Precision Low Noise, Low Input
Bias Current Operational Amplifiers
Data Sheet OP1177/OP2177/OP4177
Rev. H Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2001–2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Low offset voltage: 60 μV maximum
Very low offset voltage drift: 0.7 μV/°C maximum
Low input bias current: 2 nA maximum
Low noise: 8 nV/√Hz typical
CMRR, PSRR, and AVO > 120 dB minimum
Low supply current: 400 μA per amplifier
Dual supply operation: ±2.5 V to ±15 V
Unity-gain stable
No phase reversal
Inputs internally protected beyond supply voltage
APPLICATIONS
Wireless base station control circuits
Optical network control circuits
Instrumentation
Sensors and controls
Thermocouples
Resistor thermal detectors (RTDs)
Strain bridges
Shunt current measurements
Precision filters
PIN CONFIGURATIONS
–IN
+IN
V–
V+
NC
NC
18
OP1177
NC
OUT
NC = NO CONNECT
45
02627-001
1
2
3
4
8
7
6
5
IN
V–
+
IN
V+
OUT
NC
NC
NC
NC = NO CONNECT
OP1177
02627-002
Figure 1. 8-Lead MSOP (RM Suffix) Figure 2. 8-Lead SOIC_N (R Suffix)
–IN A
+IN A
V–
OUT B
+IN B
V+
18
OP2177
OUT A
–IN B
45
02627-003
1
2
3
4
8
7
6
5
–IN A
V–
+IN A
OUT B
–IN B
V+
+IN B
OUT A
OP2177
02627-004
Figure 3. 8-Lead MSOP (RM Suffix) Figure 4. 8-Lead SOIC_N (R Suffix)
OUT B 78
+IN B 510
–IN B 69
V+ 411
–IN A 213
+IN A 312
OUT A 114
OUT C
+IN C
–IN C
V–
–IN D
+IN D
OUT D
OP4177
02627-005
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
–IN D
+IN D
V–
OUT D
–IN C
OUT C
+IN C
14
8
1
7
OP4177
02627-006
Figure 5. 14-Lead SOIC_N (R Suffix) Figure 6. 14-Lead TSSOP (RU Suffix)
GENERAL DESCRIPTION
The OPx177 family consists of very high precision, single, dual,
and quad amplifiers featuring extremely low offset voltage and
drift, low input bias current, low noise, and low power consump-
tion. Outputs are stable with capacitive loads of over 1000 pF
with no external compensation. Supply current is less than 500 μA
per amplifier at 30 V. Internal 500 Ω series resistors protect the
inputs, allowing input signal levels several volts beyond either
supply without phase reversal.
Unlike previous high voltage amplifiers with very low offset
voltages, the OP1177 (single) and OP2177 (dual) amplifiers
are available in tiny 8-lead surface-mount MSOP and 8-lead
narrow SOIC packages. The OP4177 (quad) is available in
TSSOP and 14-lead narrow SOIC packages. Moreover, specified
performance in the MSOP and the TSSOP is identical to
performance in the SOIC package. MSOP and TSSOP are
available in tape and reel only.
The OPx177 family offers the widest specified temperature
range of any high precision amplifier in surface-mount packaging.
All versions are fully specified for operation from −40°C to
+125°C for the most demanding operating environments.
Applications for these amplifiers include precision diode
power measurement, voltage and current level setting, and
level detection in optical and wireless transmission systems.
Additional applications include line-powered and portable
instrumentation and controls—thermocouple, RTD, strain-
bridge, and other sensor signal conditioning—and precision filters.
