Hardware Design Guide, Revision 5
July 14, 2004
TMXA84622 Ultramapper Full Transport
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1
1 Introduction
The last issue of this data sheet was December 17, 2003 - Revision 4. A change history is included in Section 13 Change
History, on page 66. Red change bars have been installed on all text, figures, and tables that were added or changed. All
changes to the text are highlighted in red. Changes within figures, and the figure title itself, are highlighted in red, if feasible.
Formatting or grammatical changes have not been highlighted. Deleted sections, paragraphs, figures, or tables will be
specifi ca ll y men tio ned.
The documentation package for the TMXA84622 Ultramapper Full Transport 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/
DS1/E1 system chip consists of the following documents:
The Register Description and the System Design Guide. These documents are available on a password-protected web-
site.
The Ultramapper Full Transport Product Description and the Ultramapper Full Transport Hardware Design Guide (this
document) . Thes e docu men ts are avai la ble on the public webs ite shown bel ow .
If the reader displays this document using Acrobat Reader ®, clicking on any blue text will bring the reader to that reference
point. Clicking on the back arrow (Go to previous View) in the toolbar of the Acrobat Reader will bring the reader back to the
starting point.
To access related documents, including the documents mentioned above, please go to the following public website, or con-
tact your Agere representative (see the last page of this document).
http://www.agere.com/enterprise_metro_access/index.html
This document describes the hardware interfaces to the Agere Systems TMXA84622 Ultramapper Full Transport device.
Information relevant to the use of the device in a board design is covered. Pin descriptions, dc electrical characteristics,
timing diagrams, ac timing parameters, packaging, and operating conditions are included.
Figure 1-1. Ultramapper Full Transport Blo ck Diagr am and High-L ev el Interf ac e Defin itio n
(x3)
M13
MUX
TMUX
STS-12/
STM-4/
STS-3/
STM-1
FRM (X3)
x28/x21
DS1/J1/E1
(x3)
x28/x21
VTMPR
MRXC
DS1/J1/E1
VT/TU
DS2/E2
DS3/E3
TPG/TPM
X3
x28/x21
DS1/E1
DJA
CDR
SPEMPR
(x3)
(0-2)
CDR
MCDR
STSPP
MPUJTAG
LOPOH
x6
DS3/E3
DJA
(x3)
E13
MUX
SPEMPR
(x3)
(3-5)
(x3)
STS-1
LT
3
1
S
T
S
X
C
System Interfaces
Transport Modes
4
44
4DS1/J1/E1 (x86): x84/x63 + prot.
4
44
4DS2/E2 (X86): x63/x36 + prot.
(x6) DS3/E3
(x3) STS-1
(x3) NSMI
(x3) STS-1
(Total of 3 STS-1 Max)
Low-Speed I/O
622 Mb/STS-12/STM -4
155 Mb/ STS-3/STM-1
Clock and Data
LOPOH
622/155 Mbits/s SONET/SDH
ADM Front End DS3/E3/DS2/DS1/E1 PDH
Tributary Termination
TOAC
MPU IF POAC
JTAG IF
66
E2,
VC12 DS3XCLK,
E3XCLK
DS2,
VC11
AIS Clocks DS1XCLK,
E1XCLK
Power and GND pins not shown
12
495
6
STS-3/STM-1 Mate
Interconnect
High-Speed IF
(x3)
8
Clock/Sync
6
Protection Link
622 Mb/STS-12/STM-4
155 Mb/STS-3/STM -1
Clock and Data
8
42
24
344
3
1
1122
10/10/02 Full Transport
Miscellaneous
24
CG PLL I F
5
Table of Contents
Contents Page
2Agere Systems Inc.
TMXA84622 Ultramapper Full Transport Hardware Design Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
1 Introduction ........................................................................................................................................................................1
2 Pin Informati on .. ....... ...... ...... ....... ................... ....... ...... ....... ...... ....... ...... ...... .......................................................................6
2.1 Ball Diagram ................................................................................................................................................................6
2.2 Package Pin Assignments ...........................................................................................................................................7
2.3 Pin Assignment Matrix ...............................................................................................................................................17
2.4 Pin Types ...................................................................................................................................................................20
2.5 Pin Definitions ............................................................................................................................................................21
3 Absolute Maximum Ratings .............................................................................................................................................35
3.1 Handling Precautions ................................................................................................................................................35
3.2 Thermal Parameters (Definitions and Values) ...........................................................................................................35
3.3 Reliability ...................................................................................................................................................................36
4 Electrical Characteristics .................................................................................................................................................37
4.1 Recommended Operating Voltages ..........................................................................................................................37
4.2 Recommended Powerup Sequence ..........................................................................................................................37
4.3 Power Consumption ..................................................................................................................................................37
4.4 ac and dc Characteristics ..........................................................................................................................................38
4.4.1 LVCMOS Interface Characteristics ..................................................................................................................38
4.4.2 LVDS Interface Characteristics ........................................................................................................................39
5 Timing ..............................................................................................................................................................................40
5.1 TMUX High-Speed Interface Timing ..........................................................................................................................40
5.2 THSSYNC Characteristics .........................................................................................................................................41
5.3 STS-3/STM-1 Mate Interconnect Timing ...................................................................................................................43
5.4 TOAC, POAC, and LOPOH Timing ...........................................................................................................................44
5.5 DS3/E3/STS-1 Timing ...............................................................................................................................................45
5.6 NSMI Timing ..............................................................................................................................................................46
5.7 Shared Low-Speed Line Timing ................................................................................................................................49
6 Reference Clocks ............................................................................................................................................................50
7 Microprocessor Interface Timing .....................................................................................................................................55
7.1 Synchronous Write Mode ..........................................................................................................................................55
7.2 Synchronous Read Mode ..........................................................................................................................................57
7.3 Asynchronous Write Mode ........................................................................................................................................58
7.4 Asynchronous Read Mode ........................................................................................................................................60
8 Other Timing .................. ................... ....... ...... ....... ...... ....... ...... ....... ................... ...... ........................................................62
9 Hardware Design File References ...................................................................................................................................62
10 909-Pin PBGA Diagram .................................................................................................................................................63
11 Ordering Information ......................................................................................................................................................64
12 Glossary .........................................................................................................................................................................65
13 Change History ....... ...... ...... ....... ...... ....... ...... .................... ...... ....... ...... ...... ....... ...... ........................................................66
13.1 Navigating Through an Adobe Acrobat Document .................................................................................................66
Tables of Contents (continued)
Tables Page
Agere Systems Inc. 3
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Table 2-1. Package Pin Assignments.....................................................................................................................................7
Table 2-2. Pin Matrix ............................................................................................................................................................17
Table 2-3. Pin Types ............................................................................................................................................................20
Table 2-4. TMUX Block, High-Speed Interface I/O...............................................................................................................21
Table 2-5. TMUX Block, Protection Link I/O.........................................................................................................................21
Table 2-6. TMUX Block, Clock and Sync I/O........................................................................................................................22
Table 2-7. STS Cross-Connect (STSXC) Block, STS-3/STM-1 Mate Interconnect .............................................................23
Table 2-8. Multirate Cross-Connect (MRXC) Block, TOAC Input and Output Channels......................................................23
Table 2-9. Multirate Cross-Connect (MRXC) Block, POAC Input and Output Channels......................................................24
Table 2-10. DS3/E3/STS-1 Out............................................................................................................................................24
Table 2-11. DS3/E3/STS-1 In...............................................................................................................................................24
Table 2-12. NSMI/STS-1 In..................................................................................................................................................25
Table 2-13. NSMI/STS-1 Out ...............................................................................................................................................26
Table 2-14. Shared Low-Speed Line In................................................................................................................................27
Table 2-15. Shared Low-Speed Line Out.............................................................................................................................28
Table 2-16. Reference Clocks..............................................................................................................................................29
Table 2-17. Low-Order Path Overhead Access, Transmit Direction ....................................................................................29
Table 2-18. Low-Order Path Overhead Access, Receive Direction .....................................................................................29
Table 2-19. Clock Generator................................................................................................................................................30
Table 2-20. Microprocessor Interface...................................................................................................................................31
Table 2-21. Boundary Scan (IEEE® 1149.1) ........................................................................................................................32
Table 2-22. General-Purpose Interface................................................................................................................................32
Table 2-23. CDR Interface....................................................................................................................................................32
Table 2-24. Analog Power and Ground Signals ...................................................................................................................33
Table 2-25. Digital Power and Ground Signals ....................................................................................................................34
Table 2-26. No Connects......................................................................................................................................................34
Table 3-1. Absolute Maximum Ratings.................................................................................................................................35
Table 3-2. ESD Tolerance....................................................................................................................................................35
Table 3-3. Thermal Parameter Values .................................................................................................................................36
Table 3-4. Reliability Data ....................................................................................................................................................36
Table 4-1. Recommended Operating Conditions .................................................................................................................37
Table 4-2. Typical Power Consumption by Application........................................................................................................37
Table 4-3. Typical Power Consumption Per Block ...............................................................................................................38
Table 4-4. LVCMOS Inputs Specifications...........................................................................................................................38
Table 4-5. LVCMOS Outputs Specifications ........................................................................................................................38
Table 4-6. LVCMOS Bidirectionals Specifications................................................................................................................39
Table 4-7. LVDS Interface dc Characteristics ......................................................................................................................39
Table 5-1. High-Speed Interface Inputs Specifications ........................................................................................................40
Table 5-2. Protection Link Inputs Specifications...................................................................................................................41
Table 5-3. High-Speed Interface Outputs Specifications......................................................................................................41
Table 5-4. Protection Link Output Specifications..................................................................................................................41
Table 5-5. STS-3/STM-1 Mate Interconnect Input Specifications ........................................................................................43
Table 5-6. STS-3/STM-1 Mate Interconnect Output Specifications......................................................................................43
Table 5-7. TOAC, POAC, and LOPOH Input Specifications ................................................................................................44
Table 5-8. TOAC, POAC, and LOPOH Output Specifications..............................................................................................44
Table 5-9. DS3/E3 Inputs Specifications..............................................................................................................................45
Table 5-10. STS-1 Inputs Specifications..............................................................................................................................45
Table 5-11. DS3/E3/STS-1 Output Specifications................................................................................................................45
Table 5-12. NSMI Inputs Specifications ...............................................................................................................................48
Table 5-13. NSMI Outputs Specifications.............................................................................................................................48
Table 5-14. Shared Low-Speed Line Timing Input Specifications........................................................................................49
Table 5-15. Shared Low-Speed Line Timing Output Specifications.....................................................................................49
Table 6-1. High-Speed Interface Input Clocks Specifications ..............................................................................................50
Table 6-2. Protection Link Input Clock Specifications ..........................................................................................................50
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications.........................................................................................................50
Tables of Contents (continued)
Tables Page
4Agere Systems Inc.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 12, 2004
Table 6-4. DS1/E1 DJA Input Clocks Specifications............................................................................................................50
Table 6-5. M13/E13 Input Clocks Specifications..................................................................................................................51
Table 6-6. DS3/E3 DJA Input Clocks Specifications............................................................................................................51
Table 6-7. LOPOH Input Clock Specifications......................................................................................................................51
Table 6-8. Microprocessor Interface Input Clocks Specifications.........................................................................................51
Table 6-9. PLL Input Clock Specifications...........................................................................................................................51
Table 6-10. High-Speed Interface Output Clocks Specifications..........................................................................................51
Table 6-11. Protection Link Output Clocks Specifications....................................................................................................51
Table 6-12. Line Timing Interface Output Clocks Specifications..........................................................................................52
Table 6-13. TOAC Output Clocks Specifications..................................................................................................................52
Table 6-14. POAC Output Clocks Specifications .................................................................................................................52
Table 6-15. DS3/E3/STS-1 Output Clocks Specifications....................................................................................................53
Table 6-16. LOPOH Output Clock Specifications.................................................................................................................53
Table 6-17. PLL Output Clocks Specifications....................................................................................................................53
Table 6-18. Shared Low-Speed Receive Line Input/Output Clocks Specifications..............................................................53
Table 6-19. Shared Low-Speed Transmit Line Input/Output Clocks Specifications.............................................................53
Table 6-20. NSMI Input/Output Clocks Specifications..........................................................................................................54
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications ....................................................................56
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications....................................................................57
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................................59
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications..................................................................61
Table 8-1. General-Purpose Inputs Specifications...............................................................................................................62
Table 8-2. Miscellaneous Output Specifications...................................................................................................................62
Table 8-3. General-Purpose Output Specifications..............................................................................................................62
Table 11-1. Ordering Information .........................................................................................................................................64
Table 13-1. Document Changes...........................................................................................................................................66
Table of Contents (continued)
Figures Page
Agere Systems Inc. 5
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Figure 1-1. Ultramapper Full Transport Block Diagram and High-Level Interface Definition..................................................1
Figure 2-1. Ultramapper Full Transport Package Diagram (Top View)..................................................................................6
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing.................................................................................................................40
Figure 5-2. TMUX LVDS Clock and Data Timing.................................................................................................................40
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)................................................................................41
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)................................................................................42
Figure 5-5. THSSYNC Timing Diagram for Synchronized VTs............................................................................................42
Figure 5-6. Relationship Between THSSYNC and THSD ....................................................................................................42
Figure 5-7. STS-3/STM-1 Mate Rise/Fall Timing .................................................................................................................43
Figure 5-8. STS-3/STM-1 Mate Clock and Data Timing.......................................................................................................43
Figure 5-9. TOAC, POAC Timing.........................................................................................................................................44
Figure 5-10. LOPOH Timing.................................................................................................................................................44
Figure 5-11. DS3/E3 Interface Diagram in M13/E13 Block..................................................................................................45
Figure 5-12. NSMI Clock and Data Timing for the STS-1 Mode ..........................................................................................46
Figure 5-13. NSMI Clock and Data Diagram for SPEMPR NSMI Mode...............................................................................46
Figure 5-14. NSMI Clock and Data Diagram for M13 NSMI Mode (NSMI <---> M13 <---> DS3 External I/O).....................47
Figure 5-15. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O)......................47
Figure 5-16. NSMI Clock and Data Diagram for E13 NSMI Mode 2 (NSMI <--> E13 <--> SPEMPR <--> STM-N).............48
Figure 5-17. Shared Low-Speed Line Clock and Data Timing.............................................................................................49
Figure 7-1. Microprocessor Interface Synchronous Write Cycle—MPMODE Pin = 1..........................................................55
Figure 7-2. Microprocessor Interface Synchronous Read Cycle—MPMODE Pin = 1..........................................................57
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle—MPMODE Pin = 0 ........................................................58
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle—MPMODE Pin = 0........................................................60
Figure 10-1. Ultramapper Full Transport 909-Pin PBGA Balls and Dimensions..................................................................63
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
66 Agere Systems Inc.
2 Pin In fo rm a tion
2.1 Ball Diagram
The TMXA84622 Ultramapper Full T ransport is housed in a 909-pin plastic ball grid array. Figure 2-1 shows the ball assign-
ment viewed from the top of the package. The pins are spaced on a 1.0 mm pitch.
Figure 2-1. Ultramapper Full Transport Package Diagram (Top View)
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
19 30
26 2824 3222
20
18
4681012
14 16234
523
25731
2915 21
327
11 17
913133
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 7, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 7
