Semiconductor Components Industries, LLC, 2000
August, 2000 – Rev. 4 1Publication Order Number:
MC14028B/D
MC14028B
BCD-To-Decimal Decoder
Binary-To-Octal Decoder
The MC14028B decoder is constructed so that an 8421 BCD code
on the four inputs provides a decimal (one–of–ten) decoded output,
while a 3–bit binary input provides a decoded octal (one–of–eight)
code output with D forced to a logic “0”. Expanded decoding such as
binary–to–hexadecimal (one–of–16), etc., can be achieved by using
other MC14028B devices. The part is useful for code conversion,
address decoding, memory selection control, demultiplexing, or
readout decoding.
Diode Protection on All Inputs
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load Over the Rated Temperature Range
Positive Logic Design
Low Outputs on All Illegal Input Combinations
Similar to CD4028B.
MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 2.)
Symbol Parameter Value Unit
VDD DC Supply Voltage Range –0.5 to +18.0 V
Vin, Vout Input or Output Voltage Range
(DC or Transient) –0.5 to VDD + 0.5 V
Iin, Iout Input or Output Current
(DC or Transient) per Pin ±10 mA
PDPower Dissipation,
per Package (Note 3.) 500 mW
TAAmbient Temperature Range –55 to +125 °C
Tstg Storage Temperature Range –65 to +150 °C
TLLead Temperature
(8–Second Soldering) 260 °C
2. Maximum Ratings are those values beyond which damage to the device
may occur.
3. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/C From 65C To 125C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high–impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS (Vin or Vout) VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
http://onsemi.com
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
Device Package Shipping
ORDERING INFORMATION
MC14028BCP PDIP–16 2000/Box
MC14028BD SOIC–16 2400/Box
MC14028BDR2 SOIC–16 2500/Tape & Reel
1. For ordering information on the EIAJ version of
the SOIC packages, please contact your local
ON Semiconductor representative.
MARKING
DIAGRAMS
1
16
PDIP–16
P SUFFIX
CASE 648
MC14028BCP
AWLYYWW
SOIC–16
D SUFFIX
CASE 751B 1
16
14028B
AWLYWW
SOEIAJ–16
F SUFFIX
CASE 966
1
16
MC14028B
ALYW
MC14028BF SOEIAJ–16 See Note 1.
MC14028BFEL SOEIAJ–16 See Note 1.
MC14028B
http://onsemi.com
2
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
C
B
Q1
Q3
VDD
Q8
A
D
Q7
Q0
Q2
Q4
VSS
Q6
Q5
Q9
TRUTH TABLE
DC B A Q9Q8Q7Q6Q5Q4Q3Q2Q1Q0
00000000000001
00010000000010
00100000000100
00110000001000
01000000010000
01010000100000
01100001000000
01110010000000
10000100000000
10011000000000
10100000000000
10110000000000
11000000000000
11010000000000
11100000000000
11110000000000
BLOCK DIAGRAM
8421
BCD
INPUTS
DECIMAL
DECODED
OUTPUTS
OCTAL
DECODED
OUTPUTS
3
14
2
15
1
6
7
4
9
5
A
B
C
DQ9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
3-BIT
BINARY
INPUTS
10
13
12
11
VDD = PIN 16
VSS = PIN 8
MC14028B
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
VDD
ÎÎÎÎÎ
ÎÎÎÎÎ
– 55C
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
25C
ÎÎÎÎÎ
ÎÎÎÎÎ
125C
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎ
ÎÎÎ
V
DD
Vdc
Min
Max
Min
ÎÎÎ
ÎÎÎ
Typ (4.)