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 2 of 24
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Electrical Characteristics ............................................................. 4
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6
Functional Description .................................................................. 14
Total Noise-Including Source Resistors................................... 14
Gain Linearity ............................................................................. 14
Input Overvoltage Protection ................................................... 15
Output Phase Reversal ............................................................... 15
Settling Time ............................................................................... 15
Overload Recovery Time .......................................................... 15
THD + Noise ............................................................................... 16
Capacitive Load Drive ............................................................... 16
Stray Input Capacitance Compensation .................................. 17
Reducing Electromagnetic Interference .................................. 17
Proper Board Layout .................................................................. 18
Difference Amplifiers ................................................................ 18
A High Accuracy Thermocouple Amplifier ........................... 19
Low Power Linearized RTD ...................................................... 19
Single Operational Amplifier Bridge ....................................... 20
Realization of Active Filters .......................................................... 21
Band-Pass KRC or Sallen-Key Filter ........................................ 21
Channel Separation .................................................................... 21
References on Noise Dynamics and Flicker Noise ............... 21
Outline Dimensions ....................................................................... 22
Ordering Guide .......................................................................... 24
REVISION HISTORY
9/2018Rev. G to Rev. H
Changes to Ordering Guide .......................................................... 24
11/2009Rev. F to Rev. G
Changes to Figure 64 ...................................................................... 19
Changes to Ordering Guide .......................................................... 24
Updated Outline Dimensions ....................................................... 22
5/2009Rev. E to Rev. F
Changes to Figure 64 ...................................................................... 19
Changes to Ordering Guide .......................................................... 24
10/2007Rev. D to Rev. E
Changes to General Description .................................................... 1
Changes to Table 4 ............................................................................ 5
Updated Outline Dimensions ....................................................... 22
7/2006Rev. C to Rev. D
Changes to Table 4 ............................................................................ 5
Changes to Figure 51 ...................................................................... 14
Changes to Figure 52 ...................................................................... 15
Changes to Figure 54 ...................................................................... 16
Changes to Figure 58 to Figure 61 ................................................ 17
Changes to Figure 62 and Figure 63 ............................................. 18
Changes to Figure 64 ...................................................................... 19
Changes to Figure 65 and Figure 66 ............................................ 20
Changes to Figure 67 and Figure 68 ............................................ 21
Removed SPICE Model Section ................................................... 21
Updated Outline Dimensions ....................................................... 22
Changes to Ordering Guide .......................................................... 24
4/2004Rev. B to Rev. C
Changes to Ordering Guide ............................................................. 4
Changes to TPC 6 .............................................................................. 5
Changes to TPC 26 ............................................................................ 7
Updated Outline Dimensions ....................................................... 17
4/2002Rev. A to Rev. B
Added OP4177 ......................................................................... Global
Edits to Specifications ....................................................................... 2
Edits to Electrical Characteristics Headings .................................. 4
Edits to Ordering Guide ................................................................... 4
11/2001Rev. 0 to Rev. A
Edit to Features .................................................................................. 1
Edits to TPC 6 ................................................................................... 5
7/2001Revision 0: Initial Version
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 3 of 24
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = ±5.0 V, VCM = 0 V, T A = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ1 Max Unit
INPUT CHARACTERISTICS
Offset Voltage
OP1177 VOS 15 60 μV
OP2177/OP4177 VOS 15 75 μV
OP1177/OP2177 VOS −40°C < TA < +125°C 25 100 μV
OP4177 VOS −40°C < TA < +125°C 25 120 μV
Input Bias Current IB −40°C < TA < +125°C 2 +0.5 +2 nA
Input Offset Current IOS −40°C < TA < +125°C −1 +0.2 +1 nA
Input Voltage Range −3.5 +3.5 V
Common-Mode Rejection Ratio CMRR VCM = −3.5 V to +3.5 V 120 126 dB
−40°C < TA < +125°C 118 125 dB
Large Signal Voltage Gain AVO RL = 2 kΩ, VO = 3.5 V to +3.5 V 1000 2000 V/mV
Offset Voltage Drift
OP1177/OP2177 ΔVOS/ΔT −40°C < TA < +125°C 0.2 0.7 μV/°C
OP4177
ΔV
OS
/ΔT
−40°C < T
A
< +125°C
0.3
0.9
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA, −40°C < TA < +125°C +4 +4.1 V
Output Voltage Low VOL IL = 1 mA, −40°C < TA < +125°C −4.1 4 V
Output Current IOUT VDROPOUT < 1.2 V ±10 mA
POWER SUPPLY
Power Supply Rejection Ratio
OP1177 PSRR VS = ±2.5 V to ±15 V 120 130 dB
−40°C < TA < +125°C 115 125 dB
OP2177/OP4177 PSRR VS = ±2.5 V to ±15 V 118 121 dB
−40°C < TA < +125°C 114 120 dB
Supply Current per Amplifier
I
SY
V
O
= 0 V
400
500
−40°C < TA < +125°C 500 600 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 0.7 V/μs
Gain Bandwidth Product GBP 1.3 MHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.4 μV p-p
Voltage Noise Density en f = 1 kHz 7.9 8.5 nV/√Hz
Current Noise Density in f = 1 kHz 0.2 pA/√Hz
MULTIPLE AMPLIFIERS CHANNEL SEPARATION CS DC 0.01 μV/V
f = 100 kHz −120 dB
1 Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically
low estimates for parameters that can have both positive and negative values.