2.2 Package Pin Assignments
Table 2-1. Package Pin Assignments
Signal Name Pin
ADDR[0] K6
ADDR[1] H4
ADDR[2] G3
ADDR[3] J8
ADDR[4] J4
ADDR[5] K5
ADDR[6] F1
ADDR[7] G2
ADDR[8] L6
ADDR[9] L5
ADDR[10] H2
ADDR[11] M6
ADDR[12] K4
ADDR[13] L8
ADDR[14] M5
ADDR[15] N6
ADDR[16] J1
ADDR[17] L3
ADDR[18] M4
ADDR[19] P8
ADDR[20] N5
ADSN F3
APS_INTN Y1
BYPASS AM13
CG_PLLCLKOUT AF26
CLKIN_PLL AF27
CSN G7
CTAPRH AF8
CTAPRP AG10
CTAPTH AG9
CTAPTL AG14
DATA[0] K1
DATA[1] L2
DATA[2] U2
DATA[3] N4
DATA[4] R8
DATA[5] M2
DATA[6] T5
DATA[7] M1
DATA[8] R5
DATA[9] U5
DATA[10] P4
DATA[11] N2
DATA[12] R4
DATA[13] T4
DATA[14] U9
DATA[15] P1
DS1XCLK AP21
DS2AISCLK V8
DS3DATAINCLK[1] AB1
DS3DATAINCLK[2] V4
DS3DATAINCLK[3] V3
DS3DATAINCLK[4] AE1
DS3DATAINCLK[5] AF1
DS3DATAINCLK[6] AB4
DS3DATAOUTCLK[1] AB5
DS3DATAOUTCLK[2] AB8
DS3DATAOUTCLK[3] AC5
DS3DATAOUTCLK[4] AD5
DS3DATAOUTCLK[5] AE5
DS3DATAOUTCLK[6] AG4
DS3NEGDATAIN[1] V1
DS3NEGDATAIN[2] AC1
DS3NEGDATAIN[3] Y4
DS3NEGDATAIN[4] AC2
DS3NEGDATAIN[5] Y5
DS3NEGDATAIN[6] AA5
DS3NEGDATAOUT[1] AC3
DS3NEGDATAOUT[2] AC4
DS3NEGDATAOUT[3] AJ1
DS3NEGDATAOUT[4] AL1
DS3NEGDATAOUT[5] AG3
DS3NEGDATAOUT[6] AJ2
DS3POSDATAIN[1] W3
DS3POSDATAIN[2] AB2
DS3POSDATAIN[3] AD1
DS3POSDATAIN[4] V5
DS3POSDATAIN[5] W8
DS3POSDATAIN[6] W5
DS3POSDATAOUT[1] V2
DS3POSDATAOUT[2] AA6
DS3POSDATAOUT[3] AH1
DS3POSDATAOUT[4] AK1
DS3POSDATAOUT[5] AG2
DS3POSDATAOUT[6] AF4
DS3RXCLKOUT[1] AD2
DS3RXCLKOUT[2] AD3
DS3RXCLKOUT[3] AB6
DS3RXCLKOUT[4] AC8
DS3RXCLKOUT[5] AD6
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 7, 2004
88 Agere Systems Inc.
DS3RXCLKOUT[6] AE8
DS3XCLK E19
DSN J5
DTN T3
E1XCLK AM18
E2AISCLK AA1
E3XCLK H18
ECSEL AL14
ETOGGLE AP15
EXDNUP AP16
HP_INTN U8
IC3STATEN AL20
IDDQ AL21
LINERXCLK[1] A18
LINERXCLK[2] C17
LINERXCLK[3] E16
LINERXCLK[4] C16
LINERXCLK[5] B16
LINERXCLK[6] A15
LINERXCLK[7] A14
LINERXCLK[8] C13
LINERXCLK[9] B13
LINERXCLK[10] D12
LINERXCLK[11] B12
LINERXCLK[12] D11
LINERXCLK[13] B11
LINERXCLK[14] E12
LINERXCLK[15] D10
LINERXCLK[16] H12
LINERXCLK[17] D9
LINERXCLK[18] C8
LINERXCLK[19] H11
LINERXCLK[20] B7
LINERXCLK[21] E9
LINERXCLK[22] E10
LINERXCLK[23] D7
LINERXCLK[24] E8
LINERXCLK[25] F9
LINERXCLK[26] E7
LINERXCLK[27] D6
LINERXCLK[28] G8
LINERXCLK[29] B4
LINERXCLK[30] F7
LINERXCLK[31] J9
LINERXCLK[32] F4
LINERXCLK[33] C1
LINERXCLK[34] H9
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINERXCLK[35] E5
LINERXCLK[36] F6
LINERXCLK[37] A10
LINERXCLK[38] A12
LINERXCLK[39] H14
LINERXCLK[40] D14
LINERXCLK[41] A16
LINERXCLK[42] E17
LINERXCLK[43] B18
LINERXCLK[44] D19
LINERXCLK[45] H20
LINERXCLK[46] D21
LINERXCLK[47] B24
LINERXCLK[48] F22
LINERXCLK[49] B28
LINERXCLK[50] A29
LINERXCLK[51] H24
LINERXCLK[52] A32
LINERXCLK[53] D29
LINERXCLK[54] D30
LINERXCLK[55] H26
LINERXCLK[56] E30
LINERXCLK[57] F29
LINERXCLK[58] L30
LINERXCLK[59] M27
LINERXCLK[60] M30
LINERXCLK[61] N29
LINERXCLK[62] M31
LINERXCLK[63] N30
LINERXCLK[64] L33
LINERXCLK[65] N31
LINERXCLK[66] P29
LINERXCLK[67] M34
LINERXCLK[68] N34
LINERXCLK[69] T27
LINERXCLK[70] T33
LINERXCLK[71] U33
LINERXCLK[72] V30
LINERXCLK[73] W34
LINERXCLK[74] W31
LINERXCLK[75] AA34
LINERXCLK[76] Y30
LINERXCLK[77] AC33
LINERXCLK[78] AH3
LINERXCLK[79] AH2
LINERXCLK[80] AE4
LINERXCLK[81] AD4
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 7, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 9
LINERXCLK[82] Y8
LINERXCLK[83] AA4
LINERXCLK[84] W4
LINERXCLK[85] U1
LINERXCLK[86] T2
LINERXDATA[1] E18
LINERXDATA[2] D17
LINERXDATA[3] B17
LINERXDATA[4] D16
LINERXDATA[5] H16
LINERXDATA[6] E15
LINERXDATA[7] E14
LINERXDATA[8] D13
LINERXDATA[9] F14
LINERXDATA[10] A13
LINERXDATA[11] E13
LINERXDATA[12] F13
LINERXDATA[13] H13
LINERXDATA[14] A11
LINERXDATA[15] A9
LINERXDATA[16] A8
LINERXDATA[17] B8
LINERXDATA[18] E11
LINERXDATA[19] A7
LINERXDATA[20] D8
LINERXDATA[21] F11
LINERXDATA[22] C7
LINERXDATA[23] A6
LINERXDATA[24] F10
LINERXDATA[25] B6
LINERXDATA[26] C6
LINERXDATA[27] F8
LINERXDATA[28] A5
LINERXDATA[29] A4
LINERXDATA[30] E6
LINERXDATA[31] H6
LINERXDATA[32] G5
LINERXDATA[33] H8
LINERXDATA[34] G6
LINERXDATA[35] F5
LINERXDATA[36] H10
LINERXDATA[37] F12
LINERXDATA[38] C11
LINERXDATA[39] C12
LINERXDATA[40] H15
LINERXDATA[41] D15
LINERXDATA[42] A17
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINERXDATA[43] H17
LINERXDATA[44] C18
LINERXDATA[45] A22
LINERXDATA[46] E21
LINERXDATA[47] D22
LINERXDATA[48] A26
LINERXDATA[49] H23
LINERXDATA[50] D25
LINERXDATA[51] A30
LINERXDATA[52] F25
LINERXDATA[53] A33
LINERXDATA[54] G27
LINERXDATA[55] E29
LINERXDATA[56] F28
LINERXDATA[57] G28
LINERXDATA[58] L29
LINERXDATA[59] L31
LINERXDATA[60] M29
LINERXDATA[61] N27
LINERXDATA[62] L32
LINERXDATA[63] K34
LINERXDATA[64] P30
LINERXDATA[65] M32
LINERXDATA[66] L34
LINERXDATA[67] M33
LINERXDATA[68] R27
LINERXDATA[69] P34
LINERXDATA[70] T32
LINERXDATA[71] U30
LINERXDATA[72] U34
LINERXDATA[73] V32
LINERXDATA[74] V31
LINERXDATA[75] W30
LINERXDATA[76] AB34
LINERXDATA[77] AC34
LINERXDATA[78] AD8
LINERXDATA[79] AE6
LINERXDATA[80] AC6
LINERXDATA[81] AA8
LINERXDATA[82] AG1
LINERXDATA[83] AB3
LINERXDATA[84] V9
LINERXDATa[85] W2
LINERXDATA[86] T1
LINETXCLK[1] K31
LINETXCLK[2] J34
LINETXCLK[3] H34
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 7, 2004
1010 Agere Systems Inc.
LINETXCLK[4] J30
LINETXCLK[5] H32
LINETXCLK[6] H31
LINETXCLK[7] J29
LINETXCLK[8] G31
LINETXCLK[9] G30
LINETXCLK[10] H27
LINETXCLK[11] C31
LINETXCLK[12] J26
LINETXCLK[13] F27
LINETXCLK[14] F26
LINETXCLK[15] D28
LINETXCLK[16] C29
LINETXCLK[17] A31
LINETXCLK[18] E25
LINETXCLK[19] C28
LINETXCLK[20] B29
LINETXCLK[21] C27
LINETXCLK[22] D24
LINETXCLK[23] A28
LINETXCLK[24] A27
LINETXCLK[25] C24
LINETXCLK[26] A25
LINETXCLK[27] C23
LINETXCLK[28] A24
LINETXCLK[29] H21
LINETXCLK[30] A23
LINETXCLK[31] AA31
LINETXCLK[32] AA27
LINETXCLK[33] AD33
LINETXCLK[34] AB31
LINETXCLK[35] AB29
LINETXCLK[36] AD32
LINETXCLK[37] AC31
LINETXCLK[38] AB27
LINETXCLK[39] AG34
LINETXCLK[40] AD31
LINETXCLK[41] AD29
LINETXCLK[42] AD30
LINETXCLK[43] AG32
LINETXCLK[44] AE29
LINETXCLK[45] AE27
LINETXCLK[46] AJ28
LINETXCLK[47] AK29
LINETXCLK[48] AH28
LINETXCLK[49] AH27
LINETXCLK[50] AM31
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINETXCLK[51] AL28
LINETXCLK[52] AL26
LINETXCLK[53] AM27
LINETXCLK[54] AG22
LINETXCLK[55] AL30
LINETXCLK[56] AG20
LINETXCLK[57] AG24
LINETXCLK[58] AG25
LINETXCLK[59] AK19
LINETXCLK[60] AL19
LINETXCLK[61] AF17
LINETXCLK[62] AJ25
LINETXCLK[63] AH7
LINETXCLK[64] AN18
LINETXCLK[65] AJ12
LINETXCLK[66] AK12
LINETXCLK[67] AN16
LINETXCLK[68] AK14
LINETXCLK[69] AL4
LINETXCLK[70] AH6
LINETXCLK[71] AL3
LINETXCLK[72] AF9
LINETXCLK[73] AJ4
LINETXCLK[74] AH4
LINETXCLK[75] AG5
LINETXCLK[76] AF5
LINETXCLK[77] U3
LINETXCLK[78] N3
LINETXCLK[79] P5
LINETXCLK[80] P6
LINETXCLK[81] H1
LINETXCLK[82] G1
LINETXCLK[83] K8
LINETXCLK[84] F2
LINETXCLK[85] D1
LINETXCLK[86] H7
LINETXDATA[1] L27
LINETXDATA[2] K30
LINETXDATA[3] K29
LINETXDATA[4] J31
LINETXDATA[5] H33
LINETXDATA[6] K27
LINETXDATA[7] H30
LINETXDATA[8] H29
LINETXDATA[9] J27
LINETXDATA[10] G29
LINETXDATA[11] H28
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 7, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 11
LINETXDATA[12] B32
LINETXDATA[13] E28
LINETXDATA[14] B31
LINETXDATA[15] E27
LINETXDATA[16] H25
LINETXDATA[17] E26
LINETXDATA[18] D27
LINETXDATA[19] D26
LINETXDATA[20] F24
LINETXDATA[21] E24
LINETXDATA[22] F23
LINETXDATA[23] B27
LINETXDATA[24] E23
LINETXDATA[25] D23
LINETXDATA[26] H22
LINETXDATA[27] E22
LINETXDATA[28] F21
LINETXDATA[29] B23
LINETXDATA[30] C22
LINETXDATA[31] AA29
LINETXDATA[32] AB32
LINETXDATA[33] AD34
LINETXDATA[34] AA30
LINETXDATA[35] AC32
LINETXDATA[36] AE34
LINETXDATA[37] AB30
LINETXDATA[38] AF34
LINETXDATA[39] AC30
LINETXDATA[40] AC29
LINETXDATA[41] AG33
LINETXDATA[42] AE31
LINETXDATA[43] AC27
LINETXDATA[44] AE30
LINETXDATA[45] AJ33
LINETXDATA[46] AL31
LINETXDATA[47] AM33
LINETXDATA[48] AK30
LINETXDATA[49] AJ29
LINETXDATA[50] AM32
LINETXDATA[51] AN33
LINETXDATA[52] AK25
LINETXDATA[53] AK24
LINETXDATA[54] AK23
LINETXDATA[55] AP28
LINETXDATA[56] AP26
LINETXDATA[57] AP25
LINETXDATA[58] AN24
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINETXDATA[59] AM22
LINETXDATA[60] AG18
LINETXDATA[61] AM19
LINETXDATA[62] AL18
LINETXDATA[63] AN19
LINETXDATA[64] AK11
LINETXDATA[65] AK16
LINETXDATA[66] AP17
LINETXDATA[67] AL15
LINETXDATA[68] AG8
LINETXDATA[69] AK5
LINETXDATA[70] AJ5
LINETXDATA[71] AK4
LINETXDATA[72] AH5
LINETXDATA[73] AG6
LINETXDATA[74] AL2
LINETXDATA[75] AF6
LINETXDATA[76] AJ3
LINETXDATA[77] N1
LINETXDATA[78] T8
LINETXDATA[79] L1
LINETXDATA[80] M3
LINETXDATA[81] M8
LINETXDATA[82] L4
LINETXDATA[83] H3
LINETXDATA[84] N8
LINETXDATA[85] E1
LINETXDATA[86] H5
LOPOHCLKIN B22
LOPOHCLKOUT A21
LOPOHDATAIN D20
LOPOHDATAOUT H19
LOPOHVALIDIN E20
LOPOHVALIDOUT A20
LOSEXT AG27
LP_INTN W1
MODE0_PLL AJ31
MODE1_PLL AG30
MODE2_PLL AK31
MPCLK G4
MPMODE D2
NC N32
NC N33
NC P27
NC P31
NC R30
NC R31
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 7, 2004
1212 Agere Systems Inc.
NC R34
NC T30
NC T31
NC T34
NC U27
NC U31
NC U32
NC V27
NC V33
NC V34
NC W27
NC W32
NC W33
NC Y27
NC Y31
NC Y34
NC AB33
NC AD27
NC AF29
NC AF30
NC AF31
NC AG28
NC AG29
NC AG31
NC AH29
NC AH32
NC AH33
NC AH34
NC AJ30
NC AJ32
NC AJ34
NC AK26
NC AK27
NC AL29
NC AN32
NSMIRXCLK[1] AJ22
NSMIRXCLK[2] AK28
NSMIRXCLK[3] AG21
NSMIRXDATA[1] AM24
NSMIRXDATA[2] AP27
NSMIRXDATA[3] AN27
NSMIRXSYNC[1] AL22
NSMIRXSYNC[2] AL23
NSMIRXSYNC[3] AP29
NSMITXCLK[1] AG23
NSMITXCLK[2] AP31
NSMITXCLK[3] AN31
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin NSMITXDATA[1] AN28
NSMITXDATA[2] AL25
NSMITXDATA[3] AP33
NSMITXSYNC[1] AP30
NSMITXSYNC[2] AP32
NSMITXSYNC[3] AL27
PAR[0] R1
PAR[1] U4
PMRST AJ24
REF10 AK6
REF14 AJ6
RESHI AL5
RESLO AL6
RHSCN AN1
RHSCP AM1
RHSDN AM3
RHSDP AM2
RHSFSYNCN AP22
RLSCLK AJ14
RLSDATAN[1] AN10
RLSDATAN[2] AM10
RLSDATAN[3] AP12
RLSDATAP[1] AP10
RLSDATAP[2] AM9
RLSDATAP[3] AP11
RPOACCLK AM17
RPOACDATA AG17
RPOACSYNC AP19
RPSCN AM8
RPSCP AM7
RPSDN AP6
RPSDP AN6
RSTN AK18
RTOACCLK AM12
RTOACDATA AL12
RTOACSYNC AN17
RWN J6
RXDATAEN[1] AK21
RXDATAEN[2] AK22
RXDATAEN[3] AL24
SCAN_EN AJ23
SCANMODE AK20
SCK1 AP24
SCK2 AM23
TCK AN22
TDI AP23
TDO AJ21
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 7, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 13