Max
Min
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Output Voltage “0” Level
Vin = VDD or 0
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
VOL
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
Î
0.05
0.05
0.05
ÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
0
0
0
ÎÎ
0.05
0.05
0.05
Î
Î
0.05
0.05
0.05
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
“1” Level
Vin = 0 or VDD
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
VOH
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
4.95
9.95
14.95
Î
ÎÎ
4.95
9.95
14.95
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
10
15
ÎÎ
Î
4.95
9.95
14.95
Î
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Input Voltage “0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
VIL
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
Î
Î
Î
1.5
3.0
4.0
ÎÎ
ÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
2.25
4.50
6.75
ÎÎ
ÎÎ
1.5
3.0
4.0
Î
Î
Î
Î
1.5
3.0
4.0
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
“1” Level
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
VIH
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
Î
3.5
7.0
11
Î
Î
ÎÎ
ÎÎ
3.5
7.0
11
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
2.75
5.50
8.25
ÎÎ
ÎÎ
Î
Î
3.5
7.0
11
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Output Drive Current
(VOH = 2.5 Vdc) Source
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
IOH
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
5.0
5.0
10
15
Î
Î
Î
– 3.0
– 0.64
– 1.6
– 4.2
Î
Î
Î
ÎÎ
ÎÎ
ÎÎ
– 2.4
– 0.51
– 1.3
– 3.4
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
– 4.2
– 0.88
– 2.25
– 8.8
ÎÎ
ÎÎ
ÎÎ
Î
Î
Î
– 1.7
– 0.36
– 0.9
– 2.4
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
(VOL = 0.4 Vdc) Sink
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
IOL
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
0.64
1.6
4.2
Î
ÎÎ
0.51
1.3
3.4
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.88
2.25
8.8
ÎÎ
Î
0.36
0.9
2.4
Î
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
Input Current
ÎÎÎÎ
ÎÎÎÎ
Iin
ÎÎÎ
ÎÎÎ
15
± 0.1
ÎÎÎ
ÎÎÎ
±0.00001
± 0.1
± 1.0
ÎÎÎ
ÎÎÎ
µAdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Input Capacitance
(Vin = 0)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Cin
ÎÎÎ
Î
Î
Î
ÎÎÎ
Î
Î
ÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
ÎÎ
7.5
Î
Î
ÎÎÎ
Î
Î
Î
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Quiescent Current
(Per Package)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
IDD
ÎÎÎ
Î
Î
Î
ÎÎÎ
5.0
10
15
Î
Î
5.0
10
20
ÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.005
0.010
0.015
ÎÎ
5.0
10
20
Î
Î
150
300
600
ÎÎÎ
Î
Î
Î
ÎÎÎ
µAdc
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Total Supply Current (5.) (6.)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
IT
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
5.0
10
15
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
IT = (0.3 µA/kHz) f + IDD
IT = (0.6 µA/kHz) f + IDD
IT = (0.9 µA/kHz) f + IDD
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
µAdc
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
5. The formulas given are for the typical characteristics only at 25C.
6. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (7.) (CL = 50 pF, TA = 25C)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
VDD
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Typ (8.)
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
tTLH,
tTHL
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
5.0
10
15
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
100
50
40
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
200
100
80
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ns
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Propagation Delay Time
tPLH, tPHL = (1.7 ns/pF) CL + 215 ns
tPLH, tPHL = (0.66 ns/pF) CL + 97 ns
tPLH, tPHL = (0.5 ns/pF) CL + 65 ns
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
tPLH,
tPHL
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
5.0
10
15
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
300
130
90
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
600
260
180
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ns
7. The formulas given are for the typical characteristics only at 25C.
8. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
MC14028B
http://onsemi.com
4
Figure 1. Dynamic Signal Waveforms
Inputs B, C, and D
switching in respect
to a BCD code.
Inputs A, B, and D low.
All outputs connected
to respective CL loads.
f in respect to a system
clock.