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 4 of 24
ELECTRICAL CHARACTERISTICS
VS = ±15 V, VCM = 0 V, T A = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ1 Max Unit
INPUT CHARACTERISTICS
Offset Voltage
OP1177 VOS 15 60 μV
OP2177/OP4177 VOS 15 75 μV
OP1177/OP2177 VOS −40°C < TA < +125°C 25 100 μV
OP4177 VOS −40°C < TA < +125°C 25 120 μV
Input Bias Current IB −40°C < TA < +125°C 2 +0.5 +2 nA
Input Offset Current IOS −40°C < TA < +125°C −1 +0.2 +1 nA
Input Voltage Range −13.5 +13.5 V
Common-Mode Rejection Ratio CMRR VCM = −13.5 V to +13.5 V,
−40°C < TA < +125°C 120 125 dB
Large Signal Voltage Gain AVO RL = 2 kΩ, VO = 13.5 V to +13.5 V 1000 3000 V/mV
Offset Voltage Drift
OP1177/OP2177 ΔVOS/ΔT −40°C < TA < +125°C 0.2 0.7 μV/°C
OP4177 ΔVOS/ΔT −40°C < TA < +125°C 0.3 0.9 μV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA, −40°C < TA < +125°C +14 +14.1 V
Output Voltage Low VOL IL = 1 mA, −40°C < TA < +125°C 14.1 −14 V
Output Current IOUT VDROPOUT < 1.2 V ±10 mA
Short-Circuit Current ISC ±25 mA
POWER SUPPLY
Power Supply Rejection Ratio
OP1177
PSRR
V
S
= ±2.5 V to ±15 V
120
130
−40°C < TA < +125°C 115 125 dB
OP2177/OP4177 PSRR VS = ±2.5 V to ±15 V 118 121 dB
−40°C < TA < +125°C 114 120 dB
Supply Current per Amplifier ISY VO = 0 V 400 500 μA
−40°C < TA < +125°C 500 600 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 0.7 V/μs
Gain Bandwidth Product GBP 1.3 MHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.4 μV p-p
Voltage Noise Density
e
n
f = 1 kHz
7.9
8.5
Current Noise Density in f = 1 kHz 0.2 pA/√Hz
MULTIPLE AMPLIFIERS CHANNEL SEPARATION CS DC 0.01 μV/V
f = 100 kHz −120 dB
1 Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically
low estimates for parameters that can have both positive and negative values.
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 5 of 24
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage 36 V
Input Voltage VS− to VS+
Differential Input Voltage ±Supply Voltage
Storage Temperature Range
R, RM, and RU Packages −65°C to +150°C
Operating Temperature Range
OP1177/OP2177/OP4177 40°C to +125°C
Junction Temperature Range
R, RM, and RU Packages −65°C to +150°C
Lead Temperature, Soldering (10 sec) 300°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type1 θJA θJC Unit
8-Lead MSOP (RM-8) 190 44 °C/W
8-Lead SOIC_N (R-8)
158
43
°C/W
14-Lead SOIC_N (R-14)
