© Semiconductor Components Industries, LLC, 2014
January, 2014 − Rev. 0 1Publication Order Number:
EVBUM2223/D
NCV97310MW33GEVB
NCV97310 Evaluation Board
User'sManual
Description
The NCV97310 is 3-output regulator consisting of
a low-Iq battery-connected 3 A 2 MHz non-synchronous
switcher and two low-voltage 1.5 A 2 MHz synchronous
switchers; all using integrated power transistors.
The high-voltage switcher is capable of converting
a 4.1 V to 18 V battery input to a 5 V or 3.3 V output at
a constant 2 MHz switching frequency, d e l i v e ring up to 3 A.
In overvoltage conditions up to 36 V, the switching
frequency folds back to 1 MHz; in load dump conditions up
to 45 V the regulator shuts down.
The output of the battery-connected buck regulator serves
as the l ow v oltage i nput f or t he 2 s ynchronous s witchers. E ach
downstream output is adjustable from 1.2 V to 3.3 V, with
a 1.5 A current limit and a constant 2 MHz switching
frequency. Each switcher has independent enable and reset
pins, giving extra power management flexibility.
For low-Iq operating mode the low-voltage switchers are
disabled, and the standby rail is supplied by a low-Iq LDO
(up to 150 mA) with a typical Iq of 30 mA. The LDO
regulator is in parallel to the high-voltage switcher, and is
activated when the switcher is forced in standby mode.
All 3 SMPS outputs use peak current mode control with
internal slope compensation, internally-set soft-start,
battery undervoltage lockout, battery overvoltage
protection, cycle-by-cycle current limiting, hiccup mode
short-circuit protection and thermal shutdown. An error flag
is available for diagnostics.
Key Features
Low Quiescent Current in Standby Mode
2 Microcontroller Enabled Low Voltage Synchronous
Buck Converters
Large Conversion Ratio of 18 V to 3.3 V Battery
Connected Switcher
Wide Input of 4.1 to 45 V with Undervoltage Lockout
(UVLO)
Fixed Frequency Operation Adjustable from 2.0 to
2.6 MHz
Internal 1.5 ms Soft-starts
Cycle-by-Cycle Current Limit Protections
Hiccup Overcurrent Protections (OCP)
Individual Reset Pins with Adjustable Delays
These Devices are Pb-Free, Halogen Free/BFR Free
and are RoHS Compliant
Typical Applications
Infotainment, Body Electronics, Telematics, ECU
Figure 1. Evaluation Board Photo
http://onsemi.com
EVAL BOARD USER’S MANUAL
NCV97310MW33GEVB
http://onsemi.com
2
Figure 2. NCV97310 Block Diagram
LINEAR
REGULATOR
ERR
OSC
REGULATOR 1
3V3
STEP DOWN
REGULATOR 2
1V2 ... 3V3
STEP DOWN
REGULATOR 3
1V2...3V3
STEP DOWN
VINL
VOUT
VBAT SW1
EN
STBYB
VIN2 SW2
SW3H
FB2
FB3
EN2
EN3
VDRV1
BST1
ROSC
OT
WARNING
VIN_UVLO
ERRB
GND2
RSTB1
RSTB2
TEMP
VIN_OV
RSTB1
RSTB2
RSTB3
GND1
BST2
BST3
RMIN
RSTB3
VDD
VDRV VDRV2
SW3L
GND3
Master Enable
RSTB
RSTB
RSTB
COMP1
VDRV
VIN3
RMOD
RDEPTH
SEL
LOGIC
NCV97310MW33GEVB
http://onsemi.com
3
TYPICAL APPLICATION
Figure 3. Typical Application
32 25
9 16
24
17
1
8
VBAT
EN
STBYB
RSTB1
COMP1
ROSC
ERRB EN2 RSTB2 GND1 RSTB3 FB3 EN3 BST3
GND3
SW3L
SW3H
VDRV2
GND2
SW2
VIN2
RMINSW1 VDRV1 BST1 VINL VOUT FB2 BST2
L1
CBST1 CDRV1
D1
CDRV2
CBST2
RFB2D
RFB2U
COUT2
L2
RFB3U
CBST3
ROSC
RCOMP1
CCOMP1
VOUT2
VOUT3
COUT3
L3
VOUT1
COUT1
VBAT
CIN2
CIN1
VIN3
RMOD
RDEPTH RDEPTH
RMOD
RMIN
Table 1. EVALUATION BOARD TERMINALS
Pin Name Function
VBAT Positive dc input voltage
GND Common dc return
VOUT1 Positive 3.3 V dc output voltage (LDO/Switcher 1)
VOUT2 Positive DC output voltage (Switcher 2)
VOUT3 Positive DC output voltage (Switcher 3)
EN Master enable input. Includes jumper J3 to connect to VBAT.