20 ns 20 ns
90%
50%
10%
1/f
VDD
VSS
20 ns 20 ns
INPUT A
INPUT C
Q4
10%
90%
50%
VDD
VSS
VOH
VOL
tPLH tPHL
tTLH tTHL
50%
90%
10%
LOGIC DIAGRAM
Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
D
C
B
A
MC14028B
http://onsemi.com
5
APPLICATIONS INFORMATION
Expanded decoding can be performed by using the
MC14028B and other CMOS Integrated Circuits. The
circuit in Figure 2 converts any 4–bit code to a decimal or
hexadecimal code. The accompanying table shows the input
binary combinations, the associated “output numbers” that
go “high” when selected, and the “redefined output
numbers” needed for the proper code. For example: For the
combination DCBA = 0 11 1 the output number 7 is redefined
for the 4–bit binary, 4–bit gray, excess–3, or excess–3 gray
codes as 7, 5, 4, or 2, respectively. Figure 3 shows a 6–bit
binary 1–of–64 decoder using nine MC14028B circuits and
two MC14069UB inverters.
The MC14028B can be used in decimal digit displays,
such as, neon readouts or incandescent projection indicators
as shown in Figure 4.
Figure 2. Code Conversion Circuit and Truth Table
INPUTS
D
MC14028B
CBA
DC B A DCB A
MC14028B
Q9 Q0 Q9 Q0
15 -8 15 -0
OUTPUT NUMBERS
Code and Redefined
Output Numbers
Hexadecimal Decimal
Inputs Output Numbers
D C B A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 0 2 2
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 2 0 3 3
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 7 1 4 4
0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 6 2 3
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 4 3 1 4
0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7 5 4 2
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8 15 5
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 9 14 6 5
1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 10 12 7 9 6
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 11 13 8 5
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 12 8 9 5 6
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13 9 6 7 7
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 11 8 8 8
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 10 7 9 9
4–Bit
Binary
4–Bit
Gray
Excess–3
Excess–3
Gray
Aiken
4221
MC14028B
http://onsemi.com
6
Figure 3. Six–Bit Binary 1–of–64 Decoder
INPUTS
A B C D E F INHIBIT(NO SELECTION)
A B C -D
Q0 Q9
MC14028B
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
ABCD
MC14028B
Q0 Q9
70 8 15 16 23 24 31 32 39 40 47 48 55 56 63
*1/6 MC14069UB 64 OUTPUTS (SELECTED OUTPUT IS HIGH)
Figure 4. Decimal Digit Display Application
A
Q9
MC14028B
B
C
DQ8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
902910
APPROPRIATE
VOLTAGE
NEON
DISPLAY
APPROPRIATE
VOLTAGE
INCANDESCENT
DISPLAY
OR
MC14028B
http://onsemi.com
7
PACKAGE DIMENSIONS
PDIP–16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
B
FC
S
HGD
J
L
M
16 PL
SEATING
18
916
K
PLANE
–T–
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.740 0.770 18.80 19.55
B0.250 0.270 6.35 6.85
C0.145 0.175 3.69 4.44
D0.015 0.021 0.39 0.53
F0.040 0.70 1.02 1.77
G0.100 BSC 2.54 BSC
H0.050 BSC 1.27 BSC
J0.008 0.015 0.21 0.38
K0.110 0.130 2.80 3.30
L0.295 0.305 7.50 7.74
M0 10 0 10
S0.020 0.040 0.51 1.01
SOIC–16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
18
16 9
SEATING
PLANE
F
J
M
RX 45
G
8 PLP
–B–
–A–
M
0.25 (0.010) B S
–T–
D
K
C
16 PL
S
B
M
0.25 (0.010) A S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.80 10.00 0.386 0.393
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.229 0.244
R0.25 0.50 0.010 0.019

MC14028B
http://onsemi.com
8
PACKAGE DIMENSIONS
HE
A1
DIM MIN MAX MIN MAX
INCHES
--- 2.05 --- 0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.18 0.27 0.007 0.011
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059
0
0.70 0.90 0.028 0.035
--- 0.78 --- 0.031
A1
HE
Q1
LE
10 0
10
LEQ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
L
DETAIL P
VIEW P
c
A
b
e
M
0.13 (0.005) 0.10 (0.004)
1
16 9
8
D
Z
E
A
b
c
D
E
e
L
M
Z
SOEIAJ–16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966–01
ISSUE O
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MC14028B/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK