January 2012 Doc ID 022152 Rev 2 1/167
1
STM32F405xx
STM32F407xx
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM,
USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Features
Core: ARM 32-bit Cortex™-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 168 MHz,
memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
Up to 1 Mbyte of Flash memory
Up to 192+4 Kbytes of SRAM including 64-
Kbyte of CCM (core coupled memory) data
RAM
Flexible static memory controller
supporting Compact Flash, SRAM,
PSRAM, NOR and NAND memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
1.8 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS A/D converters: up to 24
channels and 7.2 MSPS in triple interleaved
mode
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: up to twelve 16-bit and two 32-
bit timers up to 168 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
Debug mode
Serial wire debug (SWD) & JTAG interfaces
Cortex-M4 Embedded Trace Macrocell™
1. The WLCSP90 package will soon be available.
Up to 140 I/O ports with interrupt capability
Up to 136 fast I/Os up to 84 MHz
Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
Up to 3 × I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/2 UARTs (10.5 Mbit/s,
ISO 7816 interface, LIN, IrDA, modem
control)
Up to 3 SPIs (37.5 Mbits/s), 2 with muxed
full-duplex I2S to achieve audio class
accuracy via internal audio PLL or external
clock
2 × CAN interfaces (2.0B Active)
SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface up to
54 Mbytes/s
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference Part number
STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG
STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG,
STM32F407VE, STM32F407ZE, STM32F407IE
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
FBGA
UFBGA176
(10 × 10 mm)
LQFP176 (24 × 24 mm)
WLCSP90
www.st.com
Contents STM32F405xx, STM32F407xx
2/167 Doc ID 022152 Rev 2
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 18
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 18
2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 19
2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 21
2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 26
2.2.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.21 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.22 Universal synchronous/asynchronous receiver transmitters (USART) . 31
2.2.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.25 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.26 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 33
2.2.27 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 33
2.2.28 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.29 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 34
STM32F405xx, STM32F407xx Contents
Doc ID 022152 Rev 2 3/167
2.2.30 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 34
2.2.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.32 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.33 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.34 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.35 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.36 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 68
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 68
5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 69
5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 92
5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Contents STM32F405xx, STM32F407xx
4/167 Doc ID 022152 Rev 2
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 97
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 144
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 144
5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1 Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2 Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 156
A.4 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 158
A.5 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.6 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
STM32F405xx, STM32F407xx List of tables
Doc ID 022152 Rev 2 5/167
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 12
Table 3. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 4. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6. STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 7. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 8. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 9. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 10. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 11. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 12. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 67
Table 13. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 14. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 68
Table 15. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 68
Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 17. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 18. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 72
Table 19. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 20. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 21. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 76
Table 22. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 77
Table 23. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 26. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 27. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 28. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 30. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 32. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 33. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 34. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 35. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 36. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 37. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 38. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 39. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 40. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 41. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 42. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 43. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 44. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 45. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 46. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
List of tables STM32F405xx, STM32F407xx
6/167 Doc ID 022152 Rev 2
Table 47. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 48. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 49. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 50. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 51. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 52. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 53. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 54. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 55. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 56. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 57. USB FS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 58. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 59. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 60. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 61. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 62. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 63. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 64. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 65. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 66. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 67. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 68. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 69. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 70. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 127
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 128
Table 73. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 74. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 75. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 76. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 77. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 78. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 79. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 80. Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 81. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 82. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 83. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 84. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 85. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 86. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 147
Table 87. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 148
Table 88. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 149
Table 89. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 150
Table 90. LQFP176, 24 x 24 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 151
Table 91. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 92. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 93. Main applications versus package for STM32F407xx microcontrollers . . . . . . . . . . . . . . 154
Table 94. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
STM32F405xx, STM32F407xx List of figures
Doc ID 022152 Rev 2 7/167
List of figures
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64 . . . . . . . . . . . . 14
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. STM32F40x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. Regulator ON/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11. STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12. STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 13. STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 14. STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 15. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 16. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 18. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 20. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 21. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 73
Figure 22. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 73
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 74
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 74
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 77
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 78
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 28. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 31. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 32. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 33. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 34. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 35. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 36. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 37. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 38. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 39. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
List of figures STM32F405xx, STM32F407xx
8/167 Doc ID 022152 Rev 2
Figure 40. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 41. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 42. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 114
Figure 43. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 44. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 45. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 46. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 47. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 48. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 49. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 122
Figure 50. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 122
Figure 51. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 52. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 127
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 128
Figure 54. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 55. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 56. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 57. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 58. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 59. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 60. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 136
Figure 61. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 137
Figure 62. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 63. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 64. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 139
Figure 65. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 140
Figure 66. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 67. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 68. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 143
Figure 69. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 143
Figure 70. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 71. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 72. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 147
Figure 73. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 74. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 148
Figure 75. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 76. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 77. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 78. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 150
Figure 79. LQFP176 24 x 24 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 151
Figure 80. Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 81. Regulator OFF/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 82. USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 83. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 156
Figure 84. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 157
Figure 85. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 86. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
STM32F405xx, STM32F407xx List of figures
Doc ID 022152 Rev 2 9/167
Figure 87. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 88. Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . . . . . . . . . . 160
Figure 89. Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 90. Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 91. Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 161
Figure 92. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 93. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 94. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Introduction STM32F405xx, STM32F407xx
10/167 Doc ID 022152 Rev 2
1 Introduction
This datasheet provides the description of the STM32F405xx and STM32F407xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the
STM32F4xx reference manual.
For information on programming, erasing and protection of the internal Flash memory,
please refer to the STM32F4xx Flash programming manual (PM0081).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M4 core please refer to the Cortex™-M4 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439b/.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 11/167
2 Description
The STM32F405xx and STM32F407xx family is based on the high-performance ARM®
Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM single-
precision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security. The
Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document.
The STM32F405xx and STM32F407xx family incorporates high-speed embedded
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG). They also feature standard and advanced
communication interfaces.
Up to three I2Cs
Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
Four USARTs plus two UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
Two C A Ns
An SDIO/MMC interface
Ethernet and the camera interface available on STM32F407xx devices only.
New advanced peripherals include an SDIO, an enhanced flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface
for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and
peripheral counts for the list of peripherals available on each part number.
The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the
device operates in the 0 to 70 °C temperature range and PDR is disabled. A comprehensive
set of power-saving mode allows the design of low-power applications.
The STM32F405xx and STM32F407xx family offers devices in four packages ranging from
64 pins to 176 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F405xx and STM32F407xx microcontroller family suitable
for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Description STM32F405xx, STM32F407xx
12/167 Doc ID 022152 Rev 2
Figure 5 shows the general block diagram of the device family.
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts
Peripherals STM32F405RG STM32F405VG STM32F405ZG STM32F407Vx STM32F407Zx STM32F407Ix
Flash memory in Kbytes 1024 512 1024 512 1024 512 1024
SRAM in Kbytes System 192(112+16+64)
Backup 4
FSMC memory controller No Yes
Ethernet No Yes
Timers
General-purpose 10
Advanced-
control 2
Basic 2
Random number generator Yes
Communication
interfaces
SPI / I2S 3/2 (full duplex)
I2C 3
USART/UART 4/2
USB OTG FS No Yes
USB OTG HS Yes Yes
CAN 2
Camera interface No Yes
GPIOs 51 82 114 82 114 140
12-bit ADC
Number of channels
3
16 16 24 16 24 24
12-bit DAC
Number of channels
Ye s
2
Maximum CPU frequency 168 MHz
Operating voltage 1.8 to 3.6 V(1)
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 13/167
Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64 LQFP100 LQFP144 LQFP100 LQFP144 UFBGA176
LQFP176
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 °C temperature range and PDR is disabled.
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts (continued)
Peripherals STM32F405RG STM32F405VG STM32F405ZG STM32F407Vx STM32F407Zx STM32F407Ix
Description STM32F405xx, STM32F407xx
14/167 Doc ID 022152 Rev 2
2.1 Full compatibility throughout the family
The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pin-
to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to
try different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F405xx and STM32F407xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F405xx and STM32F407xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x
family remains simple as only a few pins are impacted.
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the
STM32F40x, STM32F2xxx, and STM32F10xxx families.
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64






 
633
633
633
633
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AI
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 15/167
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package







 

633
633
6$$
633
633
633
Ω RESISTORORSOLDERINGBRIDGEª
PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AIC
633
633
6$$
4WO Ω RESISTORSCONNECTEDTO
633FORTHE34-&XX
633FORTHE34-&XX
633FOR34-&XX
6$$FOR34-&XX
6336$$OR.#FORTHE34-&XX








633
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION

633

4WO Ω RESISTORSCONNECTEDTO
633FORTHE34-&XX
6$$ORINVERTEDRESETSIGNALFORTHE34-&XX
633
6$$
633
633
AIC
0$2?/.
633
6$$
633FOR34-&XX
6$$FOR34-&XX
6336$$OR.#FORTHE34-&XX
)NVERTED
RESETSIGNAL
Description STM32F405xx, STM32F407xx
16/167 Doc ID 022152 Rev 2
Figure 4. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package






4WO Ω RESISTORSCONNECTEDTO
6336$$OR.#FORTHE34-&XX
6$$ORINVERTEDRESETSIGNALFORTHE34-&XX
-36
0$2?/.
633
6$$
)NVERTED
RESETSIGNAL
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 17/167
2.2 Device overview
Figure 5. STM32F40x block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked
'0)/0/24!
!("!0"
%84)47+50
!&
0!;=
'0)/0/24"
0";=
4)-07-
COMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
4)-07-
'0)/0/24#
0#;=
53!24
2848#+
#43243AS!&
'0)/0/24$
0$;=
'0)/0/24%
0%;=
'0)/0/24&
0&;=
'0)/0/24'
0';=
30)
-/3)-)3/
3#+.33AS!&
!0"-(Z
!0"-(Z
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
6
$$2%&?!$#
ANALOGINPUTSTO!$#
CHANNELS%42AS!&
CHANNELS%42AS!&
CHANNELS%42AS!&
CHANNELS%42AS!&
2848#+
53!24
2848#+
53!24
2848AS!&
5!2 4
2848AS!&
5!2 4
-/3)3$-)3/3$?EXT 3#+#+
30))3
.3373-#+AS!&
-/3)3$-)3/3$?EXT 3#+#+
30))3
.3373-#+AS!&
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
)#3-"53
4828
BX#!.
4828
BX#!.
$!#?/54
AS!&
$!#?/54
AS!&
)4&
77$'
+""+032!-
24#?!&
/3#?).
/3#?).
/3#?/54
/3#?/54
.234
6
$$!
6
33!
6
#!0
6
#!0
53!24
2848#+
#43243AS!&
SMCARD
IR$!
SMCARD
IR$!
SMCARD
IR$!
SMCARD
IR$!
B
B
B
B
B
B
B
B
#43243AS!&
#43243AS!&
3$)/--#
$;=
#-$#+AS!&
6
"!4
TO6
$-!
!("!0"
$-!
3#,3$!3-"!AS!&
)#3-"53
'0)/0/24(
0(;=
'0)/0/24)
0);=
*4!'37
!2-#ORTEX-
-(Z
3"53
)"53
.6)#
%4-
-05
.*4234*4$)
*4$/37$*4$/
42!#%#,+
42!#%$;=
*4#+37#,+
%THERNET-!#
$-!
-))OR2-))AS!&
-$)/AS!&
&)&/

53"
$-!
&)&/
/4'(3
$0$-
5,0)#+$$)2340.84
$-!
3TREAMS
&)&/
$-!
3TREAMS
&)&/
!24!##%,
#!#(%
32!-+"
#,+.%;=!;=
$;=/%.7%.
.",;=.,.2%'
.7!)4)/2$9#$
.)/2$)/72).4;=
).4..))3AS!&
3#,3$!).4.)$6"
533/&
2.'
#AMERA
INTERFACE
(39.#639.#
0)8#,+$;=
53"
0(9
/4'&3
$0
$-
&)&/ &)&/
!((" -(Z
0(9
&)&/
53!24-"PS
4EMPERATURESENSOR
!$#
!$#
!$#
)&
)&
6$$!
6$$!
0/20$2
3UPPLY
6$$!
SUPERVISION
06$
2ESET
)NT
0/2
84!,/3#
-(Z
84!,K(Z
(#,+X
-!.!'4
24#
2#(3
&#,+
2#,3
3TANDBY
)7$'
6"!4
6$$!
6$$
!75
2ESET
CLOCK
CONTROL
0,,
0#,+X
INTERFACE
6$$
TO6
6
33
6OLTAGE
REGULATOR
6TO6
6
$$
0OWERMANAGMT
6$$
24#?!&
"ACKUPREGISTER
3#,3$!).4.)$6"533/&
!("BUSMATRIX3-
!0" -(Z
,3,3
CHANNELSAS!&
CHANNEL AS!&
CHANNEL AS!&
4)-
B
B
B
4)-
CHANNELSAS!&
4)-
CHANNELAS!&
B
B
4)-
CHANNELAS!& B
"/2
$!#
$!#
&LASH
UPTO
-"
32!-032!-./2&LASH
0##ARD!4!.!.$&LASH
%XTERNALMEMORY
CONTROLLER&3-#
4)-
4)-
4)-
4)-
4)-
4)-
4)-
4)-
$"53
-36
COMPL
CHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
&)&/
&05
!0"-(ZMAX
32!-+"
##-DATA2!-+"
!("
!("-(Z
Description STM32F405xx, STM32F407xx
18/167 Doc ID 022152 Rev 2
from TIMxCLK up to 84 MHz.
2. The camera interface is available only on STM32F407xxdevices.
2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing
and complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software.
Figure 5 shows the general block diagram of the STM32F40x family.
Note: Cortex-M4F is binary compatible with Cortex-M3.
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex™-M4F processors. It balances the inherent performance advantage
of the ARM Cortex-M4F over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor full 210 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 168 MHz.
2.2.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 19/167
2.2.4 Embedded Flash memory
The STM32F40x devices embed a Flash memory of 256 Kbytes, 512 Kbytes, 768 Kbytes or
1 Mbytes available for storing programs and data.
2.2.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6 Embedded SRAM
All STM32F40x products embed:
Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.2.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
Description STM32F405xx, STM32F407xx
20/167 Doc ID 022152 Rev 2
Figure 6. Multi-AHB matrix
2.2.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
!2-
#ORTEX-
'0
$-!
'0
$-!
-!#
%THERNET
53"/4'
(3
"USMATRIX3
3 3 3 3 3 3 3 3
)#/$%
$#/$%
!##%,
&LASH
MEMORY
32!-
+BYTE
32!-
+BYTE
!("
PERIPH
!("
PERIPH
&3-#
3TATIC-EM#TL
-
-
-
-
-
-
-
)BUS
$BUS
3BUS
$-!?0)
$-!?-%-
$-!?-%-
$-!?0
%4(%2.%4?-
53"?(3?-
AI
##-DATA2!-
+BYTE
!0"
!0"
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 21/167
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC.
2.2.9 Flexible static memory controller (FSMC)
The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,
NOR Flash and NAND Flash.
Functionality overview:
Write FIFO
Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.2.10 Nested vectored interrupt controller (NVIC)
The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 87 maskable interrupt channels plus the 16
interrupt lines of the Cortex™-M4F.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.2.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
Description STM32F405xx, STM32F407xx
22/167 Doc ID 022152 Rev 2
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.
The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
2.2.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14 Power supply schemes
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
Refer to Figure 18: Power supply scheme for more details.
Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 °C
temperature range and an inverted reset signal is applied to PDR_ON.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 23/167
2.2.15 Power supply supervisor
The power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold level is reached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently. Three BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
All packages, except for the LQFP64 and LQFP100, have an internal reset controlled
through the PDR_ON signal.
2.2.16 Voltage regulator
The regulator has eight operating modes:
Regulator ON/internal reset ON
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator ON/internal reset OFF
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator OFF/internal reset ON
Regulator OFF/internal reset OFF
Regulator ON
Regulator ON/internal reset ON
The regulator ON/internal reset ON mode is always enabled on LQFP64 and LQFP100
package.
On LQFP144 package, this mode is activated by setting PDR_ON to VDD.
On UFBGA176 package, the internal regulator must be activated by connecting
BYPASS_REG to VSS, and PDR_ON to VDD.
On LQFP176 packages, the internal reset must be activated by connecting PDR_ON to
VDD.
Description STM32F405xx, STM32F407xx
24/167 Doc ID 022152 Rev 2
VDD minimum value is 1.8 V. VDD/VDDA minimum value of 1.7 V is obtained when the device
operates in the 0 to 70 °C temperature range and PDR is disabled.
There are three low-power modes:
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes
Power-down is used in Standby mode: the regulator output is in high impedance:
the kernel circuitry is powered down, inducing zero consumption (but the contents
of the registers and SRAM are lost).
Regulator ON/internal reset OFF
The regulator ON with internal reset OFF mode is not available on LQFP64 and
LQFP100 packages.
On LQFP144, and LQFP176 packages, the internal reset is controlled by applying an
inverted reset signal to PDR_ON pin.
On UFBGA176 package, the internal regulator must be activated by connecting
BYPASS_REG to VSS.
On LQFP176 packages, the internal reset must be activated by applying an inverted
reset signal to PDR_ON pin.
The NRST pin should be controlled by an external reset controller to keep the device
under reset when VDD is below 1.8 V (see Figure 7).
Figure 7. Regulator ON/internal reset OFF
6$$
TIME
-36
0$26
TIME
.234
0$2?/.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 25/167
Regulator OFF
This mode allows to power the device as soon as VDD reaches 1.8 V.
Regulator OFF/internal reset ON
This mode is available only on UFBGA package. It is activated by setting
BYPASS_REG and PDR_ON pins to VDD.
The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
The following conditions must be respected:
–V
DD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V (VDD/VDDA minimum value of 1.7 V is obtained when the device
operates in the 0 to 70 °C temperature range and PDR is disabled), then PA0
should be connected to the NRST pin (see Figure 8). Otherwise, PA0 should be
asserted low externally during POR until VDD reaches 1.8 V (see Figure 9).
–If V
CAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.7 V, then a reset
must be asserted on PA0 pin.
In regulator OFF/internal reset ON mode, PA0 cannot be used as a GPIO pin since it
allows to reset the part of the 1.2 V logic which is not reset by the NRST pin, when the
internal voltage regulator in off.
Regulator OFF/internal reset OFF
This mode is available only on UFBGA package. It is activated by setting
BYPASS_REG pin to VDD and by applying an inverted reset signal to PDR_ON, and
allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in
addition to VDD.
The following conditions must be respected:
–V
DD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach
1.08 V and until VDD reaches 1.8 V (see Figure 8).
NRST should be controlled by an external reset controller to keep the device
under reset when VDD is below 1.8 V (see Figure 9).
Description STM32F405xx, STM32F407xx
26/167 Doc ID 022152 Rev 2
Figure 8. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (on or off).
Figure 9. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (on or off).
2.2.17 Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F405xx and STM32F407xx includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
6$$
TIME
6
AIC
0$26
6
#!0?6#!0?
6
0!TIEDTO.234
.234
TIME
6$$
TIME
6
AIB
0$26
6
#!0?6#!0?
6
0!ASSERTEDEXTERNALLY
.234
TIME
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 27/167
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.2.18: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
2.2.18 Low-power modes
The STM32F405xx and STM32F407xx support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Description STM32F405xx, STM32F407xx
28/167 Doc ID 022152 Rev 2
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
Note: When in Standby mode, only an RTC alarm/event or an external reset can wake up the
device provided VDD is supplied by an external battery.
2.2.19 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT
, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
2.2.20 Timers and watchdogs
The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Ta bl e 3 compares the features of the advanced-control, general-purpose and basic timers.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 29/167
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
Table 3. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
Advanced-
control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Ye s 4 Ye s 8 4 1 6 8
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 84 168
TIM10,
TIM11 16-bit Up
Any integer
between 1
and 65536
No 1 No 84 168
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 42 84
TIM13,
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No 42 84
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 42 84
Description STM32F405xx, STM32F407xx
30/167 Doc ID 022152 Rev 2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F40x devices
(see Ta b l e 3 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and
TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter
and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload
up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for
input capture/output compare, PWM or one-pulse mode output. This gives up to 16
input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 31/167
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
2.2.21 Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the
7-bit dual addressing mode (as slave). A hardware CRC generation/verification is
embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.22 Universal synchronous/asynchronous receiver transmitters (USART)
The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at
up to 5.25 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Description STM32F405xx, STM32F407xx
32/167 Doc ID 022152 Rev 2
2.2.23 Serial peripheral interface (SPI)
The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 37.5 Mbits/s, SPI2 and
SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.24 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Table 4. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud rate
in Mbit/s
(oversampling
by 16)
Max. baud rate
in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
USART2 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
USART3 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
UART4 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
UART5 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
USART6 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 33/167
2.2.25 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.26 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol
Rev1.1.
2.2.27 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F407xx devices.
The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard medium-
independent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F407xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) from the STM32F407xx.
Description STM32F405xx, STM32F407xx
34/167 Doc ID 022152 Rev 2
The STM32F407xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F46x reference manual for details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and group
addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
2.2.28 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.2.29 Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with
integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0
specification and with the OTG 1.0 specification. It has software-configurable endpoint
setting and supports suspend/resume. The USB OTG full-speed controller requires a
dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The
major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.2.30 Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 35/167
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.2.31 Digital camera interface (DCMI)
The camera interface is not available in STM32F405xx devices.
STM32F407xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
2.2.32 Random number generator (RNG)
All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random
numbers generated by an integrated analog circuit.
2.2.33 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
Description STM32F405xx, STM32F407xx
36/167 Doc ID 022152 Rev 2
2.2.34 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.2.35 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.36 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.2.37 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
STM32F405xx, STM32F407xx Description
Doc ID 022152 Rev 2 37/167
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be
re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch
between JTAG-DP and SW-DP.
2.2.38 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F40x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F405xx, STM32F407xx
38/167 Doc ID 022152 Rev 2
3 Pinouts and pin description
Figure 10. STM32F40x LQFP64 pinout
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 39/167
Figure 11. STM32F40x LQFP100 pinout


































































0%
0%
0%
0%
0%
6"!4
0#
0#
633
6$$
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























AIB
,1&0
0#
0(
Pinouts and pin description STM32F405xx, STM32F407xx
40/167 Doc ID 022152 Rev 2
Figure 12. STM32F40x LQFP144 pinout
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
0% 6
$$
0% 6
33
0%
0% 0!
0% 0!
6"!4 0!
0# 0!
0# 0!
0# 0!
0& 0#
0& 0#
0& 0#
0& 0#
0& 6
$$
0& 6
33
6
33
0'
6
$$
0'
0& 0'
0& 0'
0& 0'
0& 0'
0& 0'
0( 0$
0( 0$
.234 6
$$
0# 6
33
0# 0$
0# 0$
0# 0$
6
33!
0$
6
$$
0$
6
2%&
0$
6
$$!
0"
0! 0"
0! 0"
0! 0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$



























































































,1&0












































AIB
6
#!0?
633
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 41/167
Figure 13. STM32F40x LQFP176 pinout
-36
0$2?/.
6$$
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0)
0)
0%
6$$
0%
633
0%
0%
0!
0%
0!
6"!4
0!
0)
0!
0#
0!
0#4
0!
0&
0#
0&
0#
0&
0#
0&
0#
0&
6$$
0&
633
633
0'
6$$
0'
0&
0'
0&
0'
0&
0'
0&
0'
0&
0'
0(
0$
0(
0$
.234
6$$
0#
633
0#
0$
0#
0$
0#
0$
633!
0$
6$$ 0$
62%&
0$
6$$!
0"
0!
0"
0!
0"
0!
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$



























































