THSCN AP4
THSCON AP2
THSCOP AN2
THSCP AN4
THSDN AM6
THSDP AM5
THSSYNC AL13
TLSCLK AK13
TLSDATAN[1] AM11
TLSDATAN[2] AN13
TLSDATAN[3] AG12
TLSDATAP[1] AN11
TLSDATAP[2] AN12
TLSDATAP[3] AG11
TMS AN23
TPOACCLK AL17
TPOACDATA AK17
TPOACSYNC AP20
TPSCN AP8
TPSCP AN8
TPSDN AN9
TPSDP AP9
TRST AG26
TSTMODE AJ13
TSTPHASE AG15
TSTSFTLD AG7
TTOACCLK AH8
TTOACDATA AL16
TTOACSYNC AP18
TXDATAEN[1] AN29
TXDATAEN[2] AM28
TXDATAEN[3] AM29
VDD15 J10
VDD15 J13
VDD15 J17
VDD15 J18
VDD15 J22
VDD15 J25
VDD15 K9
VDD15 K17
VDD15 K18
VDD15 K26
VDD15 N9
VDD15 N13
VDD15 N14
VDD15 N15
VDD15 N16
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VDD15 N17
VDD15 N18
VDD15 N19
VDD15 N20
VDD15 N21
VDD15 N22
VDD15 N26
VDD15 P13
VDD15 P22
VDD15 R13
VDD15 R22
VDD15 T13
VDD15 T22
VDD15 U10
VDD15 U13
VDD15 U22
VDD15 U25
VDD15 U26
VDD15 V10
VDD15 V13
VDD15 V22
VDD15 V25
VDD15 V26
VDD15 W13
VDD15 W22
VDD15 Y13
VDD15 Y22
VDD15 AA9
VDD15 AA13
VDD15 AA22
VDD15 AA26
VDD15 AB9
VDD15 AB13
VDD15 AB14
VDD15 AB15
VDD15 AB16
VDD15 AB17
VDD15 AB18
VDD15 AB19
VDD15 AB20
VDD15 AB21
VDD15 AB22
VDD15 AB26
VDD15 AE9
VDD15 AE17
VDD15 AE18
VDD15 AE26
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 7, 2004
1414 Agere Systems Inc.
VDD15 AF10
VDD15 AF13
VDD15 AF14
VDD15 AF18
VDD15 AF21
VDD15 AF22
VDD15 AF25
VDD15 AH26
VDD15 AJ26
VDD15 AJ27
VDD15 J14
VDD15 J21
VDD15 P9
VDD15 P26
VDD15A_CDR1 AP14
VDD15A_CDR2 AL11
VDD15A_DS3PLL C19
VDD15A_E3PLL B19
VDD15A_X4PLL AM16
VDD33 A2
VDD33 A3
VDD33 B1
VDD33 B3
VDD33 B5
VDD33 B9
VDD33 B10
VDD33 B14
VDD33 B15
VDD33 B20
VDD33 B21
VDD33 B25
VDD33 B26
VDD33 B30
VDD33 B33
VDD33 B34
VDD33 C2
VDD33 C4
VDD33 C32
VDD33 C33
VDD33 C34
VDD33 D3
VDD33 D5
VDD33 D32
VDD33 D33
VDD33 D34
VDD33 E2
VDD33 E4
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VDD33 E33
VDD33 E34
VDD33 J2
VDD33 J11
VDD33 J12
VDD33 J15
VDD33 J16
VDD33 J19
VDD33 J20
VDD33 J23
VDD33 J24
VDD33 J33
VDD33 K2
VDD33 K33
VDD33 L9
VDD33 L26
VDD33 M9
VDD33 M26
VDD33 P2
VDD33 P33
VDD33 R2
VDD33 R9
VDD33 R26
VDD33 R33
VDD33 T9
VDD33 T26
VDD33 W9
VDD33 W26
VDD33 Y2
VDD33 Y9
VDD33 Y26
VDD33 Y33
VDD33 AA2
VDD33 AA33
VDD33 AC9
VDD33 AC26
VDD33 AD9
VDD33 AD26
VDD33 AE2
VDD33 AE33
VDD33 AF2
VDD33 AF11
VDD33 AF12
VDD33 AF15
VDD33 AF16
VDD33 AF19
VDD33 AF20
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 7, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 15
VDD33 AF23
VDD33 AF24
VDD33 AF33
VDD33 AK2
VDD33 AK33
VDD33 AK34
VDD33 AL33
VDD33 AL34
VDD33 AM34
VDD33 AN14
VDD33 AN15
VDD33 AN20
VDD33 AN21
VDD33 AN25
VDD33 AN26
VDD33 AN30
VDD33 AN34
VDD33A_SFPLL AH30
VSS B2
VSS C3
VSS C5
VSS C9
VSS C10
VSS C14
VSS C15
VSS C20
VSS C21
VSS C25
VSS C26
VSS C30
VSS D4
VSS D31
VSS E3
VSS E31
VSS E32
VSS F30
VSS F31
VSS F32
VSS F33
VSS F34
VSS G32
VSS G33
VSS G34
VSS J3
VSS J32
VSS K3
VSS K32
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VSS P3
VSS P14
VSS P15
VSS P16
VSS P17
VSS P18
VSS P19
VSS P20
VSS P21
VSS P32
VSS R3
VSS R14
VSS R15
VSS R16
VSS R17
VSS R18
VSS R19
VSS R20
VSS R21
VSS R32
VSS T14
VSS T15
VSS T16
VSS T17
VSS T18
VSS T19
VSS T20
VSS T21
VSS U14
VSS U15
VSS U16
VSS U17
VSS U18
VSS U19
VSS U20
VSS U21
VSS V14
VSS V15
VSS V16
VSS V17
VSS V18
VSS V19
VSS V20
VSS V21
VSS W14
VSS W15
VSS W16
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 7, 2004
1616 Agere Systems Inc.
VSS W17
VSS W18
VSS W19
VSS W20
VSS W21
VSS Y3
VSS Y14
VSS Y15
VSS Y16
VSS Y17
VSS Y18
VSS Y19
VSS Y20
VSS Y21
VSS Y32
VSS AA3
VSS AA14
VSS AA15
VSS AA16
VSS AA17
VSS AA18
VSS AA19
VSS AA20
VSS AA21
VSS AA32
VSS AE3
VSS AE32
VSS AF3
VSS AF32
VSS AG16
VSS AG19
VSS AJ7
VSS AJ8
VSS AJ9
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VSS AJ10
VSS AJ11
VSS AK3
VSS AK7
VSS AK8
VSS AK9
VSS AK10
VSS AK32
VSS AL7
VSS AL8
VSS AL9
VSS AL10
VSS AL32
VSS AM4
VSS AM14
VSS AM15
VSS AM20
VSS AM21
VSS AM25
VSS AM26
VSS AM30
VSS AN3
VSS AN5
VSS AN7
VSS AP3
VSS AP5
VSS AP7
VSSA_CDR1 AP13
VSSA_CDR2 AG13
VSSA_DS3PLL D18
VSSA_E3PLL A19
VSSA_SFPLL AH31
VSSA_X4PLL AK15
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Agere Systems Inc. 17
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 200 4 622/155 Mbi ts/s SONET/SDH x DS3/E3/DS2/DS1/E1
2.3 Pin Assignment Matrix
Table 2-2. Pin Matrix
12 3 456789101112
A VDD33 VDD33 LINERXDATA[29] LINERXDATA[28] LINERXDATA[23] LINERXDATA[19] LINERXDATA[16] LINERXDATA[15] LINERXCLK [37] LINERXDATA [14] LINERXCLK [38]
BVDD33 VSS VDD33 LINERXCLK[29] VDD33 LINERXDATA[25] LINERXCLK[20] LINERXDATA[17] VDD33 VDD33 LINERXCLK[13] LINERXCLK[11]
CLINERXCLK[33] VDD33 VSS VDD33 VSS LINERXDATA[26] LINERXDATA[22] LINERXCLK[18] VSS VSS LINERXDATA[38] LINERXDATA[39]
DLINETXCLK[85] MPMODE VDD33 VSS VDD33 LINERXCLK[27] LINERXCLK[23] LINERXDATA[20] LINERXCLK[17] LINERXCLK[15] LINERXCLK[12] LINERXCLK[10]
ELINETXDATA[85] VDD33 VSS VDD33 LINERXCLK[35] LINERXDATA[30] LINERXCLK[26] LINERXCLK[24] LINERXCLK[21] LINERXCLK[22] LINERXDATA[18] LINERXCLK[14]
FADDR[6] LINETXCLK[84] ADSN LINERXCLK[32] LINERXDATA[35] LINERXCLK[36] LINERXCLK[30] LINERXDATA[27] LINERXCLK[25] LINERXDATA[24] LINERXDATA[21] LINERXDATA[37]
GLINETXCLK[82] ADDR[7] ADDR[2] MPCLK LINERXDATA[32] LINERXDATA[34] CSN LINERXCLK[28]
HLINETXCLK[81] ADDR[10] LINETXDATA[83] ADDR[1] LINETXDATA[86] LINERXDATA[31] LINETXCLK[86] LINERXDATA[33] LINERXCLK[34] LINERXDATA[36] LINERXCLK[19] LINERXCLK[16]
JADDR[16] VDD33 VSS ADDR[4] DSN RWN ADDR[3] LINERXCLK[31] VDD15 VDD33 VDD33
KDATA[0] VDD33 VSS ADDR[12] ADDR[5] ADDR[0] LINETXCLK[83] VDD15
LLINETXDATA[79] DATA[1] ADDR[17] LINETXDATA[82] ADDR[9] ADDR[8] ADDR[13] VDD33
MDATA[7] DATA[5] LINETXDATA[80] ADDR[18] ADDR[14] ADDR[11] LINETXDATA[81] VDD33
NLINETXDATA[77] DATA[11] LINETXCLK[78] DATA[3] ADDR[20] ADDR[15] LINETXDATA[84] VDD15
PDATA[15] VDD33 VSS DATA[10] LINETXCLK[79] LINETXCLK[80] ADDR[19] VDD15
RPAR[0] VDD33 VSS DATA[12] DATA[8] DATA[4] VDD33
TLINERXDATA[86] LINERXCLK[86] DTN DATA[13] DATA[6] LINETXDATA[78] VDD33
ULINERXCLK[85] DATA[2] LINETXCLK[77] PAR[1] DATA[9] HP_INTN DATA[14] VDD15
VDS3NEGDATAIN[1] DS3POSDATAOUT[1] DS3DATAINCLK[3] DS3DATAINCLK[2] DS3POSDATAIN[4] DS2AISCLK LINERXDATA[84] VDD15
WLP_INTN LINERXDATA[85] DS3POSDATAIN[1] LINERXCLK[84] DS3POSDATAIN[6] DS3POSDATAIN[5] VDD33
YAPS_INTN VDD33 VSS DS3NEGDATAIN[3] DS3NEGDATAIN[5] LINERXCLK[82] VDD33
AA E2AISCLK VDD33 VSS LINERXCLK[83] DS3NEGDATAIN[6] DS3POSDATAOUT[2] LINERXDATA[81] VDD15
AB DS3DATAINCLK[1] DS3POSDATAIN[2] LINERXDATA[83] DS3DATAINCLK[6] DS3DATAOUTCLK[1] DS3RXCLKOUT[3] DS3DATAOUTCLK[2] VDD15
AC DS3NEGDATAIN[2] DS3NEGDATAIN[4] DS3NEGDATAOUT[1] DS3NEGDATAOUT[2] DS3DATAOUTCLK[3] LINERXDATA[80] DS3RXCLKOUT[4] VDD33
AD DS3POSDATAIN[3] DS3RXCLKOUT[1] DS3RXCLKOUT[2] LINERXCLK[81] DS3DATAOUTCLK[4] DS3RXCLKOUT[5] LINERXDATA[78] VDD33
AE DS3DATAINCLK[4] VDD33 VSS LINERXCLK[80] DS3DATAOUTCLK[5] LINERXDATA[79] DS3RXCLKOUT[6] VDD15
AF DS3DATAINCLK[5] VDD33 VSS DS3POSDATAOUT[6] LINETXCLK[76] LINETXDATA[75] CTAPRH LINETXCLK[72] VDD15 VDD33 VDD33
AG LINERXDATA[82] DS3POSDATAOUT[5] DS3NEGDTATAOUT[5] DS3DATAOUTCLK[6] LINETXCLK[75] LINETXDATA[73] TSTSFTLD LINETXDATA[68] CTAPTH CTAPRP TLSDATAP[3] TLSDATAN[3]
AH DS3POSDATAOUT[3] LINERXCLK[79] LINERXCLK[78] LINETXCLK[74] LINETXDATA[72] LINETXCLK[70] LINETXCLK[63] TTOACCLK
AJ DS3NEGDATAOUT[3] DS3NEGDATAOUT[6] LINETXDATA[76] LINETXCLK[73] LINETXDATA[70] REF14 VSS VSS VSS VSS VSS LINETXCLK[65]
AK DS3POSDATAOUT[4] VDD33 VSS LINETXDATA[71] LINETXDATA[69] REF10 VSS VSS VSS VSS LINETXDATA[64] LINETXCLK[66]
AL DS3NEGDATAOUT[4] LINETXDATA[74] LINETXCLK[71] LINETXCLK[69] RESHI RESLO VSS VSS VSS VSS VDD15A_CDR2 RTOACDATA
AM RHSCP RHSDP RHSDN VSS THSDP THSDN RPSCP RPSCN RLSDATAP[2] RLSDATAN[2] TLSDATAN[1] RTOACCLK
AN RHSCN THSCOP VSS THSCP VSS RPSDP VSS TPSCP TPSDN RLSDATAN[1] TLSDATAP[1] TLSDATAP[2]
AP THSCON VSS THSCN VSS RPSDN VSS TPSCN TPSDP RLSDATAP[1] RLSDATAP[3] RLSDATAN[3]
18 Agere Systems Inc.
TMXA84622 Ultramapper Full Transport Hardware Design Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
Table 2-2. Pin Matrix (continued)
13 14 15 16 17 18 19 20 21 22 23
ALINERXDATA [10] LINERXCLK [7] LINERXCLK [6] LINERXCLK [41] LI NERXDATA [42] LINERXCLK [1] VSSA_E3PLL LOPOHVALIDOUT LOPOHCLKOUT LINERXDATA[45] LINETXCLK[30]
BLINERXCLK[9] VDD33 VDD33 LINERXCLK[5] LINERXDATA[3] LINERXCLK[43] VDD15A_E3PLL VDD33 VDD33 LOPOHCLKIN LINETXDATA[29]
CLINERXCLK[8] VSS VSS LINERXCLK[4] LINERXCLK[2] LINERXDATA[44] VDD15A_DS3PLL VSS VSS LINETXDATA[30] LINETXCLK[27]
DLINERXDATA[8] LINERXCLK[40] LINERXDATA[41] LINERXDATA[4] LINERXDATA[2] VSSA_DS3PLL LINERXCLK[44] LOPOHDATAIN LINERXCLK[46] LINERXDATA[47] LINETXDATA[25]
ELINERXDATA[11] LINERXDATA[7] LINERXDATA[6] LINERXCLK[3] LINERXCLK[42] LINERXDATA[1] DS3XCLK LOPOHVALIDIN LINERXDATA[46] LINETXDATA[27] LINETXDATA[24]
FLINERXDATA[12] LINERXDATA[9] LINETXDATA[28] LINERXCLK[48] LINETXDATA[22]
G———————————
HLINERXDATA[13] LINERXCLK[39] LINERXDATA[40] LINERXDATA[5] LINERXDATA[43] E3XCLK LOPOHDATAOUT LINERXCLK[45] LINETXCLK[29] LINETXDATA[26] LINERXDATA[49]
JVDD15 VDD15 VDD33 VDD33 VDD15 VDD15 VDD33 VDD33 VDD15 VDD15 VDD33
K————VDD15VDD15————
L———————————
M———————————
NVDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15
PVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
RVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
TVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
UVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
VVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
WVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
YVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
AA VDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
AB VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15
AC ———————————
AD ———————————
AE ————VDD15VDD15————
AF VDD15 VDD15 VDD33 VDD33 LINETXCLK[61] VDD15 VDD33 VDD33 VDD15 VDD15 VDD33
AG VSSA_CDR2 CTAPTL TSTPHASE VSS RPOACDATA LINETXDATA[60] VSS LINETXCLK[56] NSMIRXCLK[3] LINETXCLK[54] NSMITXCLK[1]
AH ———————————
AJ TSTMODE RLSCLK TDO NSMIRXCLK[1] SCAN_EN
AK TLSCLK LINETXCLK[68] VSSA_X4PLL LINETXDATA[65] TPOACDATA RSTN LINETXCLK[59] SCANMODE RXDATAEN[1] RXDATAEN[2] LINETXDATA[54]
AL THSSYNC ECSEL LINETXDATA[67] TTOACDATA TPOACCLK LINETXDATA[62] LINETXCLK[60] IC3STATEN IDDQ NSMIRXSYNC[1] NSMIRXSYNC[2]
AM BYPASS VSS VSS VDD15A_X4PLL RPOACCLK E1XCLK LINETXDATA[61] VSS VSS LINETXDATA[59] SCK2
AN TLSDATAN[2] VDD33 VDD33 LINETXCLK[67] RTOACSYNC LINETXCLK[64] LINETXDATA[63] VDD33 VDD33 TCK TMS
AP VSSA_CDR1 VDD15A_CDR1 ETOGGLE EXDNUP LINETXDATA[66] TTOACSYNC RPOACSYNC TPOACSYNC DS1XCLK RHSFSYNCN TDI
Agere Systems Inc. 19
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 200 4 622/155 Mbi ts/s SONET/SDH x DS3/E3/DS2/DS1/E1
Table 2-2. Pin Matrix (continued)
24 25 26 27 28 29 30 31 32 33 34
ALINETXCLK[28] LINETXCLK[26] LINERXDATA[48] LINETXCLK[24] LINETXCLK[23] LINERXCLK[50] LINERXDATA[51] LINETXCLK[17] LINERXCLK[52] LINERXDATA[53]
BLINERXCLK[47] VDD33 VDD33 LINETXDATA[23] LINERXCLK[49] LINETXCLK[20] VDD33 LINETXDATA[14] LINETXDATA[12] VDD33 VDD33
CLINETXCLK[25] VSS VSS LINETXCLK[21] LINETXCLK[19] LINETXCLK[16] VSS LINETXCLK[11] VDD33 VDD33 VDD33
DLINETXCLK[22] LINERXDATA[50] LINETXDATA[19] LINETXDATA[18] LINETXCLK[15] LINERXCLK[53] LINERXCLK[54] VSS VDD33 VDD33 VDD33
ELINETXDATA[21] LINETXCLK[18] LINETXDATA[17] LINETXDATA[15] LINETXDATA[13] LINERXDATA[55] LINERXCLK[56] VSS VSS VDD33 VDD33
FLINETXDATA[20] LINERXDATA[52] LINETXCLK[14] LINETXCLK[13] LINERXDATA[56] LINERXCLK[57] VSS VSS VSS VSS VSS
G LINERXDATA[54] LINERXDATA[57] LINETXDATA[10] LINETXCLK[9] LINETXCLK[8] VSS VSS VSS
HLINERXCLK[51] LINETXDATA[16] LINERXCLK[55] LINETXCLK[10] LINETXDATA[11] LINETXDATA[8] LINETXDATA[7] LINETXCLK[6] LINETXCLK[5] LINETXDATA[5] LINETXCLK[3]
JVDD33 VDD15 LINETXCLK[12] LINETXDATA[9] LINETXCLK[7] LINETXCLK[4] LINETXDATA[4] VSS VDD33 LINETXCLK[2]
K VDD15 LINETXDATA[6] LINETXDATA[3] LINETXDATA[2] LINETXCLK[1] VSS VDD33 LINERXDATA[63]
L VDD33 LINETXDATA[1] LINERXDATA[58] LINERXCLK[58] LINERXDATA[59] LINERXDATA[62] LINERXCLK[64] LINERXDATA[66]
M VDD33 LINERXCLK[59] LINERXDATA[60] LINERXCLK[60] LINERCLK[62] LINERXDATA[65] LINERXDATA[67] LINERXCLK[67]
N VDD15 LINERXDATA[61] LINERXCLK[61] LINERXCLK[63] LINERXCLK[65] NC NC LINERXCLK[68]
P VDD15 NC LINERXCLK[66] LINERXDATA[64] NC VSS VDD33 LINERXDATA[69]
R VDD33 LINERXDATA[68] NC NC VSS VDD33 NC
T VDD33 LINERXCLK[69] NC NC LINERXDATA[70] LINERXCLK[70] NC
U VDD15 VDD15 NC LINERXDATA[71] NC NC LINERXCLK[71] LINERXDATA[72]
V VDD15 VDD15 NC LINERXCLK[72] LINERXDATA[74] LINERXDATA[73] NC NC
W VDD33 NC LINERXDATA[75] LINERXCLK[74] NC NC LINERXCLK[73]
Y VDD33 NC LINERXCLK[76] NC VSS VDD33 NC
AA VDD15 LINETXCLK[32] LINETXDATA[31] LINETXDATA[34] LINETXCLK[31] VSS VDD33 LINERXCLK[75]
AB VDD15 LINETXCLK[38] LINETXCLK[35] LINETXDATA[37] LINETXCLK[34] LINETXDATA[32] NC LINERXDATA[76]
AC VDD33 LINETXDATA[43] LINETXDATA[40] LINETXDATA[39] LINETXCLK[37] LINETXDATA[35] LINERXCLK[77] LINERXDATA[77]
AD VDD33 NC LINETXCLK[41] LINETXCLK[42] LINETXCLK[40] LINETXCLK[36] LINETXCLK[33] LINETXDATA[33]
AE VDD15 LINETXCLK[45] LINETXCLK[44] LINETXDATA[44] LINETXDATA[42] VSS VDD33 LINETXDATA[36]
AF VDD33 VDD15 CG_PLLCLKOUT CLKIN_PLL NC NC NC VSS VDD33 LINETXDATA[38]
AG LINETXCLK[57] LINETXCLK[58] TRST LOSEXT NC NC MODE1_PLL NC LINETXCLK[43] LINETXDATA[41] LINETXCLK[39]
AH VDD15 LINETXCLK[49] LINETXCLK[48] NC VDD33A_SFPLL VSSA_SFPLL NC NC NC
AJ PMRST LINETXCLK[62] VDD15 VDD15 LINETXCLK[46] LINETXDATA[49] NC MODE0_PLL NC LINETXDATA[45] NC
AK LINETXDATA[53] LINETXDATA[52] NC NC NSMIRXCLK[2] LINETXCLK[47] LINETXDATA[48] MODE2_PLL VSS VDD33 VDD33
AL RXDATAEN[3] NSMITXDATA[2] LINETXCLK[52] NSMITXSYNC[3] LINETXCLK[51] NC LINETXCLK[55] LINETXDATA[46] VSS VDD33 VDD33
AM NSMIRXDATA[1] VSS VSS LINETXCLK[53] TXDATAEN[2] TXDATAEN[3] VSS LINETXCLK[50] LINETXDATA[50] LINETXDATA[47] VDD33
AN LINETXDATA[58] VDD33 VDD33 NSMIRXDATA[3] NSMITXDATA[1] TXDATAEN[1] VDD33 NSMITXCLK[3] NC LINETXDATA[51] VDD33
AP SCK1 LINETXDATA[57] LINETXDATA[56] NSMIRXDATA[2] LINETXDATA[55] NSMIRXSYNC[3] NSMITXSYNC[1] NSMITXCLK[2] NSMITXSYNC[2] NSMITXDATA[3]