STBYB Standby enable input. Includes jumper J4 to connect to VBAT.
EN2 Switcher 2 enable input. Includes jumper J6 to connect to VOUT1.
EN3 Switcher 3 enable input. Includes jumper J5 to connect to VOUT1.
ERRB Error flag combining temperature and input and output voltage sensing.
RST1B Reset with adjustable delay. Goes low when the VOUT1 is out of regulation.
RST2B Reset with adjustable delay. Goes low when the VOUT2 is out of regulation.
RST3B Reset with adjustable delay. Goes low when the VOUT3 is out of regulation.
NCV97310MW33GEVB
http://onsemi.com
4
Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)
Rating Value Unit
Dc Supply Voltage (VBAT, EN, STBYB) −0.3 to 36 V
Dc Supply Voltage (VIN2, VIN3) −0.3 to 12 V
Dc Supply Voltage (RSTB1, RSTB2,
RSTB3, ERRB, EN2, EN3) −0.3 to 6 V
Storage Temperature Range −55 to 150 °C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be af fected.
Table 3. ELECTRICAL CHARACTERSITICS (TA = 25°C, 4.5 VIN 18 V, IOUT 2 A, unless otherwise specified)
Characteristic Conditions Typical Value Unit
REGULATION
Output Voltage (VOUT1) 3.3 V
Output Voltage (VOUT2) 1.8 V
Output Voltage (VOUT3) 1.2 V
Line Regulation (VOUT1) IOUT1 = 1.0 A 0.03 %
Line Regulation (VOUT2) IOUT2 = 1.0 A 0.01 %
Line Regulation (VOUT3) IOUT3 = 1.0 A 0.001 %
Load Regulation (VOUT1) VBAT = 13.2 V 0.3 %
Load Regulation (VOUT2) VBAT = 13.2 V 0.02 %
Load Regulation (VOUT3) VBAT = 13.2 V 0.03 %
SWITCHING
Switching Frequency 2.0 MHz
Soft-start Time 1.4 ms
ROSC Frequency Range 50 kW ROSC 10 kW2.0 to 2.6 MHz
CURRENT LIMIT
Peak Current Limit (VOUT1) STBYB = 0 V 0.2 A
Peak Current Limit (VOUT1) STBYB = 5 V 4.4 A
Peak Current Limit (VOUT2) 2.9 A
Peak Current Limit (VOUT3) 2.9 A
PROTECTION
Input Undervoltage Lockout (UVLO) VBAT Decreasing 3.9 V
Input Overvoltage Protection VBAT Increasing 36 V
Thermal Warning TJ Rising 150 °C
Thermal Shutdown TJ Rising 170 °C
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NCV97310MW33GEVB
http://onsemi.com
5
Figure 4. NCV97310GEVB 3.3 V Board Schematic
(3.3 V)
(1.8 V)
(1.2 V)
Place CIN0, L0, CIN1, CIN2 on VBAT side.
Place CIN3 close to VINL (pin 29)
Place CIN4 close to VBAT (pin 1)
Place close
to VIN2
50V
Place close
to VIN2
Place GND near
ERRB for logic
reference.