,1&0












































6#!0?
0)
0!
0!
6$$
633
0)
0)
0)








0(
0(
0(
0(
0(
0(
0(
0(








0)
0)
0(
0(
0(
6$$
633
0(
















0#
0)
0)
0)
633
6$$
0(
0(
Pinouts and pin description STM32F405xx, STM32F407xx
42/167 Doc ID 022152 Rev 2
Figure 14. STM32F40x UFBGA176 ballout
AIB
     
! 0% 0% 0% 0% 0" 0" 0' 0' 0" 0" 0$ 0# 0! 0! 0!
" 0% 0% 0% 0" 0" 0" 0'0'0'0' 0$ 0$ 0#0#0!
#6"!4 0) 0) 0) 0$2?/.
6$$ 6$$ 6$$ 6$$ 0' 0$ 0$ 0) 0) 0!
$0# 0) 0) 0) "//4 633 633 633 0$ 0$ 0$ 0( 0) 0!
%0# 0& 0) 0) 0( 0( 0) 0!
& 0# 633 6$$ 0( 633 633 633 633 633 633 6#!0? 0# 0!
'0( 633 6$$ 0( 633 633 633 633 633 633 6$$ 0# 0#
(0( 0& 0& 0( 633 633 633 633 633 633 6$$ 0' 0#
* .234 0& 0& 0( 633 633 633 633 633 6$$ 6$$ 0' 0'
+0& 0& 0&
6$$ 633 633 633 633 633 0( 0' 0' 0'
,0& 0& 0&
"90!33?
2%'
0( 0( 0$ 0'
- 633! 0# 0# 0# 0# 0" 0' 633 633 6#!0? 0( 0( 0( 0$ 0$
.62%& 0!
0!
0! 0# 0& 0' 6$$ 6$$ 6$$ 0% 0( 0$ 0$ 0$
0 62%& 0! 0! 0! 0# 0& 0& 0% 0% 0% 0% 0" 0" 0$ 0$
2 6$$! 0! 0! 0" 0" 0& 0& 0% 0% 0% 0% 0" 0" 0" 0"
633