120
36
°C/W
14-Lead TSSOP (RU-14) 240 43 °C/W
1 MSOP is available in tape and reel only.
ESD CAUTION
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 6 of 24
TYPICAL PERFORMANCE CHARACTERISTICS
INPUT OFFSET VOLTAG E (µV)
NUMBER O F AMP LI FIE RS
45
40
35
30
25
20
15
10
5
–30 –20 –10 010 20 30 40
0
50
–40
V
SY
= ±15V
02627-007
Figure 7. Input Offset Voltage Distribution
INPUT OFFSET VOLTAGE DRIFT (µV/°C)
NUMBER O F AMP LI FIE RS
80
70
60
50
40
30
20
10
0.15 0.25 0.35 0.45 0.55 0.65
0
90
0.05
V
SY
= ±15V
02627-008
Figure 8. Input Offset Voltage Drift Distribution
INPUT BI AS CURRE NT (n A)
NUMBER O F AMP LI FIE RS
120
100
80
60
40
20
0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
140
0
V
SY
= ±15V
02627-009
Figure 9. Input Bias Current Distribution
LO AD CURRE NT (mA)
ΔOUTPUT VOLTAGE (V)
0.01 0.1 1
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
1.8
0.001 10
SOURCE
SINK
V
SY
= ±15V
T
A
= 25° C
02627-010
Figure 10. Output Voltage to Supply Rail vs. Load Current
TEMPERATURE (°C)
V
SY
= ±15V
INPUT BI AS CURRE NT (n A)
2
1
0
–1
–2
050 100
3
–3
–50 150
02627-011
Figure 11. Input Bias Current vs. Temperature
FREQUENCY ( Hz )
PHASE S HIF T (Deg rees)
OPEN-LOOP GAIN (dB)
1M
50
40
30
20
10
0
–10
60
–20
100k 10M
225
180
135
90
45
0
–45
270
–90
GAIN
PHASE
V
SY
= ±15V
CL = 0
RL =
02627-012
Figure 12. Open-Loop Gain and Phase Shift vs. Frequency
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 7 of 24
FREQUENCY (Hz)
CLOSED-LOOP GAIN (dB)
10k 100k 1M 10M
100
80
60
40
20
0
–20
–40
–60
120
–80
1k 100M
VSY = ±15V
VIN = 4mV p-p
CL = 0
RL =
A
V
= 100
A
V
= 1
A
V
= 10
02627-013
Figure 13. Closed-Loop Gain vs. Frequency
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
1k 10k 100k 1M
450
400
350
300
250
200
150
100
50
100
500
0
V
SY
= ±15V
V
IN
= 50mV p-p
A
V
= 10
A
V
= 100
A
V
= 1
0
2627-014
Figure 14. Output Impedance vs. Frequency
TIME (100µs/DIV)
VOLTAGE (1V/DIV)
GND
V
SY
= ±15V
C
L
= 300pF
R
L
= 2k
V
IN
= 4V
A
V
= 1
02627-015
Figure 15. Large Signal Transient Response
TIME (100µs/DIV)
VOLTAGE (100mV/DIV)
GND
VSY = ±15V
CL = 1,000pF
RL = 2k
VIN = 100mV
AV = 1
02627-016
Figure 16. Small Signal Transient Response
CAPACITANCE (pF)
SMALL SIGNAL OVERSHOOT (%)
10 100 1k
1 10k
45
40
35
30
25
20
15
10
5
50
0
+OS
–OS
V
SY
= ±15V
R
L
= 2k
V
IN
= 100mV p-p
02627-017
Figure 17. Small Signal Overshoot vs. Load Capacitance
TIME (10µs/DIV)
+200m
V
0V
–15V
0V
V
SY
= ±15V
R
L
= 10k
A
V
= –100
V
IN
= 200mV
INPUT
OUTPUT
0
2627-018
Figure 18. Positive Overvoltage Recovery
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 8 of 24
TIME (4µs/DIV)
0V
200m
V
0V
15V
V
SY
= ±15V
R
L
= 10k
A
V
= –100
V
IN
= 200mV
INPUT
OUTPUT
0
2627-019
Figure 19. Negative Overvoltage Recovery
FREQUENCY (Hz)
CMRR (dB)
100 1k 10k 100k 1M
120
100
80
60