Place CIN5 on
bottom of PCB
BST3
VOUT3
VOUT2
ROSC
SW1
VBAT_IC
STBYB
EN2
ERRB
RST2B
RST3B
EN
FB3
EN3
FB2
VIN2
BST2
COMP1
VOUT1
VBAT
SW3
VIN2
VIN2
RST1B
SW2
VOUT1
VOUT1
VOUT1
VOUT1
VOUT1
VOUT1
CCOMP1
330 pF
CO14
1 uF
R5
10K
R6
10K
CDRV1
0.1 uF
VIN2
L1
4.7 uH
GND0
1
J1
1 2
VBAT_1
CDRV2
0.47 uF
COUT21
10 uF
COMP1
TP1
C1
100 pF
TP2
CIN2
4.7 uF U1
NCV97310MW33R2G
VBAT
1
EN
2
STBY
3
RDEPTH
4
RMOD
5
RST1
6
COMP1
7
ROSC
8
ERR
9
EN2
10
RST2
11
GND1
12
RST3
13
FB3
14
EN3
15
BST3
16
GND3 17
SW3L 18
SW3H 19
VDRV2 20
VIN3 21
VIN2 22
SW2 23
GND2 24
BST2 25
FB2 27
VOUT 28
VINL 29
BST1 30
VDRV1 31
SW1 32
NC 26
EPAD 33
CSNB2
100 pF
CIN0
4.7 uF CIN5
100 uF
VBAT
1
VOUT3
1
R3
10K
COUT32
10 uF
VOUT2
RSNB2
10.0
CCOMP2
22 pF
J2
1 2
STBYB
RFB2L
20.0K
GND1
1
EN
DRV1
COUT13
10 uF
GND GND3
1
CSNB3
100 pF
VOUT1
D1
NRVB440MFS
EN2
COUT12
10 uF VOUT1
1
SW1
CO15
4.7 uF
R7
0.0
ROSC
DNP
RSNB3
10.0
RFB3L
DNP
R1
0.0
FB2
CIN1
4.7 uF
TP3 COUT31
10 uF
J4
1 2
L2 2.2 uH
ERRB
RCOMP1
12.4K
EN3
CBST2
0.1 uF
C2
100 pF
VOUT3
VOUT2
1
SW2
RST2B
COUT11
10 uF
CBST3
0.1 uF
R2
0.0
C3
0.1 uF
J3
1 2
CIN4
2.2 uF
RFB3U
10K
RST3B
SW3
RDEPTH
DNP
CBST1
0.1 uF
COUT22
10 uF
GND2
1
FB3
R4
10K
L0
1.0 uH
L3 1.0 uH
RST1B
CIN3
1 uF
RFB2U
10K
RMOD
DNP
VIND
NCV97310MW33GEVB
http://onsemi.com
6
Operational Guidelines
1. Connect a dc input voltage, within the 6.0 V to
36 V range, between VBAT and GND.
2. Connect a load (< 150 mA) between VOUT1 and
GND
3. Connect a dc enable voltage, within the 2.0 V to
36 V range, between EN and GND. This will
enable the internal LDO for low Iq mode. You
may use jumper J1 to connect EN directly to
VBAT.
a. The VOUT1 signal should be 3.3 V.
b. The VOUT2 signal should be disabled
(regardless of EN2 state) and read 0 V.
c. The VOUT3 signal should be disabled
(regardless of EN3 state) and read 0 V.
4. Connect a dc enable voltage, within the 2.0 V to
36 V range, between STBYB and GND. This will
exit low Iq mode and power up switcher 1. You
may use jumper J2 to connect STBYB directly to
VBAT.
The VOUT1 signal should still be 3.3 V. You
may now add a higher load to VOUT1.
5. Connect a dc enable voltage, within the 2.0 V to
6 V range, between EN2 and GND. This will
power up switcher 2. You may use jumper J4 to
connect EN2 directly to VOUT1.
The VOUT2 signal should be 1.8 V.
6. Connect a dc enable voltage, within the 2.0 V to
6 V range, between EN3 and GND. This will
power up switcher 3. You may use jumper J3 to
connect EN3 directly to VOUT1.
The VOUT3 signal should be 1.2 V.
Figure 5. NCV97310 Board Connections
NCV97310MW33GEVB
http://onsemi.com
7
APPLICATION INFORMATION
Output Voltage Selection
The voltage outputs for switcher 2 and switcher 3 are
adjustable and can be set with a resistor divider. The FB
reference for both switchers is 1.2 V.