Table 5. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 43/167
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 5. Legend/abbreviations used in the pinout table (continued)
Name Abbreviation Definition
Pinouts and pin description STM32F405xx, STM32F407xx
44/167 Doc ID 022152 Rev 2
Table 6. STM32F40x pin and ball definitions
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
- 1 1 A2 1 PE2 I/O FT
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
- 2 2 A1 2 PE3 I/O FT TRACED0/FSMC_A19 /
EVENTOUT
- 3 3 B1 3 PE4 I/O FT TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT
- 4 4 B2 4 PE5 I/O FT
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6 /
EVENTOUT
- 5 5 B3 5 PE6 I/O FT
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7 /
EVENTOUT
16 6C16 V
BAT S
-- -D27 PI8 I/OFT
(2)(3) EVENTOUT RTC_AF2
27 7D18 PC13 I/OFT
(2)(3) EVENTOUT RTC_AF1
38 8E19
PC14-OSC32_IN
(PC14) I/O FT (2)(3) EVENTOUT OSC32_IN(4)
49 9 F110
PC15-
OSC32_OUT
(PC15)
I/O FT (2)(3) EVENTOUT OSC32_OUT(4)
- - - D3 11 PI9 I/O FT CAN1_RX / EVENTOUT
-- -E312 PI10 I/OFT ETH_MII_RX_ER /
EVENTOUT
-- -E413 PI11 I/OFT OTG_HS_ULPI_DIR /
EVENTOUT
-- -F214 V
SS S
-- -F315 V
DD S
- - 10 E2 16 PF0 I/O FT FSMC_A0 / I2C2_SDA /
EVENTOUT
--11H317 PF1 I/OFT FSMC_A1 / I2C2_SCL /
EVENTOUT
--12H218 PF2 I/OFT FSMC_A2 / I2C2_SMBA /
EVENTOUT
--13J219 PF3 I/OFT
(4) FSMC_A3/EVENTOUT ADC3_IN9
--14J320 PF4 I/OFT
(4) FSMC_A4/EVENTOUT ADC3_IN14
- - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 45/167
-1016G222 V
SS S
-1117G323 V
DD S
- - 18 K2 24 PF6 I/O FT (4)
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
- - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG/
EVENTOUT ADC3_IN5
- - 20 L3 26 PF8 I/O FT (4)
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
- - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/
EVENTOUT ADC3_IN7
- - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8
51223G129 PH0-OSC_IN
(PH0) I/O FT EVENTOUT OSC_IN(4)
61324H130 PH1-OSC_OUT
(PH1) I/O FT EVENTOUT OSC_OUT(4)
7 14 25 J1 31 NRST I/O RST
81526M232 PC0 I/OFT (4) OTG_HS_ULPI_STP/
EVENTOUT ADC123_IN10
91627M333 PC1 I/OFT (4) ETH_MDC/ EVENTOUT ADC123_IN11
10 17 28 M4 34 PC2 I/O FT (4)
SPI2_MISO /
OTG_HS_ULPI_DIR /
TH_MII_TXD2
/I2S2ext_SD/ EVENTOUT
ADC123_IN12
11 18 29 M5 35 PC3 I/O FT (4)
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_IN13
-1930G336 V
DD S
12 20 31 M1 37 VSSA S
-- -N1- V
REF S
-2132P138 V
REF+ S
13 22 33 R1 39 VDDA S
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
46/167 Doc ID 022152 Rev 2
14 23 34 N3 40 PA 0 - W K U P
(PA0) I/O FT (5)
USART2_CTS/ UART4_TX/
ETH_MII_CRS /
TIM2_CH1_ETR/
TIM5_CH1 / TIM8_ETR/
EVENTOUT
ADC123_IN0/WKUP(4)
15 24 35 N2 41 PA1 I/O FT (4)
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIMM2_CH2/
EVENTOUT
ADC123_IN1
16 25 36 P2 42 PA2 I/O FT (4)
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 /
ETH_MDIO/ EVENTOUT
ADC123_IN2
- - - F4 43 PH2 I/O FT ETH_MII_CRS/EVENTOUT
- - - G4 44 PH3 I/O FT ETH_MII_COL/EVENTOUT
-- -H445 PH4 I/OFT
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
- - - J4 46 PH5 I/O FT I2C2_SDA/ EVENTOUT
17 26 37 R2 47 PA3 I/O FT (4)
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ETH_MII_COL/
EVENTOUT
ADC123_IN3
18 27 38 - 48 VSS S
L4 - BYPASS_REG I FT
19 28 39 K4 49 VDD S
20 29 40 N4 50 PA4 I/O TTa (4)
SPI1_NSS / SPI3_NSS /
USART2_CK /
DCMI_HSYNC /
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
ADC12_IN4 /DAC1_OUT
21 30 41 P4 51 PA5 I/O TTa (4)
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CHIN/ EVENTOUT
ADC12_IN5/DAC2_OUT
22 31 42 P3 52 PA6 I/O FT (4)
SPI1_MISO /
TIM8_BKIN/TIM13_CH1 /
DCMI_PIXCLK / TIM3_CH1
/ TIM1_BKIN/ EVENTOUT
ADC12_IN6
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 47/167
23 32 43 R3 53 PA7 I/O FT (4)
SPI1_MOSI/ TIM8_CH1N /
TIM14_CH1/TIM3_CH2/
ETH_MII_RX_DV /
TIM1_CH1N /
RMII_CRS_DV/
EVENTOUT
ADC12_IN7
24 33 44 N5 54 PC4 I/O FT (4)
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25 34 45 P5 55 PC5 I/O FT (4)
ETH_RMII_RX_D1 /
ETH_MII_RX_D1/
EVENTOUT
ADC12_IN15
26 35 46 R5 56 PB0 I/O FT (4)
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
27 36 47 R4 57 PB1 I/O FT (4)
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
OTG_HS_INTN /
TIM1_CH3N/ EVENTOUT
ADC12_IN9
28 37 48 M6 58 PB2-BOOT1
(PB2) I/O FT EVENTOUT
- - 49 R6 59 PF11 I/O FT DCMI_12/ EVENTOUT
- - 50 P6 60 PF12 I/O FT FSMC_A6/ EVENTOUT
--51M861 V
SS S
--52N862 V
DD S
- - 53 N6 63 PF13 I/O FT FSMC_A7/ EVENTOUT
- - 54 R7 64 PF14 I/O FT FSMC_A8/ EVENTOUT
- - 55 P7 65 PF15 I/O FT FSMC_A9/ EVENTOUT
- - 56 N7 66 PG0 I/O FT FSMC_A10/ EVENTOUT
- - 57 M7 67 PG1 I/O FT FSMC_A11/ EVENTOUT
- 38 58 R8 68 PE7 I/O FT FSMC_D4/TIM1_ETR/
EVENTOUT
- 39 59 P8 69 PE8 I/O FT FSMC_D5/ TIM1_CH1N/
EVENTOUT
- 40 60 P9 70 PE9 I/O FT FSMC_D6/TIM1_CH1/
EVENTOUT
--61M971 V
SS S
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
48/167 Doc ID 022152 Rev 2
--62N972 V
DD S
- 41 63 R9 73 PE10 I/O FT FSMC_D7/TIM1_CH2N/
EVENTOUT
- 42 64 P10 74 PE11 I/O FT FSMC_D8/TIM1_CH2/
EVENTOUT
- 43 65 R10 75 PE12 I/O FT FSMC_D9/TIM1_CH3N/
EVENTOUT
- 44 66 N11 76 PE13 I/O FT FSMC_D10/TIM1_CH3/
EVENTOUT
- 45 67 P11 77 PE14 I/O FT FSMC_D11/TIM1_CH4/
EVENTOUT
- 46 68 R11 78 PE15 I/O FT FSMC_D12/TIM1_BKIN/
EVENTOUT
29 47 69 R12 79 PB10 I/O FT
SPI2_SCK / I2S2_CK /
I2C2_SCL/ USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
TIM2_CH3/ EVENTOUT
30 48 70 R13 80 PB11 I/O FT
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
TIM2_CH4/ EVENTOUT
31 49 71 M10 81 VCAP_1 S
32 50 72 N10 82 VDD S
- - - M11 83 PH6 I/O FT
I2C2_SMBA / TIM12_CH1 /
ETH_MII_RXD2/
EVENTOUT
-- -N1284 PH7 I/OFT
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
- - - M12 85 PH8 I/O FT
I2C3_SDA /
DCMI_HSYNC/
EVENTOUT
- - - M13 86 PH9 I/O FT I2C3_SMBA / TIM12_CH2/
DCMI_D0/ EVENTOUT
- - - L13 87 PH10 I/O FT TIM5_CH1 / DCMI_D1/
EVENTOUT
- - - L12 88 PH11 I/O FT TIM5_CH2 / DCMI_D2/
EVENTOUT
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 49/167
- - - K12 89 PH12 I/O FT TIM5_CH3 / DCMI_D3/
EVENTOUT
-- -H1290 V
SS S
- - - J12 91 VDD S
33 51 73 P12 92 PB12 I/O FT
SPI2_NSS / I2S2_WS /
I2C2_SMBA/
USART3_CK/ TIM1_BKIN /
CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
34 52 74 P13 93 PB13 I/O FT
SPI2_SCK / I2S2_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
OTG_HS_VBUS
35 53 75 R14 94 PB14 I/O FT
SPI2_MISO/ TIM1_CH2N /
TIM12_CH1 /
OTG_HS_DM/
USART3_RTS /
TIM8_CH2N/I2S2ext_SD/
EVENTOUT
36 54 76 R15 95 PB15 I/O FT
SPI2_MOSI / I2S2_SD/
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP/ EVENTOUT
-5577P1596 PD8 I/OFT FSMC_D13 / USART3_TX/
EVENTOUT
-5678P1497 PD9 I/OFT FSMC_D14 / USART3_RX/
EVENTOUT
- 57 79 N15 98 PD10 I/O FT FSMC_D15 / USART3_CK/
EVENTOUT
- 58 80 N14 99 PD11 I/O FT
FSMC_CLE /
FSMC_A16/USART3_CTS/
EVENTOUT
- 59 81 N13 100 PD12 I/O FT
FSMC_ALE/
FSMC_A17/TIM4_CH1 /
USART3_RTS/
EVENTOUT
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
50/167 Doc ID 022152 Rev 2
- 60 82 M15 101 PD13 I/O FT FSMC_A18/TIM4_CH2/
EVENTOUT
- - 83 - 102 VSS S
- - 84 J13 103 VDD S
- 61 85 M14 104 PD14 I/O FT FSMC_D0/TIM4_CH3/
EVENTOUT/ EVENTOUT
- 62 86 L14 105 PD15 I/O FT FSMC_D1/TIM4_CH4/
EVENTOUT
- - 87 L15 106 PG2 I/O FT FSMC_A12/ EVENTOUT
- - 88 K15 107 PG3 I/O FT FSMC_A13/ EVENTOUT
- - 89 K14 108 PG4 I/O FT FSMC_A14/ EVENTOUT
- - 90 K13 109 PG5 I/O FT FSMC_A15/ EVENTOUT
- - 91 J15 110 PG6 I/O FT FSMC_INT2/ EVENTOUT
- - 92 J14 111 PG7 I/O FT FSMC_INT3 /USART6_CK/
EVENTOUT
- - 93 H14 112 PG8 I/O FT
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
- - 94 G12 113 VSS S
- - 95 H13 114 VDD S
37 63 96 H15 115 PC6 I/O FT
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
38 64 97 G15 116 PC7 I/O FT
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
39 65 98 G14 117 PC8 I/O FT
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK /
DCMI_D2/ EVENTOUT
40 66 99 F14 118 PC9 I/O FT
I2S_CKIN/ MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 51/167
41 67 100 F15 119 PA8 I/O FT
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
42 68 101 E15 120 PA9 I/O FT
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
OTG_FS_VBUS
43 69 102 D15 121 PA10 I/O FT
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
44 70 103 C15 122 PA11 I/O FT
USART1_CTS / CAN1_RX
/ TIM1_CH4 /
OTG_FS_DM/ EVENTOUT
45 71 104 B15 123 PA12 I/O FT
USART1_RTS / CAN1_TX/
TIM1_ETR/ OTG_FS_DP/
EVENTOUT
46 72 105 A15 124 PA 1
(JTMS-SWDIO) I/O FT JTMS-SWDIO/ EVENTOUT
47 73 106 F13 125 VCAP_2 S
- 74 107 F12 126 VSS S
48 75 108 G13 127 VDD S
- - - E12 128 PH13 I/O FT TIM8_CH1N / CAN1_TX/
EVENTOUT
- - - E13 129 PH14 I/O FT TIM8_CH2N / DCMI_D4/
EVENTOUT
- - - D13 130 PH15 I/O FT TIM8_CH3N / DCMI_D11/
EVENTOUT
- - - E14 131 PI0 I/O FT
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
- - - D14 132 PI1 I/O FT SPI2_SCK / I2S2_CK /
DCMI_D8/ EVENTOUT
- - - C14 133 PI2 I/O FT
TIM8_CH4 /SPI2_MISO /
DCMI_D9 / I2S2ext_SD/
EVENTOUT
- - - C13 134 PI3 I/O FT
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
- - - D9 135 VSS S
- - - C9 136 VDD S
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
52/167 Doc ID 022152 Rev 2
49 76 109 A14 137 PA 1 4
(JTCK-SWCLK) I/O FT JTCK-SWCLK/ EVENTOUT
50 77 110 A13 138 PA 1 5
(JTDI) I/O FT
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ETR
/ SPI1_NSS / EVENTOUT
51 78 111 B14 139 PC10 I/O FT
SPI3_SCK / I2S3_CK/
UART4_TX/SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
52 79 112 B13 140 PC11 I/O FT
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX /
I2S3ext_SD/ EVENTOUT
53 80 113 A12 141 PC12 I/O FT
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI
/I2S3_SD / USART3_CK/
EVENTOUT
- 81 114 B12 142 PD0 I/O FT FSMC_D2/CAN1_RX/
EVENTOUT
- 82 115 C12 143 PD1 I/O FT FSMC_D3 / CAN1_TX/
EVENTOUT
54 83 116 D12 144 PD2 I/O FT
TIM3_ETR/UART5_RX/
SDIO_CMD / DCMI_D11/
EVENTOUT
- 84 117 D11 145 PD3 I/O FT FSMC_CLK/USART2_CTS
/ EVENTOUT
- 85 118 D10 146 PD4 I/O FT FSMC_NOE/USART2_RTS
/ EVENTOUT
- 86 119 C11 147 PD5 I/O FT FSMC_NWE/USART2_TX/
EVENTOUT
- - 120D8148 V
SS S
- - 121C8149 V
DD S
- 87 122 B11 150 PD6 I/O FT FSMC_NWAIT/
USART2_RX/ EVENTOUT
- 88 123 A11 151 PD7 I/O FT USART2_CK/FSMC_NE1/
FSMC_NCE2/ EVENTOUT
- - 124 C10 152 PG9 I/O FT
USART6_RX /
FSMC_NE2/FSMC_NCE3/
EVENTOUT
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 53/167
- - 125 B10 153 PG10 I/O FT FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT
- - 126 B9 154 PG11 I/O FT
FSMC_NCE4_2 /
ETH_MII_TX_EN/
ETH _RMII_TX_EN/
EVENTOUT
