO-SOURCE BREAKDOWN VOLTAGE {NORMALIZED) 0.75 ~40 9 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Fig. 8 -- Breakdown Voltage Vs. Temperature 2000 Cigs = Cyy + Cy, Cys SHORTED Cosy = Cog Cos , Coes = 6 +h 1600 ons Tae Cos # Cy = Cas + Cog < 1200 o 2 = be 5 Bs 4 i J e E 2 Lo" 4 10 & T e & Sas oc 0 5 10 15 20 6 30 35 Ip. DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current - a o a x & 8 8 8 8 & Pp, POWER DISSIPATION (WATTS) ny S 0 20 40 60 80 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve 200V ADJUST Ry TO OBTAIN SPECIFIED Ip 450. Ves DUT. Fig. 17 Switching Time Test Circuit 3-128 RFA4O, 441 {p, ORAIN CURRENT (AMPERES) Q 2 50 18 100 125 180 Tc, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK I, Vgg = 10V tb E)=O5BVpsg Ec = 0.75 BVass Fig. 15 Clamped Inductive Test Circuit Ec \ ny we eee Fig. 16 Clamped Inductive Waveforms Vos ISOLATED SUPPLY! CURRENT REGULATOR SAME TYPE lav BATTERY CURRENT > CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 - Gate Charge Test Circuit