RLOWER
RUPPER
FBx = 1.2 V
VOUT 2 (VOUT 3)
The upper resistor is set to 10 kW and is part of the
feedback loop. To maintain stability over all conditions, it is
recommended t o change the only the lower feedback resistor
to set the output voltage. Use the following equation:
RLOWER +RUPPER VFB
VOUT*VFB
Some common setups are listed below:
Desired
Output (V) VREF (V) RUPPER
(kW, 1%) RLOWER
(kW, 1%)
1.2 1.2 10.0 NP
1.5 1.2 10.0 40.0
1.8 1.2 10.0 20.0
2.5 1.2 10.0 9.31
3.3 1.2 10.0 5.76
Spread Spectrum
In SMPS devices, switching translates to higher
efficiency. Unfortunately, the switching leads to a much
noisier EMI profile. We can greatly decrease some of the
radiated emissions with some spread spectrum techniques.
Spread spectrum is used to reduce the peak electromagnetic
emissions of a switching regulator.
fc9fc
7fc
5fc
3fc
fc9fc
7fc
5fc
3fc
t
t
V
V
Time Domain Frequency Domain
Unmodulated
The spread spectrum used in the NCV97310 is an
“up-spread” technique, meaning the switching frequency is
spread upward from the 2.0 MHz base frequency. For
example, a 5 % spread means that the switching frequency
is swept (spread) from 2.0 MHz up to 2.1 MHz in a linear
fashion – this is called the modulation depth. The rate at
which this spread takes place is called the modulation
frequency. For example, a 10 kHz modulation frequency
means that the frequency is swept from 2.0 MHz to 2.1 MHz
in 50 ms and then back down from 2.1 MHz to 2.0 MHz in
50 ms.
NCV97310MW33GEVB
http://onsemi.com
8
The modulation depth and modulation frequency are each
set by 2 external resistors to GND. The modulation
frequency can be set from 5 kHz up to 50 kHz using
a resistor from the RMOD pin to GND. The modulation
depth can be set from 3% up to 30% of the nominal switching
frequency using a resistor from the RDEPTH pin to GND.
Please see the curves below for typical values:
Modulation Frequency vs. RMOD
RMOD (kW)
Modulation Frequency (kHz)
0
2.00
7.00
12.00
17.00
22.00
27.00
32.00
37.00
42.00
47.00
52.00
40 50 6010 20 30
RDEPTH (kW)
Modulation Depth (%FSW)
0
0.0% 40 50 6010 20 30
Modulation Depth vs. RDEPTH
5.0%
10.0%
15.0%
20.0%
25.0%
30.0%
Spread spe c tr u m i s a u t o m a t ic a l l y t u r n e d o ff when there is
a short to GND or an open circuit on either the RMOD pin
or the RDEPTH pin. Please be sure that the ROSC pin is an
open circuit when using spread spectrum.
TYPICAL PERFORMANCE
Efficiency
Figure 6. Efficiency for SW1 with a 3.3 V Output
NCV97310 − SW1 Efficiency − 3.3 V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.50 1 1.5 2 2.5 3 3.5
Output Current (A)
Efficiency
VIN = 8.0 V
VIN = 13.2 V
VIN = 18.0 V
NCV97310MW33GEVB
http://onsemi.com
9
Figure 7. Efficiency for SW2 with a 1.8 V Output
NCV97310 − SW2 Efficiency − 1.8 V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.50 1 1.5 2 2.5
Output Current (A)
Efficiency
VIN = 5.0 V
VIN = 8.0 V