- - 127 B8 155 PG12 I/O FT
FSMC_NE4 /
USART6_RTS/
EVENTOUT
- - 128 A8 156 PG13 I/O FT
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
- - 129 A7 157 PG14 I/O FT
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
- - 130D7158 V
SS S
- - 131C7159 V
DD S
- - 132 B7 160 PG15 I/O FT USART6_CTS /
DCMI_D13/ EVENTOUT
55 89 133 A10 161
PB3
(JTDO/
TRACESWO)
I/O FT
JTDO/ TRACESWO/
SPI3_SCK / I2S3_CK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
56 90 134 A9 162 PB4
(NJTRST) I/O FT
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO /
I2S3ext_SD/ EVENTOUT
57 91 135 A6 163 PB5 I/O FT
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH
2 / SPI1_MOSI/
SPI3_MOSI / DCMI_D10 /
I2S3_SD/ EVENTOUT
58 92 136 B6 164 PB6 I/O FT
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
54/167 Doc ID 022152 Rev 2
59 93 137 B5 165 PB7 I/O FT
I2C1_SDA / FSMC_NL /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
60 94 138 D6 166 BOOT0 I B VPP
61 95 139 A5 167 PB8 I/O FT
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
62 96 140 B4 168 PB9 I/O FT
SPI2_NSS/ I2S2_WS /
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
- 97 141 A4 169 PE0 I/O FT TIM4_ETR / FSMC_NBL0 /
DCMI_D2/ EVENTOUT
- 98 142 A3 170 PE1 I/O FT FSMC_NBL1 / DCMI_D3/
EVENTOUT
63 99 - D5 - VSS S
- - 143C6171 PDR_ON I FT
64 10
0144C5172 V
DD S
- - - D4 173 PI4 I/O FT TIM8_BKIN / DCMI_D5/
EVENTOUT
- - - C4 174 PI5 I/O FT
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
- - - C3 175 PI6 I/O FT TIM8_CH2 / DCMI_D6/
EVENTOUT
- - - C2 176 PI7 I/O FT TIM8_CH3 / DCMI_D7/
EVENTOUT
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
Table 6. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
LQFP144
UFBGA176
LQFP176
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 55/167
5. If the device is delivered in an UFBGA176 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON
mode), then PA0 is used as an internal Reset (active low).
Pinouts and pin description STM32F405xx, STM32F407xx
56/167 Doc ID 022152 Rev 2
Table 7. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
PA 0 TIM2_CH1
TIM2_ETR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT
PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK
ETH_RMII _REF_CLK EVENTOUT
PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT
PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_D0 ETH _MII_COL EVENTOUT
PA 4 SPI1_NSS SPI3_NSS
I2S3_WS USART2_CK OTG_HS_SOF DCMI_HSYNC EVENTOUT
PA 5 TIM2_CH1
TIM2_ETR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_CK EVENTOUT
PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT
PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV
ETH_RMII _CRS_DV EVENTOUT
PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT
PA9 TIM1_CH2 I2C3_SMBA USART1_TX DCMI_D0 EVENTOUT
PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT
PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT
PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT
PA 1 3 J T M S -S W D I O EVENTOUT
PA14 JTCK-SWCLK EVENTOUT
PA 1 5 J T D I TIM 2_CH1
TIM 2_ETR SPI1_NSS SPI3_NSS/
I2S3S_WS EVENTOUT
PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_D1 ETH _MII_RXD2 EVENTOUT
PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_D2 ETH _MII_RXD3 OTG_HS_INTN EVENTOUT
PB2 EVENTOUT
PB3 JTDO/
TRACESWO
TIM2_CH2 SPI1_SCK
SPI3_SCK
I2S3_CK EVENTOUT
PB4 JTRST TIM3_CH1 SPI1_MISO SPI3_MISO I2S3ext_SD EVENTOUT
PB5 TIM3_CH2 I2C1_SMBA SPI1_MOSI
SPI3_MOSI
I2S3_SD CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT DCMI_D10 EVENTOUT
PB6 TIM4_CH1 I2C1_SCL I2S2_WS USART1_TX CAN2_TX DCMI_D5 EVENTOUT
PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYNC EVENTOUT
PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT
PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA
SPI2_NSS
I2S2_WS CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT
PB10 TIM2_CH3 I2C2_SCL
SPI2_SCK
I2S2_CK USART3_TX OTG_HS_ULPI_D3 ETH_ MII_RX_ER EVENTOUT
PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_D4
ETH _MII_TX_EN
ETH _RMII_TX_EN EVENTOUT
PB12 TIM1_BKIN I2C2_SMBA SPI2_NSS
I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_D5
ETH _MII_TXD0
ETH _RMII_TXD0 OTG_HS_ID EVENTOUT
PB13 TIM1_CH1N SPI2_SCK
I2S2_CK USART3_CTS CAN2_TX OTG_HS_ULPI_D6
ETH _MII_TXD1
ETH _RMII_TXD1 EVENTOUT
PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 57/167
PB15 RTC_50Hz TIM1_CH3N TIM8_CH3N SPI2_MOSI
I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT
PC0 OTG_HS_ULPI_STP EVENTOUT
PC1 ETH_MDC EVENTOUT
PC2 SPI2_MISO I2S2ext_SD OTG_HS_ULPI_DIR ETH _MII_TXD2 EVENTOUT
PC3 SPI2_MOSI
I2S2_SD OTG_HS_ULPI_NXT ETH _MII_TX_CLK
ETH _RMII_TX_CLK EVENTOUT
PC4 ETH_MII_RXD0
ETH_RMII_RXD0 EVENTOUT
PC5 ETH _MII_RXD1
ETH _RMII_RXD1 EVENTOUT
PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT
PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT
PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT
PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN SDIO_D1 DCMI_D3 EVENTOUT
PC10 SPI3_SCK/
I2S3S_CK USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT
PC11 SPI3_MISO
I2S3ext_SD/ USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT
PC12 SPI3_MOSI
I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT
PC13
PC14
PC15
PD0 CAN1_RX FSMC_D2 EVENTOUT
PD1 CAN1_TX FSMC_D3 EVENTOUT
PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT
PD3 USART2_CTS FSMC_CLK EVENTOUT
PD4 USART2_RTS FSMC_NOE EVENTOUT
PD5 USART2_TX FSMC_NWE EVENTOUT
PD6 USART2_RX FSMC_NWAIT EVENTOUT
PD7 USART2_CK FSMC_NE1/
FSMC_NCE2 EVENTOUT
PD8 USART3_TX FSMC_D13 EVENTOUT
PD9 USART3_RX FSMC_D14 EVENTOUT
PD10 USART3_CK FSMC_D15 EVENTOUT
PD11 USART3_CTS FSMC_A16 EVENTOUT
PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT
PD13 TIM4_CH2 FSMC_A18 EVENTOUT
PD14 TIM4_CH3 FSMC_D0 EVENTOUT
Table 7. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
58/167 Doc ID 022152 Rev 2
PD15 TIM4_CH4 FSMC_D1 EVENTOUT
PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT
PE1 FSMC_BLN1 DCMI_D3 EVENTOUT
PE2 TRACECLK ETH _MII_TXD3 FSMC_A23 EVENTOUT
PE3 TRACED0 FSMC_A19 EVENTOUT
PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT
PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT
PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT
PE7 TIM1_ETR FSMC_D4 EVENTOUT
PE8 TIM1_CH1N FSMC_D5 EVENTOUT
PE9 TIM1_CH1 FSMC_D6 EVENTOUT
PE10 TIM1_CH2N FSMC_D7 EVENTOUT
PE11 TIM1_CH2 FSMC_D8 EVENTOUT
PE12 TIM1_CH3N FSMC_D9 EVENTOUT
PE13 TIM1_CH3 FSMC_D10 EVENTOUT
PE14 TIM1_CH4 FSMC_D11 EVENTOUT
PE15 TIM1_BKIN FSMC_D12 EVENTOUT
PF0 I2C2_SDA FSMC_A0 EVENTOUT
PF1 I2C2_SCL FSMC_A1 EVENTOUT
PF2 I2C2_SMBA FSMC_A2 EVENTOUT
PF3 FSMC_A3 EVENTOUT
PF4 FSMC_A4 EVENTOUT
PF5 FSMC_A5 EVENTOUT
PF6 TIM10_CH1 FSMC_NIORD EVENTOUT
PF7 TIM11_CH1 FSMC_NREG EVENTOUT
PF8 TIM13_CH1 FSMC_NIOWR EVENTOUT
PF9 TIM14_CH1 FSMC_CD EVENTOUT
PF10 FSMC_INTR EVENTOUT
PF11 DCMI_D12 EVENTOUT
PF12 FSMC_A6 EVENTOUT
PF13 FSMC_A7 EVENTOUT
PF14 FSMC_A8 EVENTOUT
PF15 FSMC_A9 EVENTOUT
Table 7. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
STM32F405xx, STM32F407xx Pinouts and pin description
Doc ID 022152 Rev 2 59/167
PG0 FSMC_A10 EVENTOUT
PG1 FSMC_A11 EVENTOUT
PG2 FSMC_A12 EVENTOUT
PG3 FSMC_A13 EVENTOUT
PG4 FSMC_A14 EVENTOUT
PG5 FSMC_A15 EVENTOUT
PG6 FSMC_INT2 EVENTOUT
PG7 USART6_CK FSMC_INT3 EVENTOUT
PG8 USART6_RTS ETH _PPS_OUT EVENTOUT
PG9 USART6_RX FSMC_NE2/
FSMC_NCE3 EVENTOUT
PG10 FSMC_NCE4_1/
FSMC_NE3 EVENTOUT
PG11 ETH _MII_TX_EN
ETH _RMII_TX_EN FSMC_NCE4_2 EVENTOUT
PG12 USART6_RTS FSMC_NE4 EVENTOUT
PG13 UART6_CTS ETH _MII_TXD0
ETH _RMII_TXD0 FSMC_A24 EVENTOUT
PG14 USART6_TX ETH _MII_TXD1
ETH _RMII_TXD1 FSMC_A25 EVENTOUT
PG15 USART6_CTS DCMI_D13 EVENTOUT
PH0
PH1
PH2 ETH _MII_CRS EVENTOUT
PH3 ETH _MII_COL EVENTOUT
PH4 I2C2_SCL OTG_HS_ULPI_NXT EVENTOUT
PH5 I2C2_SDA EVENTOUT
PH6 I2C2_SMBA TIM12_CH1 ETH _MII_RXD2 EVENTOUT
PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT
PH8 I2C3_SDA DCMI_HSYNC EVENTOUT
PH9 I2C3_SMBA TIM12_CH2 DCMI_D0 EVENTOUT
PH10 TIM5_CH1 DCMI_D1 EVENTOUT
PH11 TIM5_CH2 DCMI_D2 EVENTOUT
PH12 TIM5_CH3 DCMI_D3 EVENTOUT
PH13 TIM8_CH1N CAN1_TX EVENTOUT
PH14 TIM8_CH2N DCMI_D4 EVENTOUT
Table 7. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
60/167 Doc ID 022152 Rev 2
PH15 TIM8_CH3N DCMI_D11 EVENTOUT
PI0 TIM5_CH4 SPI2_NSS
I2S2_WS DCMI_D13 EVENTOUT
PI1 SPI2_SCK
I2S2_CK DCMI_D8 EVENTOUT
PI2 TIM8_CH4 SPI2_MISO I2S2ext_SD DCMI_D9 EVENTOUT
PI3 TIM8_ETR SPI2_MOSI
I2S2_SD DCMI_D10 EVENTOUT
PI4 TIM8_BKIN DCMI_D5 EVENTOUT
PI5 TIM8_CH1 DCMI_VSYNC EVENTOUT
PI6 TIM8_CH2 DCMI_D6 EVENTOUT
PI7 TIM8_CH3 DCMI_D7 EVENTOUT
PI8
PI9 CAN1_RX EVENTOUT
PI10 ETH _MII_RX_ER EVENTOUT
PI11 OTG_HS_ULPI_DIR EVENTOUT
Table 7. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
STM32F405xx, STM32F407xx Memory map
Doc ID 022152 Rev 2 61/167
4 Memory map
The memory map is shown in Figure 15.
Figure 15. Memory map
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
-BYTE
BLOCK
.OTUSED
-BYTE
BLOCK
&3-#REGISTERS
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
-BYTE
BLOCK
32!-
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X!
X"&&&&&&&
X#
X$&&&&&&&
X%
X&&&&&&&&
-BYTE
BLOCK
#ODE
&LASH
XX&&&&&&&
X&&&X&&&!&
X&&&#X&&&#
XX&&&&&
XX&&&&&&
XX&&&&&
3YSTEMMEMORY
2ESERVED
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
32!-+"ALIASED
BYBITBANDING
2ESERVED
XX"&&&
X#X&&&&
XX&&&&&&&
!0"
X
2ESERVED
X&&
XX&&
X
2ESERVED
X&&
XX&&&&
X
X&&
2ESERVED XX&&
XX"&&
X
X"&&
X
2ESETCLOCKCONTROLLER2##
X&&
2ESERVED XX&&&
#2# XX&&
2ESERVED X#X&&&&&&&
X
!(" X!&&&
X!X"&&&&&&&
-36
/PTION"YTES
393#&'
2ESERVED X#X&&&&
%84) X#X&&&
X&&
!("
X
2ESERVED
X&&
!("
X&&&&
XX&&&&&&&
2ESERVED
XX&&&&
!("
X#
XX"&&
2ESERVED XX&&
!("
32!-+"ALIASED
BYBITBANDING
2ESERVED X&&&#X&&&&&&&
X&&&!X&&&&&&2ESERVED
##-DATA2!-
+"DATA32!- XX&&&&
2ESERVED XX&&%&&&&
2ESERVED
!0"
!0"
!0"
XX&&&
2ESERVED
X
XX&&&&
!(" X
Electrical characteristics STM32F405xx, STM32F407xx
62/167 Doc ID 022152 Rev 2
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions Figure 17. Pin input voltage
-36
#P&
34-&PIN
/3#?/54(I:WHEN
USING(3%OR,3%
-36
34-&PIN
6).
/3#?/54(I:WHEN
USING(3%OR,3%
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 63/167
5.1.6 Power supply scheme
Figure 18. Power supply scheme
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.17: Real-time clock (RTC), backup SRAM and backup
registers.
3. The two 2.2 µF ceramic capacitors should not be connected when the voltage regulator is OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
5. VDDA=VDD and VSSA=VSS.
-36
6$$