40
20
140
010 10M
V
SY
= ±15V
0
2627-020
Figure 20. CMRR vs. Frequency
FREQUENCY (Hz)
PSRR (dB)
100 1k 10k 100k 1M
120
100
80
60
40
20
140
0
10 10M
V
SY
= ±15V
+PSRR
–PSRR
02627-021
Figure 21. PSRR vs. Frequency
V
NOISE
(0.2µV/DIV)
TIME (1s/DIV)
V
SY
= ±15V
0
2627-022
Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise
FREQUENCY (Hz)
16
14
12
10
8
6
4
18
2
50 100 150 2000 250
V
SY
= ±15V
VOLTAGE NOISE DENSITY (nV/
Hz)
02627-023
Figure 23. Voltage Noise Density vs. Frequency
SHORT-CIRCUIT CURRENT (mA)
+I
SC
–I
SC
TEMPERATURE (°C)
30
25
20
15
10
5
0 50 100
35
0
–50 150
V
SY
= ±15V
0
2627-024
Figure 24. Short-Circuit Current vs. Temperature
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 9 of 24
OUTPUT VOLTAGE SWING (V)
14.40
14.00
14.30
14.05
14.25
14.20
14.15
14.10
14.35
+V
OH
–V
OL
TEMPERATURE (°C)
050 100–50 150
VSY = ± 15V
02627-025
Figure 25. Output Voltage Swing vs. Temperature
TIME F ROM PO W ER SUPPLY TURN-ON (Sec)
ΔOFFSET VOLTAGE (µV)
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
0.5
–0.5
–0.4
20 40 60 80 100 120
0140
V
SY
= ±15V
02627-026
Figure 26. Warm-Up Drift
INPUT OFFSET VOLTAGE (µV)
0
12
8
4
14
18
2
6
10
16
TEMPERATURE (°C)
V
SY
= ±15V
050 100–50 150
02627-027
Figure 27. Input Offset Voltage vs. Temperature
CMRR (dB)
123
127
125
128
129
124
126
130
131
132
133
TEMPERATURE (°C)
VSY = ± 15V
050 100–50 150
02627-028
Figure 28. CMRR vs. Temperature
PSRR (dB)
123
127
125
128
129
124
126
130
131
132
133
TEMPERATURE (°C)
V
SY
= ±15V
050 100–50 150
02627-029
Figure 29. PSRR vs. Temperature
INPUT OFFSET VOLTAGE (µV)
NUMBER O F AMP LI FIE RS
50
15
0
45
20
10
5
30
25
40
35
V
SY
= ±5V
–40 –30 –20 –10 010 20 30 40
02627-030
Figure 30. Input Offset Voltage Distribution
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 10 of 24
OUTPUT VOLTAGE (V)
LOAD CURRENT (mA)
1.4
0.8
0
0.4
0.2
0.6
1.0
1.2
0.01 0.1 1
V
SY
= ±5V
T
A
= 25°C
SINK
SOURCE
0.001 10
02627-031
Figure 31. Output Voltage to Supply Rail vs. Load Current
0
2627-032
FREQUENCY (Hz)
PHASE SHIFT (Degrees)
OPEN-LOOP GAIN (dB)
1M
50
40
30
20
10
0
–10
60
–20
100k 10M
225
180
135
90
45
0
–45
270
–90
GAIN
PHASE
V
SY
= ±5V
C
L
= 0
R
L
=
Figure 32. Open-Loop Gain and Phase Shift vs. Frequency
FREQUENCY (Hz)
CLOSED-LOOP GAIN (dB)
10k 100k 1M 10M
100
80
60
40
20
0
–20
–40
–60
120
–80
1k 100M
V
SY
= ±5V
V
IN
= 4mV p-p
C
L
= 0
R
L
=
AV = 100
AV = 1
AV = 10
0
2627-033
Figure 33. Closed-Loop Gain vs. Frequency
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
1k 10k 100k
100 1M
450
400
350
300
250
200
150
100
50
500
0
V
SY
= ±5V
V
IN
= 50mV p-p
AV = 100 AV = 1
AV = 10
02627-034
Figure 34. Output Impedance vs. Frequency
TIME (100µs/DIV)
VOLTAGE (1V/DIV)
GND
V
SY
= ±5V
C
L
= 300pF
R
L
= 2k
V
IN
= 1V
A
V
= 1
02627-035
Figure 35. Large Signal Transient Response