VIN = 3.3 V
Figure 8. Efficiency for SW3 with a 1.2 V Output
NCV97310 − SW3 Efficiency − 1.2 V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.50 1 1.5 2 2.5
Output Current (A)
Efficiency
VIN = 3.3 V
VIN = 5.0 V
NCV97310MW33GEVB
http://onsemi.com
10
Line Regulation
Figure 9. Line Regulation for SW1 with a 3.3 V Output
NCV97310 − SW1 − 3.3 V − Line Regulation
−2.00%
−1.50%
−1.00%
−0.50%
0.00%
0.50%
1.00%
1.50%
2.00%
5010152025
Input Voltage (V)
Line Regulation
30
IOUT = 100 mA
IOUT = 500 mA
IOUT = 1.0 A
IOUT = 2.0 A
IOUT = 3.0 A
Figure 10. Line Regulation for SW2 with a 1.8 V Output
NCV97310 − SW2 − 1.8 V − Line Regulation
−0.10%
−0.05%
0.00%
0.05%
0.10%
435678
Input Voltage (V)
Line Regulation
9
IOUT = 100 mA
IOUT = 500 mA
IOUT = 1.0 A
IOUT = 2.0 A
NCV97310MW33GEVB
http://onsemi.com
11
Figure 11. Line Regulation for SW3 with a 1.2 V Output
NCV97310 − SW3 − 1.2 V − Line Regulation
−0.10%
−0.05%
0.00%
0.05%
0.10%
3.53 4 4.5 5 5.5
Input Voltage (V)
Line Regulation
IOUT = 100 mA
IOUT = 500 mA
IOUT = 1.0 A
IOUT = 2.0 A
Load Regulation
Figure 12. Load Regulation for SW1 with a 3.3 V Output
NCV97310 − SW1 Load Regulation − 3.3 V
−0.40%
−0.30%
−0.20%
−0.10%
0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.50 1 1.5 2 2.5 3 3.5
Output Current (A)
Load Regulation
VIN = 8.0 V
VIN = 13.2 V
VIN = 18.0 V
NCV97310MW33GEVB
http://onsemi.com
12
Figure 13. Load Regulation for SW2 with a 1.8 V Output
NCV97310 − SW2 Load Regulation − 1.8 V
−0.10%
−0.05%
0.00%
0.05%
0.10%
0.50 1 1.5 2 2.5
Output Current (A)
Load Regulation
VIN = 3.3 V
VIN = 5.0 V
VIN = 8.0 V
Figure 14. Load Regulation for SW3 with a 1.2 V Output
NCV97310 − SW3 Load Regulation − 1.2 V
−0.10%
−0.05%
0.00%
0.05%
0.10%
0.50 1 1.5 2 2.5
Output Current (A)
Load Regulation
VIN = 3.3 V
VIN = 5.0 V
NCV97310MW33GEVB
http://onsemi.com
13
SCHEMATIC
(3.3 V)
(1.8 V)
(1.2 V)
Place CIN0, L0, CIN1, CIN2 on VBAT side.
Place CIN3 close to VINL (pin 29)
Place CIN4 close to VBAT (pin 1)
Place close
to VIN2
50V
Place close
to VIN2
Place GND near
ERRB for logic
reference.
Place CIN5 on
bottom of PCB
BST3
VOUT3
VOUT2
ROSC
SW1
VBAT_IC
STBYB
EN2
ERRB
RST2B
RST3B
EN
FB3
EN3
FB2
VIN2
BST2
COMP1
VOUT1
VBAT
SW3
VIN2
VIN2
RST1B
SW2
VOUT1
VOUT1
VOUT1
VOUT1
VOUT1
VOUT1
CCOMP1
330 pF
CO14
1 uF
R5
10K
R6
10K
CDRV1
0.1 uF
VIN2
L1
4.7 uH
GND0
1
J1
1 2
VBAT_1
CDRV2
0.47 uF
COUT21
10 uF
COMP1
TP1
C1
100 pF
TP2
CIN2
4.7 uF U1
NCV97310MW33R2G
VBAT
1
EN
2
STBY
3
RDEPTH
4
RMOD
5
RST1
6
COMP1
7
ROSC
8
ERR
9
EN2
10
RST2
11
GND1
12
RST3
13
FB3
14
EN3
15
BST3
16
GND3 17
SW3L 18
SW3H 19
VDRV2 20
VIN3 21
VIN2 22
SW2 23
GND2 24
BST2 25
FB2 27
VOUT 28
VINL 29
BST1 30
VDRV1 31
SW1 32
NC 26
EPAD 33
CSNB2
100 pF
CIN0
4.7 uF CIN5
100 uF
VBAT
1
VOUT3
1
R3
10K
COUT32
10 uF
VOUT2
RSNB2
10.0
CCOMP2
22 pF
J2
1 2
STBYB
RFB2L
20.0K
GND1
1
EN
DRV1
COUT13
10 uF
GND GND3
1
CSNB3
100 pF
VOUT1
D1
NRVB440MFS
EN2
COUT12
10 uF VOUT1