!NALOG
2#S0,,

0OWERSWITCH
6"!4
'0)/S
/54
). +ERNELLOGIC
#05
DIGITAL
2!-
"ACKUPCIRCUITRY
/3#+24#
"ACKUPREGISTERS
BACKUP2!-
7AKEUPLOGIC
§N&
§&
6"!4
TO6
6OLTAGE
REGULATOR
633

6$$!
62%&
62%&
633!
!$#
,EVELSHIFTER
)/
,OGIC
6$$
N&
&
62%&
N&
&
6$$
&LASHMEMORY
6#!0?
6#!0?
§&
"90!33?2%'
0$2?/.
2ESET
CONTROLLER
Electrical characteristics STM32F405xx, STM32F407xx
64/167 Doc ID 022152 Rev 2
5.1.7 Current consumption measurement
Figure 19. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 8: Voltage characteristics,
Table 9: Current characteristics, and Table 10: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 8. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage (including VDDA, VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on five-volt tolerant pin(2)
2. VIN maximum value must always be respected. Refer to Table 9 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4
Input voltage on any other pin VSS–0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 65/167
5.3 Operating conditions
5.3.1 General operating conditions
Table 9. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN) (2)
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC
characteristics.
Injected current on five-volt tolerant I/O(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 8 for the values of the maximum allowed input voltage.
–5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 8 for the values of the maximum allowed input voltage.
±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 10. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 125 °C
Table 11. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency VOS bit in PWR_CR register = 0(1) 0 144
MHz
VOS bit in PWR_CR register= 1 0 168
fPCLK1 Internal APB1 clock frequency 0 42
fPCLK2 Internal APB2 clock frequency 0 84
VDD Standard operating voltage 1.8(2) 3.6 V
VDDA(3)(4)
Analog operating voltage
(ADC limited to 1.2 M samples) Must be the same potential as VDD(5)
1.8(2) 3.6
V
Analog operating voltage
(ADC limited to 1.4 M samples) 2.4 3.6
VBAT Backup operating voltage 1.65 3.6 V
Electrical characteristics STM32F405xx, STM32F407xx
66/167 Doc ID 022152 Rev 2
VCAP1 When the internal regulator is ON,
VCAP_1 and VCAP_2 pins are used to
connect a stabilization capacitor.
When the internal regulator is OFF
(BYPASS_REG connected to VDD),
VCAP_1 and VCAP_2 must be supplied
from 1.2 V.
1.1 1.3 V
VCAP2
PD
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(6)
LQFP64 - 435
mW
LQFP100 - 465
LQFP144 - 500
LQFP176 - 526
UFBGA176 - 513
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation 40 85 °C
Low power dissipation(7) –40 105
Ambient temperature for 7 suffix
version
Maximum power dissipation 40 105 °C
Low power dissipation(7) –40 125
TJ Junction temperature range 6 suffix version –40 105 °C
7 suffix version –40 125
1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole
temperature range, when the system clock frequency is between 30 and 144 MHz.
2. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
3. When the ADC is used, refer to Table 65: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
7. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 11. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 67/167
Table 12. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
Number of wait
states at
maximum CPU
frequency(1)
I/O operation
Maximum
FSMC_CLK
frequency for
synchronous
accesses
Possible
Flash
memory
operations
VDD =1.8 to
2.1 V(2)
Conversion
time up to
1.2 Msps
16 MHz with
no Flash
memory wait
state(3)
7(3)(4)
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
18 MHz with
no Flash
memory wait
state
7(4)
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz with
no Flash
memory wait
state
6(4)
Degraded
speed
performance
I/O
compensation
works
up to 48 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(5)
Conversion
time up to
2.4 Msps
30 MHz with
no Flash
memory wait
state
5(4)
Full-speed
operation
I/O
compensation
works
–up to
60 MHz
when VDD =
3.0 to 3.6 V
–up to
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. The number of wait states can be reduced by reducing the CPU frequency.
2. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
3. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
4. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
Electrical characteristics STM32F405xx, STM32F407xx
68/167 Doc ID 022152 Rev 2
5.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Ta b l e 1 3 .
Figure 20. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
5.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 14. Operating conditions at power-up / power-down (regulator ON)
5.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 13. VCAP1/VCAP2 operating conditions
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
MS19044V1
ESR
RLeak
C
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 15. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time
rate Power-up 20
VCAP_1 and VCAP_2 fall time
rate Power-down 20
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 69/167
5.3.5 Embedded reset and power control block characteristics
The parameters given in Ta b l e 1 6 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta b l e 1 1 .
Table 16. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising
edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling
edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising
edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling
edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising
edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling
edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising
edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling
edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising
edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling
edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising
edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling
edge) 2.65 2.84 3.02 V
PLS[2:0]=110 (rising
edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling
edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising
edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling
edge) 2.95 3.03 3.09 V
VPVDhyst(3) PVD hysteresis - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge TBD(1) 1.70 TBD V
Rising edge TBD 1.74 TBD V
VPDRhyst(3) PDR hysteresis - 40 - mV
Electrical characteristics STM32F405xx, STM32F407xx
70/167 Doc ID 022152 Rev 2
5.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
a CoreMark-compliant code.
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
V12
1.2 V domain
voltage(2)(3)
VOS bit in PWR_CR
register = 0 1.08 1.14 1.20 V
VOS bit in PWR_CR
register = 1 1.20 1.26 1.32 V
VBORhyst(3) BOR hysteresis - 100 - mV
TRSTTEMPO(3)(4) Reset temporization 0.5 1.5 3.0 ms
IRUSH(3)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
- 160 200 mA
ERUSH(3)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for
the whole temperature range, when the system clock frequency is between 30 and 144 MHz.
3. Guaranteed by design, not tested in production.
4. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 16. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 71/167
Typical and maximum current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states
from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to
168 MHz).
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
Table 17. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(2), all
peripherals enabled(3)
168 MHz 93 109 117
mA
144 MHz 76 89 96
120 MHz 67 79 86
90 MHz 53 65 73
60 MHz 37 49 56
30 MHz 20 32 39
25 MHz 16 27 35
16 MHz 11 23 30
8 MHz 6 18 25
4 MHz 4 16 23
2 MHz 3 15 22
External clock(3), all
peripherals disabled
168 MHz 46 61 69
144 MHz 40 52 60
120 MHz 37 48 56
90 MHz 30 42 50
60 MHz 22 33 41
30 MHz 12 24 31
25 MHz 10 21 29
16 MHz 7 19 26
8 MHz 4 16 23
4 MHz 3 15 22
2 MHz 2 14 21
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
Electrical characteristics STM32F405xx, STM32F407xx
72/167 Doc ID 022152 Rev 2
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption
should be considered.
Table 18. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Symbol Parameter Conditions fHCLK
Typ Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Run mode
External clock(3), all
peripherals enabled(4)
168 MHz 87 102 109
mA
144 MHz 67 80 86
120 MHz 56 69 75
90 MHz 44 56 62
60 MHz 30 42 49
30 MHz 16 28 35
25 MHz 12 24 31
16 MHz(5) 92028
8 MHz 5 17 24
4 MHz 3 15 22
2 MHz 2 14 21
External clock(3), all
peripherals disabled
168 MHz 40 54 61
144 MHz 31 43 50
120 MHz 26 38 45
90 MHz 20 32 39
60 MHz 14 26 33
30 MHz 8 20 27
25 MHz 6 18 25
16 MHz(5) 51624
8 MHz 3 15 22
4 MHz 2 14 21
2 MHz 2 14 21
1. Code and data processing running from SRAM1 using boot pins.
2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. In this case HCLK = system clock/2.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 73/167
Figure 21. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
Figure 22. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
-36









        
)
$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
-36










        
)
$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
Electrical characteristics STM32F405xx, STM32F407xx
74/167 Doc ID 022152 Rev 2
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
-36






        
)
$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
-36






        
)
$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 75/167
Table 19. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA =
105 °C
IDD
Supply current in
Sleep mode
External clock(2),
all peripherals enabled(3)
168 MHz 59 77 84
mA
144 MHz 46 61 67
120 MHz 38 53 60
90 MHz 30 44 51
60 MHz 20 34 41
30 MHz 11 24 31
25 MHz 8 21 28
16 MHz 6 18 25
8 MHz 3 16 23
4 MHz 2 15 22
2 MHz 2 14 21
External clock(2), all
peripherals disabled
168 MHz 12 27 35
144 MHz 9 22 29
120 MHz 8 20 28
90 MHz 7 19 26
60 MHz 5 17 24
30 MHz 3 16 23
25 MHz 2 15 22
16 MHz 2 14 21
8 MHz 1 14 21
4 MHz 1 13 21
2 MHz 1 13 21
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is on (ADON bit is set in the ADC_CR2 register).
Electrical characteristics STM32F405xx, STM32F407xx
76/167 Doc ID 022152 Rev 2
Table 20. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Supply current
in Stop mode
with main
regulator in
Run mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.60 1.20 11.00 20.00
mA
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.55 1.20 11.00 20.00
Supply current
in Stop mode
with main
regulator in
Low Power
mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.40 1.10 8.00 15.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.35 1.1 8.00 15.00
Table 21. Typical and maximum current consumptions in Standby mode(1)
Symbol Parameter Conditions
Typ Max
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, low-speed
oscillator and RTC ON 3.0 3.4 4.0 TBD(2) TBD(2)
µA
Backup SRAM OFF, low-
speed oscillator and RTC ON 2.4 2.7 3.3 TBD(2) TBD(2)
Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5(2) 24.8(2)
Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8(2) 19.2(2)
1. TBD stands for “to be defined”.
2. Based on characterization, not tested in production.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 77/167
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
Table 22. Typical and maximum current consumptions in VBAT mode(1)
Symbol Parameter Conditions
Typ Max
Unit
TA = 25 °C TA = 85 °C TA =
105 °C
VBAT =
1.8 V
VBAT=
2.4 V
VBAT =
3.3 V VBAT = 3.6 V
IDD_VBAT
Backup
domain supply
current
Backup SRAM ON, low-speed
oscillator and RTC ON 1.29 1.42 1.68 TBD(2) TBD(2)
µA
Backup SRAM OFF, low-speed
oscillator and RTC ON 0.62 0.73 0.96 TBD(2) TBD(2)
Backup SRAM ON, RTC OFF 0.79 0.81 0.86 9(2) 16(2)
Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 5(2) 7(2)
1. TBD stands for “to be defined”.
2. Based on characterization, not tested in production.
-36
0
0.5
1
1.5
2
2.5
3
3.5
0 102030405060708090100
IVBAT in (μA)
Te mp e ra t u r e i n (° C )
1.65V
1.8V
2V
2.4V
2.7V
3V
3.3V
3.6V
Electrical characteristics STM32F405xx, STM32F407xx
78/167 Doc ID 022152 Rev 2
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 44: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 24: Peripheral current consumption), the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the MCU supply
-36
0
1
2
3
4
5
6
0 102030405060708090100
IVBAT in (μA)
Te mp e ra t u r e i n (° C )
1.65V
1.8V
2V
2.4V
2.7V
3V
3.3V
3.6V
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 79/167
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or
external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Electrical characteristics STM32F405xx, STM32F407xx
80/167 Doc ID 022152 Rev 2
Table 23. Switching output I/O current consumption
Symbol Parameter Conditions(1) I/O toggling
frequency (fSW)Typ Unit
IDDIO
I/O switching
current
VDD = 3.3 V(2)
C = CINT
2 MHz 0.02
mA
8 MHz 0.14
25 MHz 0.51
50 MHz 0.86
60 MHz 1.30
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.10
8 MHz 0.38
25 MHz 1.18
50 MHz 2.47
60 MHz 2.86
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
2 MHz 0.17
8 MHz 0.66
25 MHz 1.70
50 MHz 2.65
60 MHz 3.48
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
2 MHz 0.23
8 MHz 0.95
25 MHz 3.20
50 MHz 4.69
60 MHz 8.06
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
2 MHz 0.30
8 MHz 1.22
25 MHz 3.90
50 MHz 8.82
60 MHz -(3)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estinated value).
2. This test is performed by cutting the LQFP package pin (pad removal).
3. At 60 MHz, C maximum load is specified 30 pF.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 81/167
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta b l e 2 4 . The MCU is placed
under the following conditions:
At startup, all I/O pins are configured as analog pins by firmware.
All peripherals are disabled unless otherwise mentioned
The code is running from Flash memory and the Flash memory access time is equal to
5 wait states at 168 MHz.
The code is running from Flash memory and the Flash memory access time is equal to
4 wait states at 144 MHz, and the power scale mode is set to 2.
ART accelerator and Cache off.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with one peripheral clocked on (with only the clock applied)
When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 =f
HCLK/2.
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 24. Peripheral current consumption
Peripheral(1) 168 MHz 144 MHz Unit
AHB1
GPIO A 0.49 0.36
mA
GPIO B 0.45 0.33
GPIO C 0.45 0.34
GPIO D 0.45 0.34
GPIO E 0.47 0.35
GPIO F 0.45 0.33
GPIO G 0.44 0.33
GPIO H 0.45 0.34
GPIO I 0.44 0.33
OTG_HS + ULPI 4.57 3.55
CRC 0.07 0.06
BKPSRAM 0.11 0.08
DMA1 6.15 4.75
DMA2 6.24 4.8
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
3.28 2.54
AHB2 OTG_FS 4.59 3.69 mA
DCMI 1.04 0.80
Electrical characteristics STM32F405xx, STM32F407xx
82/167 Doc ID 022152 Rev 2
AHB3 FSMC 2.18 1.67
mA
APB1
TIM2 0.80 0.61
TIM3 0.58 0.44
TIM4 0.62 0.48
TIM5 0.79 0.61
TIM6 0.15 0.11
TIM7 0.16 0.12
TIM12 0.33 0.26
TIM13 0.27 0.21
TIM14 0.27 0.21
PWR 0.04 0.03
USART2 0.17 0.13
USART3 0.17 0.13
UART4 0.17 0.13
UART5 0.17 0.13
I2C1 0.17 0.13
I2C2 0.18 0.13
I2C3 0.18 0.13
SPI2/I2S2(2) 0.17/0.16 0.13/0.12
SPI3/I2S3(2) 0.16/0.14 0.12/0.12
CAN1 0.27 0.21
CAN2 0.26 0.20
DAC 0.14 0.10
DAC channel 1(3) 0.91 0.89
DAC channel 2(4) 0.91 0.89
DAC channel 1 and 2(3)(4) 1.69 1.68
WWDG 0.04 0.04
Table 24. Peripheral current consumption (continued)
Peripheral(1) 168 MHz 144 MHz Unit
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 83/167
5.3.7 Wakeup time from low-power mode
The wakeup times given in Ta bl e 2 5 is measured on a wakeup phase with a 16 MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Ta bl e 1 1 .
APB2
SDIO 0.64 0.54
mA
TIM1 1.47 1.14
TIM8 1.58 1.22
TIM9 0.68 0.54
TIM10 0.45 0.36
TIM11 0.47 0.38
ADC1(5) 2.20 2.10
ADC2(5) 2.04 1.93
ADC3(5) 2.10 2.00
SPI1 0.14 0.12
USART1 0.34 0.27
USART6 0.34 0.28
1. HSE oscillator with 4 MHz crysta) and PLL are on.
2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
3. EN1 bit is set in DAC_CR register.
4. EN2 bit is set in DAC_CR register.
5. ADON bit set in ADC_CR2 register.
Table 24. Peripheral current consumption (continued)
Peripheral(1) 168 MHz 144 MHz Unit
Table 25. Low-power mode wakeup timings
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep mode - 1 - µs
tWUSTOP(2)
Wakeup from Stop mode (regulator in Run mode) - 13 -
µs
Wakeup from Stop mode (regulator in low power mode) - 17 40
Wakeup from Stop mode (regulator in low power mode
and Flash memory in Deep power down mode) -110-
tWUSTDBY(2)(3) Wakeup from Standby mode 260 375 480 µs
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Electrical characteristics STM32F405xx, STM32F407xx
84/167 Doc ID 022152 Rev 2
5.3.8 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Ta bl e 2 6 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 1 1 .
Low-speed external user clock generated from an external source
The characteristics given in Ta bl e 2 7 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 1 1 .
Table 26. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1850MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) -5-pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 27. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1) - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design, not tested in production.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 85/167
Figure 27. High-speed external clock source AC timing diagram
Figure 28. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta b l e 2 8 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
ai17528
OSC_IN
External
STM32F
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
ai17529
OSC32_IN
External
STM32F
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
Electrical characteristics STM32F405xx, STM32F407xx
86/167 Doc ID 022152 Rev 2
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 29). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 29. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta b l e 2 9 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 28. HSE 4-26 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RFFeedback resistor - 200 - kΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
RS = 30 Ω -15-pF
i2HSE driving current VDD = 3.3 V, VIN =V
SS
with 30 pF load --1mA
gmOscillator transconductance Startup 5 - - mA/V
tSU(HSE(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
ai17530
OSC_OUT
OSC_IN fHSE
CL1
RF
STM32F
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 87/167
Note: For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 30). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL
7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 30. Typical application with a 32.768 kHz crystal
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)(2)
1. Based on characterization, not tested in production.
2. TBD stands for “to be defined”.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - TBD - MΩ
C(3)
3. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(4)
4. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
RS = 30 kΩ--TBDpF
I2LSE driving current VDD = 3.3 V, VIN = VSS --TBDµA
gmOscillator Transconductance TBD - - µA/V
tSU(LSE)(5)
5. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
startup time VDD is stabilized - TBD - s
ai17531
OSC32_OUT
OSC32_IN fLSE
CL1
RF
STM32F
32.768 kHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Electrical characteristics STM32F405xx, STM32F407xx
88/167 Doc ID 022152 Rev 2
5.3.9 Internal clock source characteristics
The parameters given in Ta b l e 3 0 and Ta bl e 3 1 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Ta bl e 1 1 .
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
Table 30. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
--1%
Factory-
calibrated
TA = –40 to 105 °C –8 - 4.5 %
TA = –10 to 85 °C –4 - 4 %
TA = 25 °C –1 - 1 %
tsu(HSI)(3)
3. Guaranteed by design, not tested in production.
HSI oscillator
startup time -2.24 µs
IDD(HSI)
HSI oscillator
power consumption -6080µA
Table 31. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Based on characterization, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 89/167
Figure 31. ACCLSI versus temperature
5.3.10 PLL characteristics
The parameters given in Ta b l e 3 2 and Ta bl e 3 3 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Ta b l e 1 1 .
-36