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
2020 Agere Systems Inc.
2.4 Pin Types
Table 2-3 describes each type of input, output, and I/O pin used in the Ultramapper Full Transport device.
Table 2-3. Pin Types
Type Label Description
ILVCMOS Input, LVTTL Switching Thresholds.
I pd LVCMOS Input, LVTTL Switching Thresholds with Internal 50 k Pull-Down Resistor.
I pu LVCMOS Input, LVTTL Switching Thresholds with Internal 50 kPull-Up Resistor.
OLVCMOS Output.
O od Open-Drain Output.
LIN LVDS Inputs.
LOUT LVDS Outputs.
I/O Bidirectional Pin. LVCMOS input with LVTTL switching thresholds and LVCMOS output.
I/O pd Bidirectional Pin. LVCMOS input with LVTTL switching thresholds with internal 50 kpu ll -d own re si st or
and LVCMOS output.
Power, Ground, Analog Inputs for External Resistors, Capacitors, Voltage References, etc.
NC No Connect.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 21
2.5 Pin Definitions
This section describes the function of each of the device pins. All LVDS input buffers have a built-in 100 terminati ng
resistor with a center tap pin available for an external capacitor connection. All unused LVDS inputs may be left
unconnected. Pin functionality is descriptive information. The actual functionality is dependent upon the device
configuration via the registers.
Table 2-4. TMUX Block, High-Speed Interface I/O
Pin Symbol Type Name/Description
AM2 RHSDP LIN Receive High-Speed Data. 622/155 Mbits/s input data. This is also an input to internal clock
and data recovery (CDR). CDR may be bypassed in 155 Mbits/s mode. In 622 Mbits/s mode,
the internal CDR m ust be used.
AM3 RHSDN
AM1 RHSCP LIN Receive High-Speed Clock. 155 MHz input clock for 155 Mbits/s data if CDR is bypassed. Not
used in 622 Mbits/s mode.
AN1 RHSCN
AF8 CTAPRH Center Tap RH. LVDS buffer terminator center tap for RHSDP/N and RHSCP/N. An optional
0.1 µF capacitor, connected between CTAP pin and ground, will improve the common-mode re-
jection of the LVDS input buffers.
AG27 LOSEXT I pu External Loss-of-Signal Input. Active level is programmable by register
TMUX_LOSEXT_LEVEL. Defaults to active-low. This pin can be part of the high-priority
interrupt when active. Usually connected to optical transceiver to indicate loss of signal.
AM5 THSDP LOUT Transmit High-Speed Dat a. 622/155 Mbits/s output data. The frame location in slave mode is
determined by THSSYNC and transmit high-speed control parameter register
(TMUX_TFRAMEOFFSETA). In master mode, the frame timing is arbitrary.
AM6 THSDN
AN2 THSCOP LOUT Transmit High-Speed Clock Output. 622/155 MHz transmit output clock associated with
THSDP/N.
AP2 THSCON
AL5 RESHI Resistor. A 100 , 1% resistor is required between the RESHI and RESLO pins as a refer-
ence for the LVDS input buffer termination.
AL6 RESLO
AK6 REF10*IReference 1.0 V. External 1 V reference voltage pin (optional).
AJ6 REF14*IReference 1.4 V. External 1.4 V reference voltage pin (optional).
* Optional: selected by MPU/top-level register UMPR_LVDS_REF_SEL. External reference voltage can be sourced from a low-impedance resistor
(less than 1 k) divider circuit decoupled wit h a 0.1 µF capacitor . Please refer to Table 4-7 LVDS Interface dc Characteristics on page 39 for addi-
tional information.
Table 2-5. TMUX Block, Protection Link I/O
Pin Symbol Type Name/Description
AN6 RPSDP LIN Receive Protection High-S peed Data. 622/155 Mbits/s protection input data. Also input to in-
ternal protection CDR. CDR may be bypassed in 155 Mbits/s mode. In 622 Mbits/s mode, the
internal CDR must be used.
AP6 RPSDN
AM7 RPSCP LIN Receive Protecti on High-S peed Clock. 155 MHz input clock for 155 Mbits/s data if protection
CDR is bypassed. Not used in 622 Mbits/s mode.
AM8 RPSCN
AG10 CTAPRP Center Tap RP. LVDS buffer terminator center tap for RPSDP/N and RPSCP/N. An optional
0.1 µF capacitor, connected between CTAP pin and ground, will improve the common-mode re-
jection of the LVDS input buffers.
AP9 TPSDP LOUT Transmit Protection High-Speed Data. 622/155 Mbits/s protection output data.
AN9 TPSDN
AN8 TPSCP LOUT Transmit Protection High-Speed Clock. 622/155 MHz transmit output clock associated with
TPSDP/N.
AP8 TPSCN
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
2222 Agere Systems Inc.
Table 2-6. TMUX Block, Clock and Sync I/O
Pin Symbol Type Name/Description
AN4 THSCP LIN Transmit High-Speed Clock. 622 MHz/155 MHz input clock for transmit 622/155 Mbits/s
data. Also used as a reference clock for all CDRs. There are five CDR circuits. The high-
speed data and protection high-speed data have CDRs that operate at 155 MHz or
622 MHz. The mate inputs have three CDRs that operate at 155 MHz. The clock on this pin
is also internally routed to the DS1/E1 framers and is used as an internal master clock.
Note: A 622 MHz clock must be supplied when the device operates in 622 Mbits/s mode. A
155 MHz clock must be supplied when the device operates in 155 Mbits/s mode. For
version 3.0 devices and later, the following applies: A 622 MHz clock must be supplied
when the device operates in 622 Mbits/s mode. A 155 MHz or 622 MHz clock can be
supplied when the device operates in 155 Mbits/s mode (choice provisionable via
UMPR_OC3THSC_MODE).
AP4 THSCN
AG9 CTAPTH Center Tap TH. LVDS buffer terminator center tap for THSCP/N. An optional 0.1 µF capaci-
tor , connected between CT AP pin and ground will improve the common-mode rejection of the
LVDS input buffers.
AP22 RHSFSYNCN O Receive High-Speed Frame Sync. This output indicates the start of the frame in the high-
speed data input. Only present when a valid frame signal is detected on the RHSDP/N
inputs. It is an active-low pulse with a pulse width almost equal to one E1 clock period, or
approximately 500 ns.
AJ14 RLSCLK O Receive Low-Speed Clock. 19.44 MHz receive output clock divided down from either
RHSCP/N or the recovered high-speed clock (when the CDR is used). May be used as a
system timing reference.
AK13 TLSCLK O Transmit Low-Speed Clock. 19.44 MHz transmit output clock divided down from
THSCP/N.
AL13 THSSYNC I/O pd Transmit High-Speed Frame Sync. 2 kHz/8 kHz composite frame sync signal that identi-
fies the locations of the J0, J1-1, J1-2, J1-3 . . . J1-12, and V1-1 bytes. This signal is used to
align transmit frames before multiplexing.
Note: J0, J1-1, J1-2, and J1-3 . . . J1-12 occur every 125 µs. V1-1 occurs every 500 µs.
If the register MPU_MASTER_SLAVE = 1, THSSYNC is an output; otherwise, THSSYNC is
an input.
The positive 8 kHz and 2 kHz pulses are synchronized to TLSCLK (in master mode only).
The rising edge is referenced for frame location. For master/slave configuration, the
THSSYNC of all Ultramapper Full Transports (up to four) must be connected together. The
master can be one of the Ultramapper Full Transports, and it sources the frame sync pulse
to other Ultramapper Full Transports. All Ultramapper Full Transports can also be configured
as slaves and receive frame sync from the external system frame sync.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 23
Table 2-7. STS Cross-Connect (STSXC) Block, STS-3/STM-1 Mate Interconnect
Pin Symbol Type Name/Description
AP11, AM9,
AP10 RLSDATAP[3:1] LOUT Receive Low-Speed Data. These pins are usually used in 622 Mbits/s applica-
tions (however, they can be used in a 155 Mbits/s application). These pins are
used on the device interfacing to the high-speed STS-N/STM-N line. Connect
these pins to the high-speed data inputs (RHSDP/N) of the slave devices.
This 155 Mbits/s signal uses a SONET structure. The overhead supported are the
A1/A2 and B2 bytes and line RDI. The data is scrambled. Data from the RHSD is
routed via the STSXC.
AP12,
AM10, AN10 RLSDATAN[3:1]
AG11, AN12,
AN11 TLSDATAP[3:1] LIN Transmit Low-Speed Data. These pins are usually used in 622 Mbits/s applica-
tions (however , they can be used in a 155 Mbits/s application). These pins are used
on the device interfacing to the high-speed STS-N/STM-N line. These pins should
be connected to the high-speed data outputs (THSDP/N) of the slave devices. This
155 Mbits/s input receives data from the slave high-speed outputs.
These inputs have built-in clock and data recovery (CDR). The frame location ex-
pects a fixed relationship to the high-speed transmit frame sync (THSSYNC).
AG12,
AN13, AM11 TLSDATAN[3:1]
AG14 CTAPTL Center Tap TL. LVDS buffer terminator center tap for TLSDATAP/N. An optional
0.1 µF capacitor, connected between CTAP pin and ground, will improve the com-
mon-mode rejection of the LVDS input buffers.
Table 2-8. Multirate Cross-Connect (M RXC) Block, TOAC Input and Output Channels
Pin Symbol Type Name/Description
AM12 RTOACCLK O Receive Transport Overhead Access Channel Clock. The frequency of this
clock is determined by the TOAC provisioning registers.
AL12 RTOACDATA O Receive Transport Overhead Access Channel Data. 622/155 Mbits/s transport
overhead bytes are output on this pin. The content is determined by the TOAC
provisioning registers.
AN17 RTOACSYNC O Receive Transport Overhead Access Channel Sync. Active-high 8 kHz frame
sync. It is active during the clock period of the first bit of each frame.
AH8 TTOACCLK O Transmit Transport Overhead Access Channel Clock. The frequency of this
clock is determined by the TOAC provisioning registers.
AL16 TTOACDATA I pd Transmit Transport Overhead Access Channel Data. Input for the transport
overhead bytes.
AP18 TTOACSYNC O Transmit Transport Overhead Access Channel Sync. Active-high 8 kHz frame
sync. It is active during the clock period of the first bit of each frame.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
2424 Agere Systems Inc.
Table 2-9. Multirate Cross-Connect (MRXC) Block, POAC Input and Output Channels
Pin Symbol Type Name/Description
AM17 RPOACCLK O Receive Path Overhead Access Channel Clock. Output for the path overhead
bytes. This is a 3-state output pin controlled by register provisioning.
AG17 RPOACDATA O Receive Path Overhead Access Channel Data. Output for the path overhead
bytes. This pin can be 3-stated.
AP19 RPOACSYNC O Receive Path Overhead Access Channel Sync. Output for POAC channel. Ac-
tive-high during the first bit of each frame when the POAC is connected to either
the TMUX or STS1LT. Active-high during the LSB of the last byte of the frame
when connected to the SPEMPR. This pin can be individually 3-stated.
AL17 TPOACCLK O Transmit Path Overhead Access Channel Clock. Serial access channel clock
output for the path overhead bytes. This pin can be individually 3-stated.
AK17 TPOACDATA I pd Transmit Path Overhead Access Channel Data. Serial access channel data in-
put for the path overhead bytes.
AP20 TPOACSYNC O T ransmit Path Overhead Access Channel Sync. Output for POAC channel. Ac-
tive-high during the first bit of each frame when the POAC is connected to either
the TMUX, the STS1LT, or the SPEMPR. This pin can be individually 3-stated.
Table 2-10. DS3/E3/STS-1 Out
Pin Symbol Type Name/Description
AF4, AG2, AK1,
AH1, AA6, V2 DS3POSDATAOUT[6:1] O DS3/E3/STS-1 Positive Data Output. Either contains the positive rail
of the B3ZS/HDB3 encoded output data, or single-rail NRZ data.
AJ2, AG3, AL1,
AJ1, AC4, AC3 DS3NEGDATAOUT[6:1] O DS3/E3/STS-1 Negative Data Output. Negative-rail B3ZS/HDB3 en-
coded output data. Not used in single-rail mode (held low in this
case).
AG4, AE 5, A D5,
AC5, AB8, AB5 DS3DATAOUTCLK[6:1] I pd DS3/E3/STS-1 Data Output Clock. 44.736 MHz, 34.368 MHz, or
51.84 MHz clock input and is typically connected to a crystal oscillator
or clocking chip.
This clock is required for M13, E13, or STS1LT applications and is
typically connected to an oscillator. This clock is not required for
DS3/E3 to SONET/SDH mapping applications. In this case,
DS3XCLK/E3XCLK is needed for DS3/E3 DJA. For STS-1 to
SONET mapping applications, the TMUX can be used to supply the
STS-1 rate DATAOUT clock and this clock is therefore not needed.
For ST S -1 PDH applications, a 51.84 M Hz clock mus t be sup-
plied at this pin.
AE8, AD6, AC8,
AB6, AD3, AD2 DS3RXCLKOUT[6:1] O DS3/E3/STS-1 Receive Clock Output. 44.736 MHz
DS3/34.368 MHz E3/51.84 MHz STS-1 clock out to external circuit.
Table 2-11. DS3/E3/STS-1 In
Pin Symbol Type Name/Description
W5, W8, V5,
AD1, AB2, W3 DS3POSDATAIN[6:1] I pd DS3/E3/STS-1 Positive Data Input. Either contains the positive rail of the
B3ZS/HDB3 encoded input data, or single-rail NRZ data.
AA5, Y5, AC 2,
Y4, AC1, V1 DS3NEGDATAIN[6:1] I pd DS3/E3/STS-1 Negative Data Input. Either contains the negative rail of
the B3ZS/HDB3 encoded input data, or in single-rail mode, this input may
be used to count bipolar violations.
AB4, A F1, AE1 ,
V3, V4, AB1 DS3DATAINCLK[6:1] I pd DS3/E3/STS-1 Data Input Clock. 44.736 MHz, 34.368 MHz, or
51.84 MHz clock for the DS3/E3/STS-1 positive and negative data inputs.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 25
Table 2-12. NSMI/STS-1 In
Pin Symbol Type Name/Description
AN27, AP27,
AM24 NSMIRXDATA[3:1] I pd Network Serial Multiplex Interface (NSMI) Receive* Data. This is used
in the following applications:
STS-1 rate clear-channel receive data to SPEMPR.
DS3/E3 rate clear-channel receive data to M13/E13.
Additionally, it could be used as a SONET compliant STS-1 input signal
to STS1LT from external LIU. For V3.0 devices, these pins may also be
used for DS3 Clear Channel (positive-rail or single-rail) input data (to the
SPEMPR block).
* The transmit path is toward the high-speed fiber output, and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA , on
the transmit path, are labeled receive. Low-speed outputs, e.g., NSMITXDATA, on the receive path, are labeled transmi t.
AG21, AK28,
AJ22 NSMIRXCLK[3:1] I/O pd NSMI Receive Clock. Used in the following applications:
Output (51.84 MHz) for the STS-1 rate clear-channel application.
Output (44.736 MHz/34.368 MHz) for the DS3/E3 application.
Additionally, it could be used as an input clock for SONET compliant
STS-1 to STS1LT from external LIU. For V3.0 devices, these pins may
also be used for DS3 Clear Channel DS3 rate input clock for positive
(and negative) data inputs.