TIME (10µs/DIV)
VOLTAGE (50mV/DIV)
GND
V
SY
= ±5V
C
L
= 1,000pF
R
L
= 2k
V
IN
= 100mV
A
V
= 1
02627-036
Figure 36. Small Signal Transient Response
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 11 of 24
CAPACITANCE (pF)
SMALL SIGNAL OVERSHOOT (%)
10 100 1k
1 10k
45
40
35
30
25
20
15
10
5
50
0
+OS
–OS
V
SY
= ±5V
R
L
= 2k
V
IN
= 100mV
02627-037
Figure 37. Small Signal Overshoot vs. Load Capacitance
TIME (4µs/DIV)
+200mV
0V
–15V
0V
V
SY
= ±5V
R
L
= 10k
A
V
= –100
V
IN
= 200mV
INPUT
OUTPUT
02627-038
Figure 38. Positive Overvoltage Recovery
TIME (4µs/DIV)
0V
200m
V
0V
5V
V
SY
= ±5V
R
L
= 10k
A
V
= –100
V
IN
= 200mV
INPUT
OUTPUT
02627-039
Figure 39. Negative Overvoltage Recovery
TIME (200µs/DIV)
VOLTAGE (2V/DIV)
GND
VS = ±5V
AV = 1
RL = 10k
INPUT
OUTPUT
02627-040
Figure 40. No Phase Reversal
FREQUENCY (Hz)
CMRR (dB)
100 1k 10k 100k 1M
120
100
80
60
40
20
140
0
10 10M
V
SY
= ±5V
02627-041
Figure 41. CMRR vs. Frequency
FREQUENCY (Hz)
PSRR (dB)
100 1k 10k 100k 1M
160
120
80
40
200
0
10 10M
V
SY
= ±5V
140
100
60
20
180
+PSRR
–PSRR
02627-042
Figure 42. PSRR vs. Frequency
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 12 of 24
V
NOISE
(0.2µV/DIV)
TIME (1s/DIV)
V
SY
= ±5V
02627-043
Figure 43. 0.1 Hz to 10 Hz Input Voltage Noise
FREQUENCY (Hz)
16
14
12
10
8
6
4
18
2
50 100 150 2000250
V
SY
= ±5V
VOLTAGE NOISE DENSITY (nV/Hz)
02627-044
Figure 44. Voltage Noise Density vs. Frequency
SHORT-CIRCUIT CURRENT (mA)
+I
SC
–I
SC
TEMPERATURE (°C)
30
25
20
15
10
5
0 50 100
35
0
–50 150
V
SY
= ±5V
02627-045
Figure 45. Short-Circuit Current vs. Temperature
OUTPUT VOLTAGE SWING (V)
4.40
4.00
4.30
4.05
4.25
4.20
4.15
4.10
4.35
+V
OH
–V
OL
TEMPERATURE (°C)
0 50 100–50 150
V
SY
= ±5V
02627-046
Figure 46. Output Voltage Swing vs. Temperature
INPUT OFFSET VOLTAGE (µV)
0
10
5
20
25
15
TEMPERATURE (°C)
V
SY
= ±5V
0 50 100–50 150
02627-047
Figure 47. Input Offset Voltage vs. Temperature
SUPPLY CURRENT (µA)
0
300
200
500
600
400
TEMPERATURE (°C)
0 50 100–50 150
100
V
SY
= ±5V
V
SY
= ±15V
02627-048
Figure 48. Supply Current vs. Temperature
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 13 of 24
SUPPLY CURRE NT A)
0
300
200
100
350
450
50
150
250
400
SUPPLY VOLTAGE (V)
510 15
020 25 30 35
T
A
= 25° C
02627-049
Figure 49. Supply Current vs. Supply Voltage
FREQUENCY ( Hz )
CHANNEL S E P ARATI ON (d B)
100 1k 10k 100k
–20
–40
–60
–80
–100
–120
–140
0
–16010 1M
02627-050
Figure 50. Channel Separation vs. Frequency
OP1177/OP2177/OP4177 Data Sheet
Rev. H | Page 14 of 24
FUNCTIONAL DESCRIPTION
The OPx177 series is the fourth generation of Analog Devices,
Inc., industry-standard OP07 amplifier family. OPx177 is a high
precision, low noise operational amplifier with a combination of
extremely low offset voltage and very low input bias currents.