.ORMALIZEDDEVIATI ON

4E M P E R AT U R E  #
MAX
AVG
MIN
Table 32. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) 0.95(2) 12.10MHz
fPLL_OUT PLL multiplier output clock 24 - 168 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock -48 -MHz
fVCO_OUT PLL VCO output 192 - 432 MHz
tLOCK PLL lock time VCO freq = 192 MHz 75 - 200 µs
VCO freq = 432 MHz 100 - 300
Electrical characteristics STM32F405xx, STM32F407xx
90/167 Doc ID 022152 Rev 2
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples -330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 32. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 33. PLLI2S (audio PLL) characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(2) 0.95(3) 12.10MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz
fVCO_OUT PLLI2S VCO output 192 - 432 MHz
tLOCK PLLI2S lock time VCO freq = 192 MHz 75 - 200 µs
VCO freq = 432 MHz 100 - 300
Jitter(4)
Master I2S clock jitter
Cycle to cycle at
12,343 MHz on
48KHz period,
N=432, P=4, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12,343 MHz
N = 432, P = 4, R = 5
on 256 samples
TBD - TBD ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples - 400 - ps
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 91/167
IDD(PLLI2S)(5) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(5) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. TBD stands for “to be defined”.
2. Take care of using the appropriate division factor M to have the specified PLL input clock values.
3. Guaranteed by design, not tested in production.
4. Value given with main PLL running.
5. Based on characterization, not tested in production.
Table 33. PLLI2S (audio PLL) characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F405xx, STM32F407xx
92/167 Doc ID 022152 Rev 2
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 40: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and fVCO_OUT = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
The error in modulation depth is consequently: 2.0 - 1.99954 = 0.00046%.
Table 34. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - 2151-
1. Guaranteed by design, not tested in production.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]25==
INCSTEP round 215 1()md fVCO_OUT
××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×25×()[]1258md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()fVCO_OUT
×()=
mdquantized% 25 1258×100×5×()215 1()240×()1.99954%(peak)==
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 93/167
Figure 32 and Figure 33 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 32. PLL output clock waveforms in center spread mode
Figure 33. PLL output clock waveforms in down spread mode
5.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE TMODE
MD
AI
MD
&REQUENCY0,,?/54
4IME
&
TMODE TMODE
MD
AI
Table 35. Flash memory characteristics(1)
Symbol Parameter Conditions Min Max Unit
IDD Supply current
Read mode
fHCLK = 168 MHz with 5 wait states,
VDD = 3.3 V
-100mA
Write / Erase modes
fHCLK = 168 MHz, VDD = 3.3 V -TBDmA
Electrical characteristics STM32F405xx, STM32F407xx
94/167 Doc ID 022152 Rev 2
1. TBD stands for “to be defined”.
Table 36. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Based on characterization, not tested in production.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1121
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.8 - 3.6 V
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 95/167
Table 38. Flash memory endurance and data retention
5.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
Table 37. Flash memory programming with VPP(1)
1. TBD stands for “to be defined”.
Symbol Parameter Conditions Min(1) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
- 16 100(3)
3. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - TBD -
tERASE64KB Sector (64 KB) erase time - TBD -
tERASE128KB Sector (128 KB) erase time - TBD -
tME Mass erase time - 6.8 -
Vprog Programming voltage 2.7 - 3.6 V
VPP VPP voltage range 7 - 9 V
IPP
Minimum current sunk on
the VPP pin 10 - - mA
tVPP(4)
4. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - 1 hour
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Electrical characteristics STM32F405xx, STM32F407xx
96/167 Doc ID 022152 Rev 2
A device reset allows normal operations to be resumed.
The test results are given in Tabl e 3 9 . They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 39. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
4A
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 97/167
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
5.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 40. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/168 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator enabled
0.1 to 30 MHz 32
dBµV30 to 130 MHz 25
130 MHz to 1GHz 29
SAE EMI Level 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator and clock dithering
enabled
0.1 to 30 MHz 19
dBµV30 to 130 MHz 16
130 MHz to 1GHz 18
SAE EMI level 3.5 -
Table 41. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114 2 2000(2)
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to JESD22-C101 II 500
1. Based on characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
Electrical characteristics STM32F405xx, STM32F407xx
98/167 Doc ID 022152 Rev 2
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
5.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Tabl e 4 3 .
Table 42. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 43. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on all FT pins –5 +0 mA
Injected current on any other pin –5 +5
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 99/167
5.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 4 are derived from tests
performed under the conditions summarized in Tabl e 1 1 . All I/Os are CMOS and TTL
compliant.
Table 44. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage
TTL ports
2.7 V VDD 3.6 V
VSS–0.3 - 0.8
V
VIH(1) TTa/TC(2) I/O input high level voltage 2.0 - VDD+0.3
FT(3) I/O input high level voltage 2.0 - 5.5
VIL Input low level voltage
CMOS ports
1.8 V VDD 3.6 V
VSS–0.3 - 0.3VDD
VIH(1)
TTa/TC I/O input high level voltage
0.7VDD
-3.6
(4)
FT I/O input high level voltage
-5.2
(4)
CMOS ports
2.0 V VDD 3.6 V
-5.5
(4)
Vhys
I/O Schmitt trigger voltage hysteresis(5) -200-
mV
IO FT Schmitt trigger voltage
hysteresis(5) 5% VDD(4) - -
Ilkg
I/O input leakage current (6) VSS VIN VDD --±1µA
I/O FT input leakage current (6) VIN = 5V - - 3
RPU
Weak pull-up equivalent
resistor(7)
All pins
except for
PA10 and
PB12 VIN = VSS
30 40 50
kΩ
PA10 and
PB12 81115
RPD
Weak pull-down
equivalent resistor
All pins
except for
PA10 and
PB12 VIN = VDD
30 40 50
PA10 and
PB12 81115
CIO(8) I/O pin capacitance 5 pF
1. If VIH maximum value cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum value.
2. TTa = 3.3 V tolerant I/O directly connected to ADC; TC = standard 3.3 V I/O.
3. FT = 5 V tolerant.
4. With a minimum of 100 mV.
5. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
8. Guaranteed by design, not tested in production.
Electrical characteristics STM32F405xx, STM32F407xx
100/167 Doc ID 022152 Rev 2
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Ta b le 9 ).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Ta b l e 9 ).
Output voltage levels
Unless otherwise specified, the parameters given in Ta b l e 4 5 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Ta bl e 1 1 . All I/Os are CMOS and TTL compliant.
Table 45. Output voltage characteristics(1)
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
Symbol Parameter Conditions Min Max Unit
VOL(2)
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 9
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 9 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
VOL (2) Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4 -
VOL(2)(4)
4. Based on characterization data, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3 -
VOL(2)(4) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 101/167
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 34 and
Ta bl e 4 6 , respectively.
Unless otherwise specified, the parameters given in Ta b l e 4 6 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 1 1 .
Table 46. I/O AC characteristics(1)(2)(3)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(4)
CL = 50 pF, VDD > 2.70 V - - 2
MHz
CL = 50 pF, VDD > 1.8 V - - 2
CL = 10 pF, VDD > 2.70 V - - TBD
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time CL = 50 pF, VDD = 1.8 V to
3.6 V
--TBD
ns
tr(IO)out
Output low to high level rise
time --TBD
01
fmax(IO)out Maximum frequency(4)
CL = 50 pF, VDD > 2.70 V - - 25
MHz
CL = 50 pF, VDD > 1.8 V - - 12.5(5)
CL = 10 pF, VDD > 2.70 V - - 50(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 50 pF, VDD < 2.7 V - - TBD
ns
CL = 10 pF, VDD > 2.7 V - - TBD
tr(IO)out
Output low to high level rise
time
CL = 50 pF, VDD < 2.7 V - - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
10
fmax(IO)out Maximum frequency(4)
CL = 40 pF, VDD > 2.70 V - - 50(5)
MHz
CL = 40 pF, VDD > 1.8 V - - 25
CL = 10 pF, VDD > 2.70 V - - 100(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD
nsCL = 10 pF, VDD > 2.7 V - - TBD
tr(IO)out
Output low to high level rise
time
CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
Electrical characteristics STM32F405xx, STM32F407xx
102/167 Doc ID 022152 Rev 2
Figure 34. I/O AC characteristics definition
11
Fmax(IO)out Maximum frequency(4)
CL = 30 pF, VDD > 2.70 V - - 100(5)
MHz
CL = 30 pF, VDD > 1.8 V - - 50(5)
CL = 10 pF, VDD > 2.70 V - - 200(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD
ns
CL = 10 pF, VDD > 2.7 V - - TBD
tr(IO)out
Output low to high level rise
time
CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
-t
EXTIpw
Pulse width of external signals
detected by the EXTI
controller
10 - - ns
1. Based on characterization data, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
3. TBD stands for “to be defined”.
4. The maximum frequency is defined in Figure 34.
5. For maximum frequencies above 50 MHz, the compensation cell should be used.
Table 46. I/O AC characteristics(1)(2)(3) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
ai14131
10%
90%
50%
tr(IO)out
OUTPUT
EXT ERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
tr(IO)out
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 103/167
5.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Ta b l e 4 4 ).
Unless otherwise specified, the parameters given in Ta b l e 4 7 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 1 1 .
Figure 35. Recommended NRST pin protection
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 47. Otherwise the reset is not taken into account by the device.
Table 47. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage –0.5 - 0.8 V
VIH(NRST)(1) NRST Input high level voltage 2 - VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis - 200 - mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse - - 100 ns
VNF(NRST)(1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal
Reset source 20 - - µs
AIC
34-&XXX
205
.234