AP29, AL23,
AL22 NSMIRXSYNC[3:1] I/O pd NSMI Receive Frame Sync. Used in the following applications:
Output receive control frame sync signal for M13/E13.
Output receive control frame sync signal for SPEMPR.
Additionally, it could be used to carry STS-1 input transmit clock for
STS1LTs. For V3.0 devices, these pins may also be used for DS3 Clear
Channel negative-rail input data (to the SPEMPR block).
AL24, AK22,
AK21 RXDATAEN[3:1] O NSMI Receive Data Enable. In the SPEMPR NSMI mode, the signal on
this output will be high during the POH of the SPE.
In M13 NSMI mode, the signal output on this pin goes low during the M1
byte of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the over-
head bytes and control bits of the E3 frame.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
2626 Agere Systems Inc.
Table 2-13. NSMI/ST S-1 Out
Pin Symbol Type Name/Description
AP33, AL25,
AN28 NSMITXDATA[3:1] O NSMI Transmit Data. NSMI outputs or STS-1 Tx data outputs from
STS1LTs. NSMI output data from either the SPEMPR or M13/E13 block.
For V3.0 devices, these pins may also be used for DS3 Clear Channel
(positive-rail or single-rail) output data (from the DS3DJA block).
AN31, AP31,
AG23 NSMITXCLK[3:1] O NSMI Transmit Clock Output or STS-1 Tx Clock Outputs from
STS1LTs. Output clock at 51.84 MHz for the STS-1 rate clear-channel
application, or the DS3/E3 application (44.736/34.368 MHz). For V3.0
devices, these pins may also be used for DS3 Clear Channel DS3 rate
output clock (from the DS3DJA block).
AL27, AP32,
AP30 NSMITXSYNC[3:1] O Transmit System Frame Sync Output. Output transmit control frame
sync signal from M13/E13 or SPEMPR. For V3.0 devices, these pins
may also be used for DS3 Clear Channel negative-rail output data (from
the DS3DJA block).
AM29, AM28,
AN29 TXDATAEN[3:1] O Transmit Data Enable for NSMI Mode. In SPEMPR NSMI mode, the sig-
nal on this output will be high during the POH of the SPE.
In M13 NSMI mode, the signal output on this pin goes low during the M1
byte of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the over-
head bytes and control bits of the E3 frame.
* The transmit path is toward the high-speed fiber output, and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA, on
the transmit path, are labeled receive. Low-speed outputs, e.g., NSMITXDATA, on the receive path, are labeled transmit.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 27
The transmit path is toward the high-speed fiber output, and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path, are labeled receive. Low-speed outputs, e.g., LINETXDATA, on the
receive path, are labeled transmit.
Table 2-14. Sh a red Low- Speed Line In
Pin Symbol Type Name/Description
T1, W2, V9, AB3, AG1, AA8, AC6, AE6, AD8,
AC34, AB34, W30, V31, V32, U34, U30, T32,
P34, R27, M33, L34, M32, P30, K34, L32,
N27, M29, L31, L29, G28, F28, E29, G27,
A33, F25, A30, D25, H23, A26, D22, E21, A22,
C18, H17, A17, D15, H15, C12, C11, F12,
H10, F5, G6, H8, G5, H6, E6, A4, A5, F8, C6,
B6, F10, A6, C7, F1 1, D8, A7, E1 1, B8, A8, A9,
A1 1, H13, F13, E13, A13, F14, D13, E14, E15,
H16, D16, B17, D17, E18
LINERXDATA[86:1] I pd Line Receive Data [86:1]. Inputs to the internal
multirate crossconnect.
These signals are used for received single-rail
DS1/E1 line data input, sourced from an exter-
nal LIU. In this mode, these signals will be rout-
ed via the crossconnect to the VT mapper, the
M13 multiplexer , E13 multiplexer, or the receive
line inputs of the DS1/E1 framers.
These signals may also be used as input data
for DS2/E2 applications (see the System
Design Guide).
T2, U1, W4, AA4, Y8, AD4, AE4, AH2, AH3,
AC33, Y30, AA34, W31, W34, V30, U33, T33,
T27, N34, M34, P29, N31, L33, N30, M31,
N29, M30, M27, L30, F29, E30, H26, D30,
D29, A32, H24, A29, B28, F22, B24, D21,
H20, D19, B18, E17, A16, D14, H14, A12,
A10, F6, E5, H9, C1, F4, J9, F7, B4, G8, D6,
E7, F9, E8, D7, E10, E9, B7, H11, C8, D9,
H12, D10, E12, B1 1, D11, B12, D12, B13, C13,
A14, A15, B16, C16, E16, C17, A18
LINERXCLK[86:1] I/0 pd Line Receive Clock [86:1]. Configurable
inputs to the internal multirate crossconnect.
These inputs are used for asynchronous clocks
associated with the line receive data inputs
from external line interface units, or payload
termi nation func ti ons.
In certain cases, these pins can be used as
outputs. These pins may be used for DS2/E2
clocks in DS2/E2 applications. More informa-
tion will be published in the System Design
Guide.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
2828 Agere Systems Inc.
The transmit path is toward the high-speed fiber output, and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path, are labeled receive. Low-speed outputs, e.g., LINETXDATA, on the
receive path, are labeled transmit.
Table 2-15. Shared Low-Speed Line Out
Pin Symbol Type Name/Description
H5, E1, N8, H3, L4, M8, M3, L1, T8, N1,
AJ3, AF6, AL2, AG6, AH5, AK4, AJ5,
AK5, AG8, AL15, AP17, AK16, AK11,
AN19, AL18, AM19, AG18, AM22,
AN24, AP25, AP26, AP28, AK23, AK24,
AK25, AN33, AM32, AJ29, AK30, AM33,
AL31, AJ33, AE30, AC27, AE31, AG33,
AC29, AC30, AF34, AB30, AE34, AC32,
AA30, AD34, AB32, AA29, C22, B23,
F21, E22, H22, D23, E23, B27, F23,
E24, F24, D26, D27, E26 , H25, E27,
B31, E28, B32, H28, G29, J27, H29,
H30, K27, H33, J31, K29, K30, L27
LINETXDATA[86:1] O Line Transmit Data [86:1]. Outputs from the internal
multirate crossconnect.
These signals are used for transmit of single-rail
DS1/E1 line data output, sourced to an external LIU.
In this mode, these signals will be routed via the
cross connect from the VT mapper , the M13
multiplexer, the E13 multiplexer, or the transmit line
outputs of the DS1/E1 framers.
Each of these outputs comes from the internal
MRXC and can be individually set to high imped-
ance.
These pins may also be used for output data in
DS2/E2 applications (see the System Design
Guide).
H7, D1, F2, K8, G1, H1, P6, P5, N3, U3,
AF5, AG5, AH4, AJ4, AF9, AL3, AH6,
AL4, AK14, AN16, AK12, AJ12, AN18,
AH7, AJ25, AF17, AL19, AK19, AG25,
AG24, AG20, AL30, AG22, AM27,
AL26, AL28, AM31, AH27, AH28, AK29,
AJ28, AE27, AE29, AG32, AD30, AD29,
AD31, AG34, AB27, AC31, AD32,
AB29, AB31, AD33, AA27, AA31, A23,
H21, A24, C23, A25, C24, A27, A28,
D24, C27, B29, C28, E25, A31, C29,
D28, F26, F27, J26, C31, H27, G30,
G31, J29, H31, H32, J30, H34, J34, K31
LINETXC LK[ 86:1 ] I/O pd Line Transmit Clock [86:1]. Configura ble outputs
from the internal multirat e cross connect. These
outputs are used for asynchronous clocks,
associated with the line transmit data outputs to
external line interface units or payload termination
functions.
Each of these outputs comes from the internal
MRXC and can be individually set to high
impedance.
In certain cases, these pins can be used as an input
(input DS2/E2 clocks). More information will be
published in the System Design Guide.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 29
Table 2-16. Reference Clocks
Pin Symbol Type Name/Description
V8 DS2AISCLK I pd DS2 AIS Clock. See separate DS2/E2 application note for use in DS2 mode. If used, this
input can be provided by a free-running crystal or clocking chip.
AA1 E2AISCLK I pd E2 AIS Clock. See separate DS2/E2 application note for use in E2 mode. If used, this
input can be provided by a free-running crystal or clocking chip.
AM18 E1XCLK I pd E1 X Cloc k. This clock signal is used for three purposes: to generate E1 AIS (all 1s), as a
reference to the E1 DJA, and as a clock source for the test pattern generator and test pat-
tern monitor. This input may be provided by a 2.048 MHz, a 32.768 MHz, or a
65.536 MHz ± 50 ppm free-running crystal oscillator or clocking chip.
Note: For the E1 DJA, an input of 32.768 MHz or 65.536 MHz must be used.
AP21 DS1XCLK I pd DS1 X Clock. This clock signal is used for three purposes: to generate DS1 AIS (all 1s),
as a reference to the DS1 DJA, and as a clock source for the test pattern generator and
test pattern monitor. This input may be provided by a 1.544 MHz, a 24.704 MHz, or a
49.408 MHz ± 32 ppm free-running crystal oscillator or clocking chip.
Note: For the DS1 DJA, an input of 24.704 MHz or 49.408 MHz must be used.
E19 DS3XCLK I pd DS3 X Clock. A 44.736 MHz ± 20 ppm clock input for DS3 DJA and TPG. This input may
be provided by a 44.736 MHz ± 20 ppm free-running crystal oscillator or clocking chip.
H18 E3XCLK I pd E3 X C l ock. A 34.368 MHz ± 20 ppm clock input for E3 DJA and TPG. This input may be
provided by a 34.368 MHz ± 20 ppm free-running crystal oscillator or clocking chip.
Table 2-17. Low-Order Path Overhead Access, Transmit Direction
Pin Symbol Type Name/Description
B22 LOPOHCLKIN I pd Low-Order Path Overhead Clock. 19.44 MHz clock supplied from external
circuits that provide the low-order path overhead data.
D20 LOPOHDATAIN I pd Low-Order Path Overhead Data. The following parts of the low-order (VT)
overhead are presented at this pin: communication channel bits (O bits), V5,
J2, Z6/N2, Z7, and K4 byte.
E20 LOPOHVALIDIN I pd Low-Order Path Ov erhead Data Input V alid. This signal is a mask, which in-
dicates the location of the overhead bytes in the LOPOHDATAIN.
Table 2-1 8. Low- Order Pat h Ove rhea d Acce ss, Rece ive Dire ctio n
Pin Symbol Type Name/Description
A21 LOPOHCLKOUT O Low-Order Path Overhead Clock. 19.44 MHz clock supplied to external cir-
cuits that receive the low-order path overhead data.
H19 LOPOHDATAOUT O Low-Order Path Overhead Data . (Line and path REI and RDI, O bits, V5,
J2, Z6/N2, and Z7/K4 byte.)
A20 LOPOHVALIDOUT O Low-Order Path Ove rhead Dat a Output Valid. This signal is a mask, which
indicates the location of the overhead bytes in the LOPOHDATAOUT.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
3030 Agere Systems Inc.
Table 2-19. Clock Generator
Pin Symbol Type Name/Description
AF27 CLKIN_PLL I pd On-Chip PLL Reference Input. The clock generator can be used to devise
a clock of the appropriate frequency (DS1/E1), synchronized to CLKIN_PLL.
AF26 CG_PLLCLKOUT O PLLTest Mode Output. PLL clock (1.544 MHz, 2.048 MHz) selected by the
device register.
AK31, AG30,
AJ31 MODE[2:0]_PLL I pd PLL Input Clock Mode Select Bits. The settings of these mode select pins
must correspond to the frequency of CLKIN_PLL as shown below.
MODE[2:0]_PLL CLKIN_PLL MODE[2:0]_PLL CLKIN_PLL
000 Reserved 100 16.384 MHz
001 51.840 MHz 101 8.192 MHz
010 26.624 MHz 110 4.096 MHz
011 19.440 MHz 111 2.048 MHz
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 31
Table 2-20. Microprocessor Interface
Pin Symbol Type Name/Description
G4 MPCLK I Micr op roces sor Clo ck. This clock is required to properly sample address,
data, and control signals from the microprocessor in both asynchronous and
synchronous modes of operation.
D2 MPMODE I M i cro pro ces sor Mo d e. If the microprocessor interface is synchronous,
MPMODE should be set to 1. If the microprocessor interface is asynchro-
nous, MPMODE should be set to 0.
G7 CSN I pu Chip Select. Active-low, high-order address signal. Chip select must be set
low at the beginning of any read or write access and returned high at the end
of the cycle.
F3 ADSN I Address Strobe. Active-low address strobe that indicates the beginning of a
read or write access. It is a one MPCLK cycle-wide pulse for synchronous
mode. In asynchronous mode, it is active for the entire read/write cycle.
Address bus signals, ADDR[20:0], are available to the Ultramapper Full
Transport when ADSN is low. The address bus should remain valid for the
durati on of ADSN .
J6 RWN I Read/Write. RWN is set high during a read cycle, or set low during a write
cycle.
J5 DSN I Data Strobe. For a read cycle, the contents of the internal register will be
output on DATA [15:0]. For a write cycle, the DATA [15:0] will be clocked into
the internal register. To initiate the start of the read/write operation, DSN
must be low during the entire read/write cycle. This signal should only be
used for asynchronous mode.
N5, P8, M4, L3,
J1, N6, M5, L8,
K4, M6, H2, L5,
L6, G2, F1, K5,
J4, J8, G3, H4,
K6
ADDR[20:0] I Address [20:0]. ADDR[20] is the MSB and ADDR[0] is the LSB for address-
ing all the internal registers during microprocessor access cycles. All
addresses are 21-bit word addresses; therefore, in a typical application,
ADDR[0] of the TMXA84622 device would be connected to address bit 1 of a
byte-addressable system address bus.
Note: The Ultramapper Full Transport is little endian, i.e., the least significant
byte is stored in the lowest address and the most significant byte is
stored in the highest address. Care must be exercised in connection
with microprocessors that use big-endian byte ordering.
P1, U9, T4, R4,
N2, P4, U5, R5,
M1, T5, M2,
R8, N4, U2, L2,
K1
DATA[15:0] I/O Data [15:0]. 16-bit data bus input for write operations and output for read
operations. DATA[15] is the MSB, and DATA[0] is the LSB.
U4, R1 PAR[1:0] I/O Dat a Parity. Byte-wide parity bits for data. P AR[1] is the parity for DA T A[15:8],
and PAR[0] is the parity for DATA[7:0]
T3 DTN O Data Transfer Acknowledge. The delay associated with DTN going low de-
pends on the Ultramapper Full Transport block being accessed. In asynchro-
nous mode, when ADSN or DSN is deasserted, it will drive the DTN signal
high. When inactive, CSN will drive DTN to be 3-stated. The microprocessor
should wait after DTN is deasserted, before starting the next operation.
U8 HP_INTN O od High-Priority and L ow-P riority Interr upt. Active-low. Each functional block
contains its individual low-priority interrupt. High-priority interrupts are gener-
ated by TMUX, STS1LT, and E13 blocks. Each interrupt is individually
maskable. Requires an external 5 k pull-up resistor.
W1 LP_INTN
Y1 APS_INTN O od Automatic Protection Switch Interrupt. Active-low. See the TMUX and
STS1LT sections in the Register Description for specific interrupts. Each in-
terrupt is individual ly maskable. Requires an e xter nal 5 k pull-up resis tor.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
3232 Agere Systems Inc.
Table 2-21. Boundary Scan (IEEE® 1149.1)
Pin Symbol Type Name/Description
AN22 TCK I Test Clock. This signal provides timing for boundary-scan test operations.
AP23 TDI I pu Test Data In. Boundary-scan test data input signal, sampled on the rising
edge of TCK.
AN23 TMS I pu Test Mode Select. Controls boundary-scan test operations. TMS is sampled
on the rising edge of TCK.
AG26 TRST I pu Test Reset (Active-Low). This signal provides an asynchronous reset for
the boundary-scan TAP controller.
AJ21 TDO O Test Data Out. Boundary-scan test data output signal is updated on the fall-
ing edge of TCK. The TDO output will be high-impedance, except when
transmitti ng tes t data.
Table 2-22. General-Purpose Interface
Pin Symbol Type Name/Description
AK18 RS TN I pu Global Hardware Reset. Active-low. Initializes all internal registers to their
default state. This is an asynchronous reset on the falling edge, but RSTN
should be held low for at least 1 µs. RSTN should be held low until both
power supplies (1.5 V and 3.3 V) are stabilized upon powerup.
AJ24 PMRST I/O pd Performance Monitor Reset. Resets error counters. When enabled as an
input, it is a 1s square wave that forces an update of PM counters upon the
rising edge. When the PMRST is generated internally from the MPU clock,
this pin is an output.
AL20 IC3STATEN I pu Output Enable. When high, output buffers will operate normally. When low,
all outputs will be forced to a high-impedance state. IC3STATEN should be
held low until both power supplies (1.5 V and 3.3 V) are stabilized upon pow-
erup.
AP24 SCK1 I pd S ca n Clock 1. Reserved. Do not connect.
AM23 SCK2 I pd S ca n Clock 2. Reserved. Do not connect.
AJ23 SCAN_EN I pd Sca n Enable. Reserved. Do not connect.
AK20 SCANMODE I pd Serial Scan Input for Testing. Reserved. Do not connect.
AL21 IDDQ I IDDQ Input. This pin must be externally pulled down with a 1 k resistor.
Table 2-23. CDR Inter face
Pin Symbol Type Name/Description
AM13 BYPASS I pd High-Speed CDR Bypass. Reserved. Do not connect.
AG15 TSTPHASE I pd Test Phase. Reserved. Do not connect.
AL14 ECSEL I pd External Clock Select. Reserved. Do not connect.
AP15 ETOGGLE I pd External Toggle. Reserved. Do not connect.
AP16 EXDNUP I pd External Down Up. Reserved. Do not connect.
AJ13 TSTMODE I pd Test Mode. Reserved. Do not connect.