1
SW1
CO15
4.7 uF
R7
0.0
ROSC
DNP
RSNB3
10.0
RFB3L
DNP
R1
0.0
FB2
CIN1
4.7 uF
TP3 COUT31
10 uF
J4
1 2
L2 2.2 uH
ERRB
RCOMP1
12.4K
EN3
CBST2
0.1 uF
C2
100 pF
VOUT3
VOUT2
1
SW2
RST2B
COUT11
10 uF
CBST3
0.1 uF
R2
0.0
C3
0.1 uF
J3
1 2
CIN4
2.2 uF
RFB3U
10K
RST3B
SW3
RDEPTH
DNP
CBST1
0.1 uF
COUT22
10 uF
GND2
1
FB3
R4
10K
L0
1.0 uH
L3 1.0 uH
RST1B
CIN3
1 uF
RFB2U
10K
RMOD
DNP
VIND
NCV97310MW33GEVB
http://onsemi.com
14
PCB LAYOUT
Figure 15. Top View
Figure 16. Bottom View
NCV97310MW33GEVB
http://onsemi.com
15
BILL OF MATERIALS
Table 4. BILL OF MATERIALS
Reference
Designator(s) Qty. Description Value Tolerance Footprint Manufacturer Manufacturer’s
Part Number
Substi-
tution
Allowed
C1, C2, CSNB2,
CSNB3 4CAP CER
100 pF 50 V 5%
NP0 0603
100 pF 5% 603 Murata Electronics
North America GCM1885C1H101JA16D Yes
C3, CBST1,
CBST2, CBST3,
CDRV1
5CAP CER
0.1 mF 50 V
10% X7R 0603
0.1 mF10% 603 Murata Electronics
North America GCM188R71H104KA57D Yes
CCOMP1 1 CAP CER
330 pF 50 V 5%
NP0 0603
330 pF 5% 603 Murata Electronics
North America GCM1885C1H331JA16D Yes
CCOMP2 1 CAP CER
22 pF 50 V 5%
NP0 0603
22 pF 5% 603 Murata Electronics
North America GCM1885C1H220JA16D Yes
CDRV2 1 CAP CER
0.47 mF 16 V
10% X7R 0603
0.47 mF10% 603 Murata Electronics
North America GCM188R71C474KA55D Yes
CIN0, CIN1,
CIN2 3CAP CER
4.7 mF 50 V
10% X7R 1206
4.7 mF10% 1206 TDK Corporation C3216X7R1H475K160AC Yes
CIN3 1 CAP CER
1.0 mF 50 V
10% X7R 1206
1.0 mF10% 1206 Murata Electronics
North America GCM31MR71H105KA55L Yes
CIN4 1 CAP CER
2.2 mF 50 V
10% X7R 1206
2.2 mF10% 1206 Murata Electronics
North America GCM31CR71H225KA55L Yes
CIN5 1 CAP ALUM
100 mF 50 V
20% SMD
100 mF20% FK_V_E Chemi-Con EMZA500ADA101MHA0G Yes
CO14 1 CAP CER 1 mF
16 V 10% X7R
0603
1.0 mF10% 603 Murata Electronics
North America GCM188R71C105KA64D Yes
CO15 1 CAP CER
4.7 mF 16 V
10% X7R 0805
4.7 mF10% 805 TDK Corporation CGA4J3X7R1C475K125AB Yes
COUT11,
COUT12,
COUT13,
COUT21,
COUT22,
COUT31,
COUT32
7CAP CER
10 mF 10 V 10%
X7R 1206
10 mF10% 1206 Murata Electronics
North America GCM31CR71A106KA64L Yes
R1, R2 2RES 0.0 W
1/10 W 0603
SMD
0WJumper 603 Vishay/Dale CRCW06030000Z0EA Yes
R3, R4, R5, R6,
RFB2U, RFB3U 6RES 10.0 k W
1/10 W 1%
0603 SMD
10.0 kW1% 603 Vishay/Dale CRCW060310K0FKEA Yes
R7 1 RES 0.0 W
1/4 W 1206
SMD
0WJumper 1206 Vishay/Dale CRCW12060000Z0EA Yes
RCOMP1 1 RES 12.4 k W
1/10 W 1%
0603 SMD
12.4 kW1% 603 Vishay/Dale CRCW060312K4FKEA Yes
RFB2L 1 RES 5.76 kW
1/10 W 1%
0603 SMD
5.76 kW1% 603 Vishay/Dale CRCW06035K76FKEA Yes
RSNB2, RSNB3 2RES 10.0 W
1/10 W 1%
0603 SMD
10.0 W1% 603 Vishay/Dale CRCW060310R0FKEA Yes
D1 1 DIODE
SCHOTTKY
4.0 A 40 V SMB
40 V/4.0 A N/A SMB_DIODE ON Semiconductor NRVB440MFST1G No
NCV97310MW33GEVB
http://onsemi.com
16
Table 4. BILL OF MATERIALS (continued)
Reference
Designator(s)
Substi-
tution
Allowed
Manufacturer’s
Part Number
ManufacturerFootprintToleranceValueDescriptionQty.