Unlike JFET amplifiers, the low bias and offset currents are
relatively insensitive to ambient temperatures, even up to 125°C.
Analog Devices proprietary process technology and linear design
expertise has produced a high voltage amplifier with superior
performance to the OP07, OP77, and OP177 in a tiny MSOP
8lead package. Despite its small size, the OPx177 offers numerous
improvements, including low wideband noise, very wide input
and output voltage range, lower input bias current, and complete
freedom from phase inversion.
OPx177 has a specified operating temperature range as wide as
any similar device in a plastic surface-mount package. This is
increasingly important as PCB and overall system sizes continue
to shrink, causing internal system temperatures to rise. Power
consumption is reduced by a factor of four from the OP177, and
bandwidth and slew rate increase by a factor of two. The low
power dissipation and very stable performance vs. temperature
also act to reduce warmup drift errors to insignificant levels.
Open-loop gain linearity under heavy loads is superior to compet-
itive parts, such as the OPA277, improving dc accuracy and
reducing distortion in circuits with high closed-loop gains.
Inputs are internally protected from overvoltage conditions
referenced to either supply rail.
Like any high performance amplifier, maximum performance is
achieved by following appropriate circuit and PCB guidelines.
The following sections provide practical advice on getting the
most out of the OPx177 under a variety of application conditions.
TOTAL NOISE-INCLUDING SOURCE RESISTORS
The low input current noise and input bias current of the OPx177
make it useful for circuits with substantial input source resistance.
Input offset voltage increases by less than 1 μV maximum per
500 Ω of source resistance.
The total noise density of the OPx177 is

SS
nn
TOTALn kTRRiee 4
2
2
,
where:
en is the input voltage noise density.
in is the input current noise density.
RS is the source resistance at the noninverting terminal.
k is Boltzmanns constant (1.38 × 10−23 J/K).
T is the ambient temperature in Kelvin (T = 273 + temperature
in degrees Celsius).
For RS < 3.9 kΩ, en dominates and
en,TOTALen
For 3.9 kΩ < RS < 412 kΩ, voltage noise of the amplifier, the
current noise of the amplifier translated through the source
resistor, and the thermal noise from the source resistor all
contribute to the total noise.
For RS > 412 kΩ, the current noise dominates and
en,TOTALinRS
The total equivalent rms noise over a specific bandwidth is
expressed as
BWee TOTALnn ,
where BW is the bandwidth in hertz.
The preceding analysis is valid for frequencies larger than 50 Hz.
When considering lower frequencies, flicker noise (also known
as 1/f noise) must be taken into account.
For a reference on noise calculations, refer to the Band-Pass
KRC or Sallen-Key Filter section.
GAIN LINEARITY
Gain linearity reduces errors in closed-loop configurations. The
straighter the gain curve, the lower the maximum error over the
input signal range. This is especially true for circuits with high
closed-loop gains.
The OP1177 has excellent gain linearity even with heavy loads,
as shown in Figure 51. Compare its performance to the OPA277,
shown in Figure 52. Both devices are measured under identical
conditions, with RL = 2 kΩ. The OP2177 (dual) has virtually no
distortion at lower voltages. Compared to the OPA277 at several
supply voltages and various loads, OP1177 performance far
exceeds that of its counterpart.
(5V/DIV)
OP1177
(10µV/DIV)
VSY = ±15V
RL = 2k
02627-051
Figure 51. Gain Linearity
Data Sheet OP1177/OP2177/OP4177
Rev. H | Page 15 of 24
(5V/DIV)
OPA277
V
SY
= ±15V
R
L
= 2k
(10µV/DIV)
0
2627-052
Figure 52. Gain Linearity
INPUT OVERVOLTAGE PROTECTION
When input voltages exceed the positive or negative supply
voltage, most amplifiers require external resistors to protect
them from damage.
The OPx177 has internal pr