AG7 TSTSFTLD I pd Test Shift Load. Reserved. Do not connect.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 33
Table 2-24. Analog Power and Ground Signals
Pin Symbol Type Name/Description
AP13 VSSA_CDR1 CDR1 Ground. Isolated ground for the internal CDR1.
AG13 VSSA_CDR2 CDR2 Ground. Isolated ground for the internal CDR2.
AK15 VSSA_X4PLL X4PLL Ground. Isolated ground for the internal X4PLL.
AH31 VSSA_SFPLL SFPLL Ground. Isolated ground for the internal SFPLL.
D18 VSSA_DS3PLL DS3PLL Ground. Isolated ground for the internal DS3PLL.
A19 VSSA_E3PLL E3PLL Ground. Isolated ground for the internal E3PLL.
AP14 VDD15A_CDR1 CDR1 Power. 1.5 V power supply for the internal CDR1, which is used by
the high-speed receive CDR, the protection receive CDR, and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the evaluation board schematic.
AL11 VDD15A_CDR2 CDR2 Power. 1.5 V power supply for the internal CDR2, which is used by
the high-speed receive CDR, the protection receive CDR, and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the evaluation board schematic.
AM16 VDD15A_X4PLL X4PLL Power. 1.5 V power supply for the internal X4PLL, which is used for
the transmit protection 1 + 1 port. Good engineering practice needs to be
applied; refer to the evaluation board schematic.
C19 VDD15A_DS3PLL DS3PLL Power. 1.5 V power supply for the internal DS3PLL, which is used
by the DS3DJA. Good engineering practice needs to be applied; refer to the
evaluati on boa rd sche mat ic .
B19 VDD15A_E3PLL E3PLL Power. 1.5 V power supply for the internal E3PLL, which is used by
the E3DJA. Good engineering practice needs to be applied; refer to the eval-
uation board schematic.
AH30 VDD33A_SFPLL SFPLL Power. 3.3 V power supply for the internal SFPLL, which is used by
the CG block (framer PLL). Good engineering practice needs to be applied;
refer to the evaluation board schematic.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
3434 Agere Systems Inc.
Table 2-25. Digital Power and Ground Signals
Pin Symbol Type Name/Description
J10, J13, J14, J17, J18, J21, J22, J25, K9, K17, K18, K26, N9,
N13, N14, N15, N16, N17, N18, N19, N20, N21, N22, N26, P9,
P13, P22, P26, R13, R22, T13, T22, U10, U13, U22, U25, U26,
V10, V13, V22, V25, V26, W13, W22, Y13, Y22, AA9, AA13,
AA22, AA26, AB9, AB13, AB14, AB15, AB16, AB17, AB18,
AB19, AB20, AB21, AB22, AB26, AE9, AE17, AE18, AE26,
AF10, AF13, AF14, AF18, AF21, AF22, AF25, AH26, AJ26, AJ27
VDD15 Common power signals for 1.5 V VDD.
A2, A3, B1, B3, B5, B9, B10, B14, B15, B20, B21, B25, B26, B30,
B33, B34, C2, C4, C32, C33, C34, D3, D5, D32, D33, D34, E2,
E4, E33, E34, J2, J1 1, J12, J15, J16, J19, J20, J23, J24, J33, K2,
K33, L9, L26, M9, M26, P2, P33, R2, R9, R26, R33, T9, T26, W9,
W26, Y2, Y9, Y26, Y33, AA2, AA33, AC9, AC26, AD9, AD26,
AE2, AE33, AF2, AF11, AF12, AF15, AF16, AF19, AF20, AF23,
AF24, AF33, AK2, AK33, AK34, AL33, AL34, AM34, AN14,
AN15, AN20, AN21, AN25, AN26, AN30, AN34
VDD33 Common power signals for 3.3 V VDD.
B2, C3, C5, C9, C10, C14, C15, C20, C21, C25, C26, C30, D4,
D31, E3, E31, E32, F30, F31, F32, F33, F34, G32, G33, G34, J3,
J32, K3, K32, P3, P14, P15, P16, P17, P18, P19, P20, P21, P32,
R3, R14, R15, R16, R17, R18, R19, R20, R21, R32, T14, T15,
T16, T17, T18, T19, T20, T21, U14, U15, U16, U17, U18, U19,
U20, U21, V14, V15, V16, V17, V18, V19, V20, V21, W14, W15,
W16, W17, W18, W19, W20, W21, Y3, Y14, Y15, Y16, Y17, Y18,
Y19, Y20, Y21, Y32, AA3, AA14, AA15, AA16, AA17, AA18,
AA19, AA20, AA21, AA32, AE3, AE32, AF3, AF32, AG16, AG19,
AJ7, AJ8, AJ9, AJ10, AJ11, AK3, AK7, AK8, AK9, AK10, AK32,
AL7, AL8, AL9, AL10, AL32, AM4, AM14, AM15, AM20, AM21,
AM25, AM26, AM30, AN3, AN5, AN7, AP3, AP5, AP7
VSS Common ground signals.
Table 2-26. No Connects
Pin Symbol Type Name/Description
N32, N33, P27, P31, R30, R31, R34, T30, T31, T34, U27, U31,
U32, V27, V33, V34, W27, W33, W32, Y27, Y31, Y34, AB33,
AD27, AF29, AF30, AF31, AG28, AG29, AG31, AH29, AH32,
AH33, AH34, AJ32, AJ30, AK27, AJ34, AK26, AL29, AN32
No
Connect NC No Connect. These pins are not used
in the Ultramapper Full Transport
device.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 35
3 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute
stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can
adversely affect device reliability.
3.1 Handlin g Preca ution s
Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to
determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit
parameters used in each of the models, as defined by JEDEC’s JESD22-A114 (HBM) and JESD22-C101 (CDM)
standards.
3.2 Thermal Parame ters (Definitions an d Values)
System and circuit board level performance depends not only on device electrical characteristics, but also on device thermal
characteristics. The thermal characteristics frequently determine the limits of circuit board or system performance, and they
can be a major cost adder or cost avoidance factor. When the die temperature is kept below 125 °C, temperature-activated
failure mechanisms are minimized. The thermal parameters that Agere provides for its packages help the chip and system
designer choose the best package for their applications, including allowing the system designer to thermally design and in-
tegrate their systems.
It should be noted that all the parameters listed below are affected, to varying degrees, by package design (including paddle
size) and choice of materials, the amount of copper in the test board or system board, and system airflow.
ΘJA - Junction to Air Thermal Resistance
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection conditions.
ΘJA is calculated using the following formula:
ΘJA = (TJ – Tamb) / P; where P = power
Table 3-1. Absolute Maximum Ratings
Parameter Min Max Unit
Supply Voltage (VDD33) –0.5 4.2 V
Supply Voltage (VDD15) –0.3 2.0 V
Input Voltage:
LVCMOS
LVDS –0.3
–0.3 5.25
VDD33 + 0.3 V
V
Power Dissipation mW
Storage Temperature Range –65 125 °C
Table 3-2. ESD Tolerance
Device Minimum Threshold
HBM CDM
TMXA84622 2000 V 500 V
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
3636 Agere Systems Inc.
ΘJMA - Junction to Moving Air Thermal Resistance
ΘJMA is effectively identical to ΘJA but represents performance of a part mounted on a JEDEC four layer board inside a wind
tunnel with forced air convection. ΘJMA is reported at airflows of 200 LFPM and 500 LFPM (linear feet per minute), which
roughly correspond to 1 m/s and 2.5 m/s (respectively). ΘJMA is calculated using the following formula:
ΘJMA = (TJ – Tamb) / P
ΘJC - Junction to Case Thermal Resistance
ΘJC is the thermal resistance from junction to the top of the case. This number is determined by forcing nearly 100% of the
heat generated in the die out the top of the package by lowering the top case temperature. This is done by placing the top
of the package in contact with a copper slug kept at room temperature using a liquid refrigeration unit. ΘJC is calculated using
the following formula:
ΘJC = (TJ – TC) / P
ΘJB - Junction to Board Thermal Resistance
ΘJB is the thermal resistance from junction to board. This number is determined by forcing the heat generated in the die out
of the package through the leads or balls by lowering the board temperature and insulating the package top. This is done
using a special fixture, which keeps the board in contact with a water chilled copper slug around the perimeter of the package
while insulati ng the pac ka ge top. ΘJB is calculated using the following formula:
ΘJB = (TJ – TB) / P
ΨJT
ΨJT correlates the junction temperature to the case temperature. It is generally used by the customer to infer the junction
temperature while the part is operating in their system. It is not considered a true thermal resistance. ΨJT is calculated using
the following formula:
ΨJT = (TJ – TC) / P
3.3 Reliability
Product reliability can be calculated as the probability that the product will perform under normal operating conditions for a
set period of time. Factors influencing the reliability of a product cover a range of variables, including design and manufac-
turing. The failure rate of a product is given as the number of units failing per unit time. This failure rate is known as FIT,
which is as follows:
1 FIT = 1 failure/1x109 hours.
Another unit used for failure rate is known as MTBF, which is 1/FIT. Many assumptions are made when calculating the failure
rate for a product, such as the average junction temperature and activation energy. The assumptions made for calculating
FIT and MTBF are shown in Table 3-4.
Table 3-3. Thermal Parameter Values
Parameter Temperature °C/Watt
ΘJA 12.8
ΘJMA (1 m/s) 9.5
ΘJMA (2.5 m/s) 8
ΘJC 2.5
ΘJB 7.6
ΨJT 1
Table 3-4. Reliability Data
Junction Temperature FIT (Per 1x109 Device Hours) MTBF Activation Energy
55 °C 36 2.78x107 hours 0.7eV
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 37
4 Elec trical Char ac te ri stics
4.1 Recommended Operating Voltages
The following table lists the voltages, along with the tolerances, required for proper operation of the TMXA84622 device.
Table 4-1. Recommended Operating Conditions
* Internal reference voltage is used if UMPR_LVDS_REF _SE L = 1, or else external voltage is used.
4.2 Recommended Powerup Sequence
The Ultramapper Full Transport device requires dual power supplies, a 3.3 V supply for the I/O, and a 1.5 V supply for the
core.
During powerup, RSTN should be held low (holding the device in reset) and IC3STATEN should be held low (3-stating all
output buffers). After the 3.3 V and 1.5 V supplies are stable, MPCLK (which affects the device reset) should be applied and
must be present for at least two clock cycles before RSTN and IC3STATEN are released. It is then recommended that
IC3STATEN be released concurrent with, or after, the release of RSTN. There are no constraints as to which supply (3.3 V
or 1.5 V) must come up first, nor does it matter how long it takes the second supply to come up after the first supply.
4.3 Power Con sump tion
The power consumption of the device is application dependent since it is not possible to use all the device features simul-
taneously. The nominal measured values for power per block are shown in Tabl e 4-3.
Parameter Symbol Min Typ Max Unit
3.3 V Power Supply VDD33 3.14 3.3 3.47 V
1.5 V Power Supply VDD15 1.4 1.5 1.6 V
Ground VSS —0.0 V
1.0 V: LVDS Reference* REF10 1.0 V
1.4 V: LVDS Reference* REF14 1.4 V
Ambient Temperature TA–40 85 °C
Table 4-2. Typical Power Consumption by Application
Application Conditions Typ 1.5 V
Power Typ 3.3 V
Power Total
Power
OC12 to 84 DS1 Transport Mode TMUX, three SPEMPRs, three VTMPRSs, three
DS1DJAs, and three FRMs 1.60 W 0.50 W 2.1 W
OC12 to 6 DS3 Clear Channel TMUX, six SPEMPRs, one DS3DJA, and six DS3 I/Os 1.00 W 0.75 W 1.75 W
OC12 to STSPP High-speed loopback through STSPP and TMUX 0.90 W 0.50 W 1.4 W
OC12 to 84 DS1 Portless Trans-
MUX Application, Transport Mode TMUX, three STS1LTs, five SPEMPRs, three
VTMPRs, two M13s, three DS1DJAs, and three FRMs 1.70 W 0.85 W 2.55 W
OC12 to 84 DS1 TransMUX
Appl ication, Transport Mode TMUX, three STS1LTs, three SPEMPRs, three
VTMPRs, three M13s, three DS1DJAs, and three
FRMs
1.70 W 0.60 W 2.3 W
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
3838 Agere Systems Inc.
Testing has shown that, on the average, approximately 0.35 W can be saved by utilizing the divide by 16 MPU clock power
down feature. Please refer to MPU register 0x0019 in the Ultramapper Register Description document for further information.
Additional MPU clock divisor options are available.
Additional power can be saved by powering down unused LVDS buffers. For details, please see MPU register 0x0026 in the
Ultramapper Register Description document.
4.4 ac and dc Characte ristics
4.4.1 LVCMOS Interface Characteristics
Table 4-3. Typical Power Consumption Per Block
Typical power by block refers to all instances being used.
Block Maximum Instance Typical, Per Single Instance Unit
TMUX 1 0.120 W
STSPP 1 0.020 W
STSXC 1 0.200 W
MRXC 1 0.050 W
SPEMPR 6 0.009 W
STS1LT 3 0.028 W
VTMPR 3 0.015 W
E13 3 0.013 W
M13 3 0.013 W
TPG/TPM 1 TBD W
FRM 3 0.195 W
DS1DJA 3 0.026 W
DS3DJA 1 0.050 W
MPU 1 0.420* W
CDR/PLL 1 0.150 W
LVDS I/O 15 0 .020 W
NSMI I/O 3 0.032 W
DS3 I/O 6 0.050 W
* Measured with a 50 MHz MPCLK. With a 25 MHz MPCLK, the typical per single instance value of MPU power is approximately 0.2 W.
Table 4-4. LVCMOS Inputs Specifications
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 1.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —VSS —0.8V
Input Capacitance CI——1.5pF
* Excludes current due to pull-up or pull-down resistors.
Table 4-5. LVCMOS Outputs Specifications
Parameter Symbol Conditions Min Typ Max Unit
Output Voltage Low VOL IOL = m ax VSS —0.5V
Output Voltage High VOH IOL = max VDD – 0.5 VDD V
Output Current Low IOL ——6*mA
Output Current High IOH –6* mA
Output Capacitance CO——3pF
HIZ Output Leakage Current IOZ ——10µA
* Output current = 10 mA (maximum) for DTN and NSMITXCLK[3:1].
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 39
4.4.2 LVDS Interface Characteristics
3.3 V ± 5% VDD, –40 °C to +125 °C junction temperature.
.
Table 4-6. LVCMOS Bidirectionals Specifications
Parameter Symbol Conditions Min Typ Max Unit
Leakage Current ILVSS < VIN < VDD33 —— 11 µA
High-input Voltage VIH —2.0VDD33 + 0.3 V
Low- in put Voltage V IL —VSS —0.8V
Biput Capacitance CIB ——5.0pF
Output Voltage Low VOL IOL = –6 mA* 0.5 V
Output Voltage High VOH IOH = 6 mA* 2.4 V
* The following bidirectional pins can sink/source 10 mA: NSMIRXCLK[3:1].
Table 4-7. LVDS Interface dc Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Parameters
Input Voltage Range
High (VIA or VIB)
Low (VIA or VIB)
VI
VIH
VIL
|VGPD| < 925 mV, dc—1 MHz
0
2.4
V
V
Input Differential Threshold VIDTH dc— 450 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input
Impedance RIN With build-in termination, center-tapped 80 100 120
Output Buffer Parameters
Output Voltage:
High (VOA or VOB)
Low (VOA or VOB)VOH
VOL RLOAD = 100 ± 1%
RLOAD = 100 ± 1%
0.925
1.475
V
V
Output Differential Voltage|VOD|RLOAD = 100 ± 1% 0.25 0.45 V
Output Offset Voltage VOS RLOAD = 100 ± 1% 1.12 5 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 80 100 120
RO Mismatch Between A and B ROVCM = 1.0 V and 1.4 V 10 %
Change in Differential Voltage
Between Complementary States |VOD|RLOAD = 100 ± 1% 25 mV
Change in Output Offset Voltage
Between Complementary States VOS RLOAD = 100 ± 1% 25 mV
Output Current ISA, ISB Driver shorted to VSS ——24mA
Output Current ISAB Driv ers sho r ted toge ther 12 mA
* The buffer will not produce output transitions when input is open-circuited. When the true and complement inputs are floating, the input buffer will not
oscillate.
250 mV |VA – VB| 450 mV.
Note: The characteristics in the table above apply under the following conditions:
External LVDS reference chos en (UMPR_LVDS_REF_SE L = 0).
REF10 = 1.0 V ± 3% and REF14 = 1.4 V ± 3%.
Internal LVDS reference chosen (UMPR_LVDS_REF_SEL = 1).
VDD33 supply controlled to within ±3%.
When UMPR_LVDS_REF_SEL = 1, the internal reference levels are derived using a resistor ladder from VDD33. These levels will vary as much as the
VDD33 supply does and are therefore only as accurate as the VDD33. If VDD33 cannot be controlled to within ±3%, one or more IEEE specifications
may be violated. While this may not necessarily lead to data errors during transmission, interoperability issues may arise due to specification noncompli-
ance.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
4040 Agere Systems Inc.
5 Timing
5.1 TMUX High-Speed Interface Timing
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing
Figure 5-2. TMUX LVDS Clock and Data Timing
Table 5-1. High-Speed Interface Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
RHS DP/N (622 MHz)*
* Input serial data stream should have minimum eye opening of 0.4 UI p-p, and no more than 60 consecutive bits that have no transitional edge
within one minute. It must meet 100 ps maximum phase variation limit over a 200 ns inte rv al; this translates to a frequency change of 500 ppm.