L0, L3 2High Current
Shielded
Inductor 1.0 mH,
8.7 A SAT
1.0 mH20% XAL4020-102ME Coilcraft XAL4020-102ME No
L1 1 High Current
Shielded
Inductor 4.7 mH,
4.5 A SAT
4.7 mH20% XAL4030-472ME Coilcraft XAL4030-472ME No
L2 1 High Current
Shielded
Inductor 2.2 mH,
5.6 A SAT
2.2 mH20% XAL4020-222ME Coilcraft XAL4020-222ME No
EN, EN2, EN3,
ERRB, GNDL,
PGND1_1,
PGND1_2,
PGND2_1,
PGND3_1,
RST1B, RST2B,
RST3B, STBYB,
SW1, SW2,
SW3, VIN2,
VBAT,
VOUT1_1,
VOUT2_1,
VOUT3_1
21 PIN INBOARD
.042 HOLE
1000/PKG
N/A N/A TP Vector Electronics K24C/M Yes
GND0, GND1,
GND2, GND3,
VBAT, VOUT1,
VOUT2, VOUT3
8CONN JACK
BANANA
UNINS PANEL
MOU
N/A N/A BANANA Emerson Network
Power Connectivity
Johnson
108-0740-001 No
J1, J2, J3, J4 4 CONN
HEADER 2POS
.100 VERT
GOLD
N/A N/A JMP Molex Connector
Corporation 22-28-4023 Yes
4 CONN
JUMPER
SHORTING
GOLD
N/A N/A JMP Sullins Connector
Solutions SSC02SYAN Yes
COMP1, DRV1,
FB2, FB3,
RMIN, TP1,
TP2, TP3, VIND
9CIRCUIT PIN
PRNTD .020D
.425L
Do Not
Populate N/A SMALLTP Mill-Max
Manufacturing
Corp.
3128-2-00-15-00-00-08-0 Yes
RDEPTH,
RFB3L, RMOD,
ROSC
4 Do Not
Populate 603 Yes
U1 1 Automotive
Battery-Connec
ted Low IQ
Multi-Output
PMU
N/A N/A QFN32 ON Semiconductor NCV97310MW33R2G No
NOTE: All devices are RoHS Compliant.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the r ight t o m ake c hanges w ithout f urt her n otice t o a ny p roducts h erein. S CILLC m akes n o w arranty, representation o r g uar antee r egarding t he s uitability o f i ts p roduct s f or any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation s pecial, c onsequential o r i ncidental d amages. Typical” p arameters w hich m ay b e p rovided i n S CILLC d ata s heets a nd/or s pecifications c an a nd d o v ary i n d if ferent a pplications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under i t s p at ent rights nor the rights o f o t hers. S CI LLC p roduct s a re not designed, intended, or a uthorized for use as components in systems intended for
surgical implant i nto the body, o r o ther a pplications i ntended t o s upport o r s ustain l ife, o r f or a ny o ther a pplication i n w hich t he f ailure o f t he S CILLC pr oduct c ould c reate a s ituation w here
personal injury or death may occur. Should Buyer purchase or use S CILLC p r oduct s for any such unintended or unaut horized appli cat ion, B uyer shall indemnify and hold SCILLC and
its o f ficers, e mployees, s ubsidiaries, a f filiates, a nd d istributors h armless a gainst a ll c laims, c osts, d amages, a nd e xpenses, a nd r easonable a ttorney f ees a rising o ut o f, d irectly o r i ndirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
P
UBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
EVBUM2223/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loc
al
Sales Representative
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
ON Semiconductor:
NCV97310MW33GEVB