Asynchronous 0.5 0.5
RHS DP/N (155 MHz)*Asynchronous 0.5 0.5
RHSDP/N (155 MHz) RHSCP/N R/F 1.0 1.0 2 0
tF
tR
80%
20%
THSCOP/N
RHSCP/N
tSU tH
tPD
50%
50%
50%
50%
RHSDP/N
THSDP/N
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 41
5.2 THSSYNC Characteristics
THSSYNC is an 8 kHz composite frame sync pulse for STS-3 or STS-12. THSSYNC contains J0, J1, and V1-1 information
as shown in Figure 5-3. The time delay from any rising edge of a J0 (8 kHz) to the rising edge of the next J0 is 125 µs. The
time delay between any two V1-1 (2 kHz) pulses is 500 µs. This is true whether in STS-3 or STS-12 mode.
When MPU_MASTER_SLAVE = 1, then THSSYNC is according to Figure 5-3.
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)
When MPU_MASTER_SLAVE = 0, then THSSYNC (supplied from an external source) can be according to Figure 5-4.
Table 5-2. Protection Link Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
RPSDP/N (622 MHz)*
* Input serial data stream should have minimum eye opening of 0.4 UI p-p, and no more than 60 consecutive bits that have no transitional edge
within one minute. It must meet 100 ps maximum phase variation limit over a 200 ns inte rv al; this translates to a frequency change of 500 ppm.
Asynch 0.5 0.5
RPSDP/N (155 MHz)*Asynch 0.5 0.5
RPSDP/N (155 MHz) RPSCP/N R 1.0 1.0 2 0
Table 5-3. High-Speed Interface Outputs Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
THSDP/N (622.08 MHz or 155.52 MHz) THSCOP/N R 0.3 0.8
THSSYNC (MPU_MASTER_SLAVE = 1) TLSCLK –0.5 0.2
Table 5-4. Protection Link Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
TPSDP/N (622.08 MHz or 155.52 MHz) TPSCP/N R 0.3 0.8
STS-3
J
0
J
1-1
J
0
J
1-2
J
1-3
V
1-1
J
1-1
J
1-2
J
1-3
FIRST FRAME
50 ns
SECOND FRAME THIRD FRAME FOURTH FRAME
STS-12
V
1-2
V
1-3
J
0
J
0
J
1-1
J
1-2
J
1-3
J
1-1
J
1-2
J
1-3
V
1-1
V
1-2
V
1-3
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
50 ns
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
0
J
0
J
0
J
0
12.5 ns
FIRST FRA M E SECOND FRAME THIRD FR AME FOURTH FRAME
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
4242 Agere Systems Inc.
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)
When supplied externally, the 8 kHz THSSYNC may have a 50/50 duty cycle since the signal will only be sampled on the
rising edge. In this case, THSSYNC should be synchronous to THSC. Although there are no set-up/hold specifications for
the THSSYNC input with respect to THSC, THSSYNC still needs to be synchronous to the input transmit high-speed clock
(THSC). The device looks for the rising edge of THSSYNC to occur regularly in each frame within a window, defined by the
setting in TMUX_SYNC_OFFSET[3:0]. A clock derived from THSC samples the incoming frame sync. If THSSYNC is not
synchronous to THSC, over time, the rising edge of THSSYNC will fall outside the window causing an STS-N/STM-N level
LOF.
However, if the system needs to synchronize VTs, generated from different Ultramapper Full Transport devices or other ex-
ternal devices, then THSSYNC needs to look like the waveform representation in Figure 5-5, i.e., THSSYNC must be com-
posed of both the 8 kHz and the 2 kHz sync components (J0 + V1-1—V1-3); the J1 portion is not needed.
Figure 5-5. THSSYNC Timing Diagram for Synchronized VTs
Figure 5-6 depicts the relationship between the rising edge of the input THSSYNC (when the device is in slave mode) and
the beginning of the SONET frame output on THSD. The delay between THSSYNC and the start of the outgoing SONET
frame is contributed to internal device delays (pertaining to multiplexing functionality, FIFO, and parallel-to-serial conver-
sion).
Figure 5-6. Relationship Between THSSYNC and THSD
STS-3 J0
FIRST FRAME
50 ns
STS-12
50 ns
125
µ
s
125
µ
s
J0 J0 J0
SECOND FRAME THIRD FRAME FOURTH FRAME
SECOND FRAME THIRD FRAME FOURTH FRAME
FIR ST FRAME
J0 J0 J0 J0
STS-3
J
0
J
0
V
1-1
FIRST FRAME
50 ns
SECOND FRAME THIRD FRAME FOURTH FRAME
STS-12
V
1-2
V
1-3
J
0
J
0
V
1-1
V
1-2
V
1-3
50 ns
J
0
J
0
J
0
J
0
FIRST FRA M E SECOND FRAME THIRD FR AME FOURTH FRAME
THSSYNC
THSD X
Y
A1
Note: 622 Mbits/s mode: N = 80 ± 8 bits. 155 Mbits/s mode: N = 80 ± 8 bits. For the case where TMUX_TLBITCNT,
TMUX_TLSTSCNT, TMUX_TLCOLCNT, and TMUX_TLROWCNT all = 0 (default), changing these register values
will change the location of point X with relation to point Y.
N
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 43
5.3 STS-3/STM-1 Mate Interconnect Timing
Figure 5-7. STS-3/STM-1 Mate Rise/Fall Timing
Figure 5-8. STS-3/STM-1 Mate Clock and Data Timing
Table 5-5. STS-3/STM-1 Mate Interconnect Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
TLSDATAP/N[3:1] Asynchronous ————
Table 5-6. STS-3/STM-1 Mate Interconnect Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
RLSDATAP/N[3:1] Asynchronous
tF
tR
80%
20%
CLOCK
CLOCK
tSU tH
tPD
50%
50%
50%
50%
TLSDATAP/N
RLSDATAP/N
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
4444 Agere Systems Inc.
5.4 TOAC, POAC, and LOPOH Timing
The relationships between data, clock, and sync signals are specific to the TOAC and POAC operation mode selected.
This is explained in detail in the TOAC/POAC chapter of the System Design Guide.
Note: For information pertaining to the output clock duty cycle (in various TOAC/POAC modes of operation), please refer to Table 6-13 an Table 6-14.
Figure 5-9. TOAC, POAC Timing
Note: For all modes, SYNC signals are high during the clock period of the first bit of each frame.
Figure 5-10. LOPOH Timing
Table 5-7. TOAC, POAC, and LOPOH Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
TTOACDATA TTOACCLK
(output) R10103.50
TPOACDATA TPOACCLK
(output) R10103.50
LOPOHDATAIN and
LOPOHVALIDIN LOPOHCLKIN F 8 8 5 5
Table 5-8. TOAC, POAC, and LOPOH Output Specifications
Name Reference Edge Rising (R)
Falling (F) Propagation Delay
Min (ns) Max (ns)
RTOACDATA, RTOACSYNC RTOACCLK R 0 3.5
TTOACSYNC TTOACCLK R 0 3.5
RPOACDATA, RPOACSYNC RPOACCLK F 0 3.5
TPOACSYNC TPOACCLK R 0 3.5
LOPOHDATAOUT and
LOPOHVALIDOUT LOPOHCLKOUT R 0 5
TPOACCLK
tPD
t
SU
t
H
TTOACCLK
TPOACDATA
TTOACDATA
RPOACDATA
RTOACDATA
RPOACCLK
RTOACCLK
t
SU
t
H
LOPOHCLKIN
LOPOHDATAIN
LOPOHDATAOUT
tPD
LOPOHCLKOUT
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 45
5.5 DS3/E3/STS-1 Timing
Figure 5-11 shows a simplified representation of the DS3/E3/STS-1 I/O.
Figure 5-11. DS3/E3 Interface Diagram in M13/E13 Block
Table 5-9. DS3/E3 Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) M ax Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1] DS3DATAINCLK R/F 5 5 3 3
Table 5-10. STS-1 Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1] DS3DATAINCLK F 5 5 3 3
Table 5-11. DS3/E3/STS-1 Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
DS3POSDATAOUT[6:1]
DS3NEGDATAOUT[6:1] DS3RXCLKOUT R/F 0 3
M13/E13 BLOCK
DEMUX MUX
Q
Q
CLK
CLK D
D
DS3DATAINCLK
DS3POSDATAIN
DS3NEGDATAIN DS3DATAOUTCLK
DS3POSDATAOUT
DS3NEGDATAOUT
DS3RXCLKOUT
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
4646 Agere Systems Inc.
5.6 NSMI Timing
Figure 5-12. NSMI Clock and Data Timing for the STS-1 Mode
Figure 5-13. NSMI Clock and Data Diagram for SPEMPR NSMI Mode
NSMITXCLK
tPD
t
SU
t
H
NSMIRXCLK
NSMIRXDATA
NSMITXDATA
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(51.84 MHz output)
SONET Frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(51.84 MHz output)
SONET Frame
(for info only)
NSMI_RXDATA
(input)
NSMI_RXSYNC
(Output)
Position of above pulse is provisionable 0-89 bytes + 0-7 bits before J1
Note: Tx and Rx J1 are not aligned. Transmit path pointer is fixed at 522.
NSMI_RXDATAEN
(output)
125 µs
Position of above pulse is prov isionable 0-89 bytes + 0-7 bits before J1
125 µs
Separation de pends on pointer
Z3 Z3
89 Columns
Z4
TOH J1
TOH C2
TOH
Z4 Z4
89 Columns
J1
TOH C2
TOH G1
TOH
Notes:
Clock from SPEMPR is at 51.84 MHz rate and is not gapped. TXDATAEN is provided to mark the POH time of the SPE.
J1 can occur anywhere in the frame and its position is optionally marked by TXSYNC, which is provisioned to be N columns (bytes) plus
M bits earlier in time than J1.
During periods where the POH is present, the TXDATAEN signal goes high.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 47
Figure 5-14. NSMI Clock and Data Diagram for M13 NSMI Mode (NSMI <---> M13 <---> DS3 External I/O)
Figure 5-15. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O)
NSMI_TXDATAEN
NSMI_TXCLK
44.736 MHz
X1 X2 M1 M3
DS3 fram e
(for info only) X1
NSMI_TXDATA
NSMI_TXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXCLK
44.736 MHz Output
X1 X2 M1 M3
DS3 Frame X1
NSMI_RXDATA
NSMI_RXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXDATAEN
Notes:
Clock from M13 is at 44.736 MHz rate and is not gapped. TXDATAE N is provided to mark the DS3 frame overhead times.
M1 can occur asynchronously and its position is optionally marked by TXSYNC, which is provisioned to be 0 t o 255 bits before the M1 bit.
TXDATA EN goes low during DS3 frame overhead bits.
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(34.368 MHz output)
E3 frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(34.368 MHz output)
E3 Frame
(For Info only)
NSMI_RXDATA
(input)
NSMI_RXSYNC
(output)
NSMI_RXDATAEN
(output)
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
Notes:
Clock from E13 is at 34.368 MHz rate and is not gapped. TXDATAEN is provided to mark the overhead time and control bits time of the E3 frame.
C11’s (the first C bit of the first tributary) position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before C11 (bit 385 of the
E3 frame) .
During periods where the OH is present, the TXDATAEN signal goes low.
All C bits are zero and the stuff bits are used for data.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
4848 Agere Systems Inc.
Figure 5-16. NSMI Clock and Data Diagram for E13 NSMI Mode 2 (NSMI <--> E13 <--> SPEMPR <--> STM-N)
Table 5-12. NSMI Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fa ll
Time (ns) Min Setup
(ns) Min Hold
(ns)
NSMIRXDATA[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXSYNC[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXDATA[3:1]* NSMIRXCLK R 3.5 3.5 3.5 3
NSMIRXSYNC[3:1]* NSMIRXCLK R 3.5 3.5 3.5 3
* Pertinent to DS3 Clear Channel application, which uses NSMI I/O—this feature is available only in V3.0 devices.
Table 5-13. NSMI Outpu ts Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
NSMITXDATA[3:1] NSMITXCLK R 0.5 8.75
NSMITXSYNC[3:1] NSMITXCLK R 0.5 8.75
RXDATAEN[3:1] NSMIRXCLK R 0.5 8.75
TXDATAEN[3:1] NSMITXCLK R 0.5 8.75
NSMIRXSYNC[3:1] NSMIRXCLK R 0.5 8.75
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(51.84 MHz output)
E3 frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(51.84 MHz output)
E3 frame
(For info only)
NSMI_RXDATA
(Input)
NSMI_RXSYNC
(output)
NSMI_RXDATAEN
(output)
1536 bits
Position of this pulse is provisionable 0-25 6 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
Notes:
Clock from E13 is at 51.84 MHz rate and is not gapped. TXDATAEN is the combination of an internal clock enable and data enable from SPEMPR.
TXDATA EN is used to mark the overhead time and control bits time of the E3 frame. Clock enable is used to gap the clock rate to 34.368 MHz.
C11’s (the first C bit of the first tributary) position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before C11 (bit 385 of the E3
frame).
During periods where the OH is present, the TXDATAEN signal goes low.
All C bits are zero and the stuff bits are used for data.
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 49
5.7 Shared Low-Speed Line Timing
Figure 5-17. Shared Low-Speed Line Clock and Data Timing
Table 5-14. Shared Low-Speed Line Timing Input Specifications
Name Reference Edge Rising/Falling Max Rise Time Max Fall Time Min Setup Min Hold
LINERXDATA[86:1] LINERXCLK[86:1] R/F 10* (ns) 10* (ns) 15 (ns) 10* (ns)
* Alternative spec: the maximum rise and fall times may be increased to 20 ns each if the minimum hold time is increased to 12 ns. The minimum setup
time will remain at 15 ns .
Table 5-15. Shared Low-S peed Line Timing Output Specifications
Name Reference Edge Rising/Falling Propagation Delay
Min (ns) Max (ns)
LINETXDATA[86:1] LINETXCLK[86:1] R/F –10 10
LINETXCLK
tPD
t
SU
t
H
LINERXCLK
LINERXDATA
LINETXDATA
Single-rail
shown
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
5050 Agere Systems Inc.
6 Referen c e Cloc ks
Duty cycles indicated in the following tables should be interpreted as follows: 50% ±10% means 45%—55%; 50% ± 5%
means 47.5%—52.5%.
Table 6-1. High-Speed Interface Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RHSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nom 50% ± 5%
THSCP/N 6.43 155.52 MHz 20 0.01 UIp-p or
64 psp-p or
0.001 UIrms (12 kHz— 1.3 MHz)
0.4 0.4 Nom 50% ± 5%
THSCP/N 1.6 622.08 MHz 20 0.04 UIp-p or
64 psp-p
(12 kHz—5 MHz)
0.4
nom 0.6
max —50% ± 5%
Table 6-2. Protection Link Input Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
RPSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nom 50% ± 5%
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3DATAOUTCLK[6:1] (DS3) 22.353 44.736 MHz 20 0.05 UIp-p or
1.12 nsp-p
(10 kHz—4 00 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[6:1] (DS3) 22.353 44.736 MHz 20 3.5 2.5 Max 50% ± 5%
DS3DATAOUTCLK[6:1] (E3) 29.090 34.368 MHz 20 0.03 UIp-p or
0.87 nsp-p
(100 kHz—800 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[6:1]] (E3) 29.090 34.368 MHz 20 3.5 2.5 Max 50% ± 5%
DS3DATAOUTCLK[6:1] (STS-1) 19.290 51.84 MHz 20 0.01 UIp-p or
0.19 nsp-p or
0.001 UIrms
(12 kHz—4 00 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[6:1] (STS-1) 19.290 51.84 MHz 20 3.5 2.5 Max 50% ± 5%
Table 6-4. DS1/E1 DJA Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
E1XCLK 15.25 65.536 MHz 50 0.1 UIp-p or 1.5 nsp-p
(20 kHz—100 kHz) 3.5 3.5 Max 50% ± 10%
DS1XCLK 20.20 49.408 MHz 32 0.1 UIp-p or 2.0 nsp-p
(10 kHz—40 kHz) 3.5 3.5 Max 50% ± 10%
E1XCLK 30.52 32.768 MHz 50 0.1 UIp-p or 3.0 nsp-p
(20 kHz—100 kHz) 3.5 3.5 Max 50% ± 10%
DS1XCLK 40.40 24.704 MHz 32 0.1 UIp-p or 4.0 nsp-p
(10 kHz—40 kHz) 3.5 3.5 Max 50% ± 10%
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 51
Table 6-5. M13/E13 Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS2AISCLK 158.42 6.312 MHz 30 5 5 Max 50% ± 5%
E2AISCLK 118.37 8.448 MHz 30 5 5 Max 50% ± 5%
Table 6-6. DS3/E3 DJA Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3XCLK 22.35 44.736 MHz 20 0.01 UIp-p or
0.22 nsp-p
(10 kHz—400 kHz)
3.5 3.5 Max 50% ± 5%
E3XCLK 29.09 34.368 MHz 20 0.01 UIp-p or
0.29 nsp-p
(100 kHz—800 kHz)
3.5 3.5 Max 50% ± 5%
Table 6-7. LOPOH Input Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LOPOHCLKIN 51.44 19.44 MHz 8 8 Max 50% ± 5%
Table 6-8. Microprocessor Interface Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
MPCLK (min)*62.5 16 MHz 4 4 Min 50% ± 10%
MPCLK (max) 15.15 66 MHz 4 4 Max 5 0% ± 10%
*The following applies to the synchronous microprocessor mode (MPMODE pin = 1): If DTN is used, then the maximum frequency for MPCLK is
determined by the processor’s setup specification for DTN. MPU maximum bus operating frequency = 1/(MPU DTN setup time + tDTNVPD). For
example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
Table 6-9. PLL Input Clock Specificatio ns
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CLKIN_PLL 19.2 51.84 MHz 20 GR-499 and G.823 50% ± 10%
Table 6-10. High-Speed Interface Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
THSCOP/N 6.43 155.52 MHz 20 0.1 UIp-p 50% ± 5%
THSCOP/N 1.6 622 MHz 20 0.1 UIp-p 50% ± 5%
Table 6-11. Protection Link Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
TPSCP/N 6.43 155.52 MHz 20 50% ± 5%
TPSCP/N 1.6 622.08 MHz 20 50% ± 5%
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
5252 Agere Systems Inc.
Table 6-12. Line Timing Interface Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RLSC LK 51.44 19.44 MHz 20 1. 5 1.5 Nom 50% ± 5%
TLSCL K 51.44 19 . 44 MHz 20 1.5 1.5 Nom 50 % ± 5%
Table 6-13. TOAC Output Cloc ks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RTOACCLK (STS1LT; full access) 578 1.728 MHz 1.5 1.5 Nom 50% ± 10%
RTOACCLK
(TMUX; STS-12 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 37% ± 10%*
RTOACCLK
(TMUX; STS-12 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 53% ± 10%*
RTOACCLK
(TMUX; STS-12 full access) 48.22 20.736 MHz 1.5 1.5 Nom 33% ± 10%*
RTOACCLK
(TMUX; STS-3 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 58% ± 10%*
RTOACCLK
(TMU X; STS- 3 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 52% ± 10%*
RTOACCLK
(TMUX; STS-3 full access) 192.9 5.184 MHz 1.5 1.5 Nom 33% ± 10%*
TTOACCLK (STS1LT; full access) 578 1.728 MHz 1.5 1.5 Nom 50% ± 10%
TTOACCLK
(TMUX; STS-12 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 37% ± 10%*
TTOACCLK
(TMUX; STS-12 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 53% ± 10%*
TTOACCLK
(TMUX; STS-12 full access) 48.22 20.736 MHz 1.5 1.5 Nom 33% ± 10%*
TTOACCLK
(TMUX-STS-3 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 58% ± 10%*
TTOACCLK
(TMUX-STS-3 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 52% ± 10%*
TTOACCLK
(TMUX-STS-3 full access) 192.9 5.184 MHz 1.5 1.5 Nom 33% ± 10%*
* Positive duty cycle.
Table 6-14. POAC Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RPOACCLK (TMUX) 1.73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
RPOACCLK (STS1LT) 1.73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
RPOACCLK (SPEMPR) 1.73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
TPOACCLK (TM UX) 1. 73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
TPOACCLK (STS1 LT) 1.73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
TPOACCLK (SPEMP R) 1.73 (µs) 576 kHz 1.5 1.5 Nom 50% ± 10%
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 53
Table 6-15. DS3/E3/STS-1 Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
DS3RXCLKOUT [6:1] (DS3) 22.353 44.736 MHz 20 GR-253 1.5 1.5 Nom 50% ± 5%
DS3RXCLKOUT [6:1] (E3) 29.09 34.368 MHz 20 G.783 1.5 1.5 Nom 50% ± 5%
DS3RXCLKOUT [6:1] (STS-1) 19.29 51.84 MHz 20 GR-253 1.5 1.5 Nom 50% ± 5%
Table 6-16. LOPOH Output Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
LOPOHCLKOUT 51.44 19.44 MHz 20 1.5 1.5 Nom 50% ± 5%
Table 6-17. PLL Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
CG_PLLCLKOUT 647.66 1.544 MHz 32 GR-499 50% ± 5%
CG_PLLCLKOUT 488.28 2.048 MHz 50 G.823 50% ± 5%
Table 6-18. Shared Low-Spe ed Receive Line Input/Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
LINERXCLK (framer; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (framer; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (VTMPR; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (VTMPR; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 50% ± 5%
LINERXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 50% ± 5%
LINERXCLK (DJA; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (DJA; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (TPG; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (TPG; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
Table 6-19. Shared Low-Speed Transmit Line Input/Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
LINETXCLK (framer; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 50% ± 5%
LINETXCLK (framer; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 50% ± 5%
LINETXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINETXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINETXCLK (VTMPR; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 50% ± 5%
LINETXCLK (VTMPR; E1) 488.2 8 2.048 MHz 50 1.5 1.5 Nom 50% ± 5%
LINETXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 50% ± 5%
LINETXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 50% ± 5%
LINETXCLK (DJA; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 50% ± 5%
LINETXCLK (DJA; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 50% ± 5%
LINETXCLK (TPG; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 50% ± 5%
LINETXCLK (TPG; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 50% ± 5%
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
5454 Agere Systems Inc.
Table 6-20. NSMI Input/Output Clocks Specifications
Clock Name P er iod (ns) Freq uenc y Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
NSMI RXCL K (S TS1 LT) 19.29 51.840 MHz 20 3.5 3.5 M ax 50% ± 5%
NSMI RXCL K (M 13) 22.35 44.736 MHz 20 1.5 1.5 Nom 50 % ± 5%
NSMI RXCL K (E 13) 29.09 34.368 MHz 20 1.5 1.5 Nom 50% ± 5%
NSMI RXCL K (S PE MPR) 19. 29 51.840 MHz 20 3.5 3.5 Max 50% ± 5%
NSMITXCLK 19.29 51.840 MHz 20 1.5 1.5 Nom 50% ± 5%
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 55
7 Microprocessor Interface Timing
7.1 Synchronou s Wr ite Mode
The synchronous microprocessor interface mode is selected when MPMODE (pin D2) = 1. In this mode, MPCLK used for
the Ultramapper Full Transport is the same as the microprocessor clock. Interface timing for the synchronous mode write
cycle is given in Figure 7-1 and in Table 7-1, and for the read cycle in Figure 7-2 and in Table 7-2.
Notes:
MPCLK Input clock to Ultramapper Full Transport MPU block.
ADDR [20:0] The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
DATA[15:0] Data will be available during cycle T1.
DTN (Output) Data transfer acknowledge is active-low for one clock and then driven high before entering a high-impedance state. (This is done with an
I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-stated when CSN is high. Typically, DTN is active for
four or five MPCLK cycles after ADSN is low.
Figure 7-1. Microprocessor Interface Synchronous Write Cycle—MPMODE Pin = 1
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(INPUT)
t
WS
t
WS
t
DTNVPD
t
ADDRVS
t
CSNVS
t
WS
T
0
T
1
T
2
T
3
T
n – 2
T
n – 1
T
n
t
AIPD
t
APD
t
APD
t
APD
t
APD
t
DTNIPD
HIGH ZHIGH Z t
ADSNVDTF
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
5656 Agere Systems Inc.
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDTNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles. Certain registers in the VTMPR block have a very long
acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR lower-order path
overhead interface as part of SONET overhead termination functions. Therefore, the user must insert long enough delay or use the DTN signal to read/
write these registers correctly. Additionally, if the high-speed CRD is used, during initialization, enough time must be provided to allow the CRD to stabi-
lize. If the CDR has not stabilized, it may take much longer than 50 MPCLK cycles for accesses to certain VTMPR registers (DTN return time s on th e
order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before attempting to access any VTMPR regis-
ters. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the VT_RDY bit must be set before attempting any
VTMPR register accesses.
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications
Symbol Parameter Setup
(Min) Hold (Min) Delay (Min) Delay (Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency ns
tWS ADSN, RWN, DATA (write) Valid to MPCLK 6.7 ns
tAPD MPCLK to ADDR, RWN, DA T A, CSN (write) Invalid 0 ns
tCSNVS CSN Valid to MPCLK 6 ns
tADDRVS ADDR Valid to MPCLK 3.5 ns
tAIPD MPCLK to ADSN Invalid 0 ns
tDTNVPD MPCLK to DTN Valid 2.5 12 ns
tDTNIPD MPCLK to DTN Invalid 2.5 12 ns
TADSNVDTF ADSN Valid to DTN Falling ns
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 57
7.2 Synchronous Read Mode
Notes:
MPCLK Input clock to Ultramapper Full Transport MPU block.
ADDR [20:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high during the read cycle.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one clock, and then driven high before
entering a high-impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DTN will become
3-stated when CSN is high. Typically, DTN is active four or five MPCLK cycles after ADSN is low.
DATA [15:0] Read data is stable in Tn – 1.
Figure 7-2. Microprocessor Interfac e Synchronous Read Cycle—MPMODE Pin = 1
* If DTN is used, then the maximum frequency for MPCLK is determined by the process or’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles. Certain registers in the VTMPR block have a very long
acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR lower-order path
overhead interface as part of SONET overhead termination functions. Therefore, the user must insert long enough delay or use the DTN signal to read/
write these registers correctly. Additionally, if the high-speed CRD is used, during initialization, enough time must be provided to allow the CRD to stabi-
lize. If the CDR has not stabilized, it may take much longer than 50 MPCLK for accesses to certain VTMPR registers (DTN return times on the order of
several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before attempting to access any VTMPR registers. CDR
provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the VT_RDY bit must be set before attempting any VTMPR regis-
ter accesses.
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency————ns
tAVS ADDR Valid to MPCLK 3.5 ns
tAPD MPCLK to ADDR Invalid 0 ns
tCSNSU CSN Active to MPCLK 6 ns
tADSNSU ADSN Valid to MPCLK 6 ns
tSNIPD MPCLK to ADSN Inactive 0 ns
tDNVPD MPCLK to DTN Valid 2.5 12 ns
tDNIPD MPCLK to DTN Invalid 2.5 12 ns
tDAIPD MPCLK to DATA 3-state 3.5 15 ns
tADSNVDTF ADSN Valid to DTN Falling ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
t
ADSNSU
t
SNIPD
t
CSNSU
t
AVS
T
0
T
1
T
2
T
n – 4
T
n – 3
T
n – 2
T
n – 1
T
n
DTN
DATA[15:0]
(OUTPUT)
t
DAIPD
t
DNVPD
t
DNIPD
t
ADSNVDTF
HIGH ZHIGH Z
t
APD
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
5858 Agere Systems Inc.
7.3 Asynchronous Write Mode
The asynchronous microprocessor interface mode is selected when MPMODE (pin D2) = 0. Interface timing for the asyn-
chronous mode write cycle is given in Figure 7-3 and in Table 7-3, and for the read cycle in Figure 7-4 and in Table 7-4.
Although this is an asynchronous interface, an MPCLK is still required. This clock can be dif ferent (asynchronous) from the
MPU clock. Internal to the chip, RWN, ADSN, and DSN will be sampled by MPCLK.
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. ADDR
must be held constant while ADSN and DSN are valid (low).
CSN (Input) Chip select is an active-low signal. CSN must be held low (active) until ADSN and DSN are deasserted.
ADSN (Input) Address strobe is active-low. ADSN must be stable for the entire period. ADSN and CSN may be connected and driven from the same
source.
DSN (Input) Data strobe is active-low.
DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available throughout the entire cycle. DATA must
be held constant while DSN is valid (low).
RWN (Input) The read/write signal should be high for a read cycle and low for a write cycle. It should always be held high, except during a write cyc le.
RWN must be held low (write) until DSN is deasserted (high).
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low. DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high. DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. Th is
interval is typically in the 100 ns to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Figure 7-3. Microprocessor Interfa ce Asynchronous Write Cycle—MPMODE Pin = 0
ADDR[20:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 59
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Spec ifications
Symbol Parameter S etup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLKMPCLK 16 MHz Min66 MHz Max Frequency————ns
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0 ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tRWFDSF RWN Fall Setup and Hold to DSN Fall 0 ns
tDSRRWR DSN Rise to RWN Rise 0 ns
tDVDSF DATA Valid Setup and Hold to DSN Fall 0 ns
tDSRDI DSN Rise to DATA Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0 * ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-state 2.9 13 ns
* Certain registers in the VTMPR block have a very long acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers
can also be accessed by the VTMPR lower-order path overhead interface as part of SONET overhead termination functions. Therefore, the user must
insert a long enough delay or use the DTN signal to read/write these registers correctly . Additionally, if the high-speed CRD is used, during initialization,
enough time must be provided to allow the CRD to stabilize. If the CDR has not stabilized, it may t ake much longer than 50 MPCLK for accesses to cer-
tain VTMPR registers (DTN return times on the order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset
before attempting to access any VTMPR registers. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the
VT_RDY bit must be set before attempting any VTMPR register accesses.
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
6060 Agere Systems Inc.
7.4 Asynchronous Read Mode
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low. DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high.
DATA [15:0] 16-bit data bus.
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle—MPMODE Pin = 0
ADDR[20:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
t
ADSRD3
t
CSRDT3
t
ADSRDTR
t
CSFDSF
RWN
t
AVADSF
t
AVDSF
t
AICSR
t
ADSRAI
t
DSNRAI
t
DTVDV
t
DSFDTF
t
CSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 61
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz min—66 MHz max frequency ns
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 *
* CSN must be held low (active) until ADSN and DSN are deasserted.
——ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0
† ADDR must be held constant while ADSN and DSN are valid (low).
——ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ——ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0
‡ DTN fall is variable, depending on the block selected for access and in some cases, the state of the SONET frame. This interval is typically in the
100 ns to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles. Certain registers in the VTMPR block have a
very long acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR
lower order path overhead interface as part of SONET overhead termination functions. Therefore, the user must insert a long enough delay or use
the DTN signal to read/write these registers correctly. Additionally, if the high-speed CRD is used, during initialization, enough time must be
provided to allow the CRD to stabilize. If the CDR has not stabilized, it may take much longer than 50 MPCLK for accesses to certain VTMPR
registers (DTN return times on the order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before
attempting to access any VTMPR registers. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the
VT_RDY bit must be set before attempting any VTMPR register accesses.
ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-state 2.9 13.0 ns
tDTVDV DTN Valid to DATA Valid 0 ns
tADSRD3 ADSN Rise to DATA 3-state 2.9 14 + MPCLK§
§ DATA[15:0] is enabled by a retimed version of the ADSN.
ns
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
6262 Agere Systems Inc.
8 Other Timing
This interface may be used as either synchronous or asynchronous mode.
9 Hardware Design File References
(IBIS, Spice, BSDL, etc.) Available upon request.
Table 8-1. General-Purpose Inputs Specifications
Name Reference Edge
Rising/Falling Rise Time
(ns) Fall Time
(ns) Setup
(ns) Hold
(ns)
RSTN Async
PMRST Async
TDI and TMS TCLK R 5 5 19.5 6.4
Table 8-2. Miscellaneous Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
RHSFSYNCN Asynchronous
Table 8-3. General-Purpose Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
TDO TCLK F 12.5 45
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 63
10 909-Pin PBGA D iagram
Figure 10-1. Ultramapper Full Transport 909-Pin PBGA Balls and Dimensions
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
6464 Agere Systems Inc.
11 Ordering Information
Table 11-1. Ordering Information
Device Package Comcode
TMXA 846 221 BL- 21 909-p in PB GA 7000541 30
TMXA 846 221BL-3 909-pin PB G A 700052306
Hardware Design Guide, Revision 5 TMXA84622 Ultramapper Full Transport
July 14, 2004 622/155 Mbits/s SONET/SDH x DS 3/E3/DS2/DS1/E1
Agere Systems Inc. 65
12 Glossary
AIS Alarm indication signal
AMI Alternate mark inversion
APS Automatic protection switch
ASM Associated signaling mode
BER Bit error rate
BOM Bit-oriented message
BPV Bipolar violation
B8ZS Binary 8 zero code suppression
CCI Common channel signaling
CDR Clock and data recovery
CHI Concentrated highway interface
CMI Coded mark inversion
CRC Cyclic redundancy check
CRV Coding rule violation
DACS Digital access cross-connects
DJA Digital jitter attenuation
ESF Extended superframe
EXZ Excessiv e zeros
FCS Frame ch eck seq uenc e
FDL Facility data link
FEAC Far-end alarm and control
FEBE Far-end block error
HDB3 High-density bipolar of order three
HDLC High-level data link control
LIU Line interface unit
LOC Loss of clock
LOF Loss of frame
LOS Loss of signal
LOPOH Low-order path overhead
MCDR Mate clock and data recove ry
MRXC Multirate cross-connect
NSMI Network serial multiplexed interface
OOF Out of frame
PBGA Pin ball grid array
POAC Path overhead access channel
PRBS Pseudorandom bit sequence
PRM P erformance report message
QRSS Quasirandom signal source
RAI Remote ala rm indi ca tor
RDI Rem ote defe ct indic ation
RPOAC Receive path overhead access channel
REI Remote error indication
SDH Synchronous digital hierarchy
SEF Severely errored fra me
SONET Synchronous optical network
TCM Tandem connection monitoring
TOAC Transport overhead access channels
UPSR Unidirectional path switch ring
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere is a registered trademark of Agere Systems Inc. Agere Systems, Supermapper, Ultramapper, Hypermapper, and the Agere logo are trademarks of Agere Systems Inc.
Copyright © 2004 Agere Systems Inc.
All Rights Reserv ed
July 14, 2004
DS02-401BBAC-5 (Replaces DS02-401BBAC-4)
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138
1-800-372-2447, FAX 610-7 12- 41 06 (In CAN AD A: 1-800-553-2448, FAX 610-7 12 -41 06)
ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen)
JAPAN: (81) 3-5421-1 600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 778 -88 33 , TAIWAN: (88 6) 2-2 725 -5 858 (Taipei)
EUROPE: Tel. (44) 1344 296 400
TMXA84622 Ultramapper Full Transport Hardware Desi gn Guide, Revision 5
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1 July 14, 2004
13 Change History
On page 58, the second paragraph was deleted.
In Table 5-12 on page 48, under RXDATAEN[3:1], removed the second sentence in the description column.
In Table 5-13 on page 48, under TXDATAEN[3:1], removed the second sentence in the description column.
Other changes that were made to this document (since revision 4) are listed in Table 13-1.
13.1 Navigating Thro ugh an Adobe Acrobat Docume nt
If the reader displays this document in Acrobat Reader , clicking on any blue entry in the text will bring the reader to that ref-
erence point. Clicking on the back arrow in the toolbar of the Acrobat Read er (Go to previous View) will bring the reader
back to the starting point.
For example, clicking on page 22 in Table 13-1 will bring the reader to page 22 of this document, which is the first change.
Clicking on the back arrow in Acrobat Reader, will bring the reader back to this page.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Adobe Acrobat and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
Table 13-1. Document Changes
Change Change Change Change Change Change Change
page 22 page 23 page 25 page 36 page 42 page 48 page 50
page 51 page 56 page 57 page 59 page 61 page 64