6$$
&ILTER
)NTERNAL2ESET
&
%XTERNAL
RESETCIRCUIT
Electrical characteristics STM32F405xx, STM32F407xx
104/167 Doc ID 022152 Rev 2
5.3.18 TIM timer characteristics
The parameters given in Ta b l e 4 8 and Ta bl e 4 9 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 48. Characteristics of TIMx connected to the APB1 domain(1)
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
84 MHz
1-
tTIMxCLK
11.9 - ns
AHB/APB1
prescaler = 1,
fTIMxCLK = 42 MHz
1-
tTIMxCLK
23.8 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 84 MHz
APB1= 42 MHz
0fTIMxCLK/2 MHz
042MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
0.0119 780 µs
32-bit counter clock period
when internal clock is
selected
1-
tTIMxCLK
0.0119 51130563 µs
tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK
-51.1 s
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 105/167
5.3.19 Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 5 0 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Ta b l e 1 1 .
The STM32F405xx and STM32F407xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Ta b l e 5 0 . Refer also to Section 5.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 49. Characteristics of TIMx connected to the APB2 domain(1)
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
168 MHz
1-
tTIMxCLK
5.95 - ns
AHB/APB2
prescaler = 1,
fTIMxCLK = 84 MHz
1-
tTIMxCLK
11.9 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 168 MHz
APB2 = 84 MHz
0fTIMxCLK/2 MHz
084MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected
1 65536 tTIMxCLK
tMAX_COUNT Maximum possible count - 32768 tTIMxCLK
Electrical characteristics STM32F405xx, STM32F407xx
106/167 Doc ID 022152 Rev 2
Table 50. I2C characteristics
Symbol Parameter
Standard mode I2C(1)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 - µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
-0
(4)
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 20 + 0.1Cb300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 107/167
Figure 36. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 51. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
AIB
34!24
3$ !
Ω
KΩ
)£#BUS
KΩ
Ω
6$$
6$$
34-&XX
3$!
3#,
TF3$! TR3$!
3#,
TH34!
TW3#,(
TW3#,,
TSU3$!
TR3#, TF3#,
TH3$!
3 4!242%0%!4%$
34!24
TSU34!
TSU34/
34/0 TW34/34!
Electrical characteristics STM32F405xx, STM32F407xx
108/167 Doc ID 022152 Rev 2
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 5 2 for SPI or in Ta b l e 5 3 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Ta b le 1 1 .
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 52. SPI characteristics(1)(2)
1. Remapped SPI1 characteristics to be determined.
2. TBD stands for “to be defined”.
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency Master mode - 37.5 MHz
Slave mode - 37.5
tr(SCL)
tf(SCL)
SPI clock rise and fall
time Capacitive load: C = 30 pF - 8 ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS)(3)
3. Based on characterization, not tested in production.
NSS setup time Slave mode 4tPCLK -
ns
th(NSS)(3) NSS hold time Slave mode 2tPCLK -
tw(SCLH)(3)
tw(SCLL)(3) SCK high and low time Master mode, fPCLK = TBD MHz TBD TBD
tsu(MI) (3)
tsu(SI)(3) Data input setup time Master mode 5 -
Slave mode 5 -
th(MI) (3)
th(SI)(3) Data input hold time Master mode 5 -
Slave mode 4 -
ta(SO)(3)(4)
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access
time Slave mode, fPCLK = 20 MHz 0 3 tPCLK
tdis(SO)(3)(5)
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable
time Slave mode 2 10
tv(SO) (3)(1) Data output valid time Slave mode (after enable edge) - 25
tv(MO)(3)(1) Data output valid time Master mode (after enable edge) - 5
th(SO)(3)
Data output hold time Slave mode (after enable edge) 15 -
th(MO)(3) Master mode (after enable edge) 2 -
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 109/167
Figure 37. SPI timing diagram - slave mode and CPHA = 0
Figure 38. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT P UT
CPHA= 0
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT P UT
CPHA=1
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
Electrical characteristics STM32F405xx, STM32F407xx
110/167 Doc ID 022152 Rev 2
Figure 39. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14136
SCK Input
CPHA= 0
MOSI
OUTUT
MISO
INP UT
CPHA= 0
MS BIN
M SB OUT
BI T6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B IT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 111/167
Table 53. I2S characteristics(1)
1. TBD stands for “to be defined”.
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency Master TBD TBD MHz
Slave 0 TBD
tr(CK)
tf(CK)
I2S clock rise and fall time capacitive load
CL= 50 pF - TBD
ns
tv(WS) (2)
2. Based on design simulation and/or characterization results, not tested in production.
WS valid time Master TBD -
th(WS) (2) WS hold time Master TBD -
tsu(WS) (2) WS setup time Slave TBD -
th(WS) (2) WS hold time Slave TBD -
tw(CKH) (2)
tw(CKL) (2) CK high and low time Master fPCLK= TBD,
presc = TBD TBD -
tsu(SD_MR) (2)
tsu(SD_SR) (2) Data input setup time Master receiver
Slave receiver
TBD
TBD -
th(SD_MR)(2)(3)
th(SD_SR) (2)(3)
3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
Data input hold time Master receiver
Slave receiver
TBD
TBD -
th(SD_MR) (2)
th(SD_SR) (2) Data input hold time Master fPCLK = TBD
Slave fPCLK = TBD
TBD
TBD -
tv(SD_ST) (2)(3) Data output valid time
Slave transmitter
(after enable edge) - TBD
fPCLK = TBD - TBD
th(SD_ST) (2) Data output hold time Slave transmitter
(after enable edge) TBD -
tv(SD_MT) (2)(3) Data output valid time
Master transmitter
(after enable edge) - TBD
fPCLK = TBD TBD TBD
th(SD_MT) (2) Data output hold time Master transmitter
(after enable edge) TBD -
Electrical characteristics STM32F405xx, STM32F407xx
112/167 Doc ID 022152 Rev 2
Figure 40. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 41. I2S master timing diagram (Philips protocol)(1)
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS)tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive(2)
LSB transmit(2)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 113/167
USB OTG FS characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 54. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 µs
Table 55. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2)
2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM) VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
Electrical characteristics STM32F405xx, STM32F407xx
114/167 Doc ID 022152 Rev 2
Figure 42. USB OTG FS timings: definition of data signal rise and fall time
Table 56. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
Table 57. USB FS clock timing parameters(1)(2)
1. Guaranteed by design, not tested in production.
2. TBD stands for “to be defined”.
Parameter Symbol Min Nominal Max Unit
fHCLK value to guarantee proper operation of
USB FS interface - 14.2 MHz
Frequency (first transition) 8-bit ±10% FSTART_8BIT TBD TBD TBD MHz
Frequency (steady state) ±500 ppm FSTEADY TBD TBD TBD MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT TBD TBD TBD %
Duty cycle (steady state) ±500 ppm DSTEADY TBD TBD TBD %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY --TBDms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV --TBD
ms
Host TSTART_HOST ---
PHY preparation time after the first transition
of the input clock TPREP ---µs
ai14137
tf
Differen tial
data lines
VSS
V
CR S
tr
Crossover
points
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 115/167
USB HS characteristics
Ta bl e 5 8 shows the USB HS operating voltage.
Figure 43. ULPI timing diagram
Table 58. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Table 59. USB HS clock timing parameters(1)
1. Guaranteed by design, not tested in production.
Parameter Symbol Min Nominal Max Unit
fHCLK value to guarantee proper operation of
USB HS interface 30 MHz
Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz
Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %
Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY --1.4ms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV --5.6
ms
Host TSTART_HOST ---
PHY preparation time after the first transition
of the input clock TPREP ---µs
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
DATA)N
BIT
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$$
T$#
T($
T3$
T(#
T3#
AIC
T$#
Electrical characteristics STM32F405xx, STM32F407xx
116/167 Doc ID 022152 Rev 2
Ethernet characteristics
Ta bl e 6 1 shows the Ethernet operating voltage.
Ta bl e 6 2 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 44 shows the corresponding timing diagram.
Figure 44. Ethernet SMI timing diagram
Table 60. ULPI timing
Parameter Symbol
Value(1)
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Unit
Min. Max.
Control in (ULPI_DIR) setup time tSC
-2.0
ns
Control in (ULPI_NXT) setup time - 1.5
Control in (ULPI_DIR, ULPI_NXT) hold time tHC -
Data in setup time tSD -2.0
Data in hold time tHD 0-
Control out (ULPI_STP) setup time and hold time tDC -9.2
Data out available from clock rising edge tDD - 10.7
Table 61. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Table 62. Dynamics characteristics: Ethernet MAC signals for SMI(1)
1. TBD stands for “to be defined”.
Symbol Rating Min Typ Max Unit
tMDC MDC cycle time (1.71 MHz, AHB = 72 MHz) TBD TBD TBD ns
td(MDIO) MDIO write data valid time TBD TBD TBD ns
tsu(MDIO) Read data setup time TBD TBD TBD ns
th(MDIO) Read data hold time TBD TBD TBD ns
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
ai15666c
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 117/167
Ta bl e 6 3 gives the list of Ethernet MAC signals for the RMII and Figure 45 shows the
corresponding timing diagram.
Figure 45. Ethernet RMII timing diagram
Ta bl e 6 4 gives the list of Ethernet MAC signals for MII and Figure 45 shows the
corresponding timing diagram.
Figure 46. Ethernet MII timing diagram
Table 63. Dynamics characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - - ns
tih(RXD) Receive data hold time 1 - - ns
tsu(CRS) Carrier sense set-up time 0.5 - - ns
tih(CRS) Carrier sense hold time 2 - - ns
td(TXEN) Transmit enable valid delay time 8 9.5 11 ns
td(TXD) Transmit data valid delay time 8.5 10 11.5 ns
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
t
d(TXEN)
t
d(TXD)
t
su(RXD)
t
su(CRS)
t
ih(RXD)
t
ih(CRS)
ai15667
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
Electrical characteristics STM32F405xx, STM32F407xx
118/167 Doc ID 022152 Rev 2
CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Ta b l e 6 5 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Ta b l e 1 1 .
Table 64. Dynamics characteristics: Ethernet MAC signals for MII(1)
1. TBD stands for “to be defined”.
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time TBD TBD TBD ns
tih(RXD) Receive data hold time TBD TBD TBD ns
tsu(DV) Data valid setup time TBD TBD TBD ns
tih(DV) Data valid hold time TBD TBD TBD ns
tsu(ER) Error setup time TBD TBD TBD ns
tih(ER) Error hold time TBD TBD TBD ns
td(TXEN) Transmit enable valid delay time 13.4 15.5 17.7 ns
td(TXD) Transmit data valid delay time 12.9 16.1 19.4 ns
Table 65. ADC characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply 1.8(2) -3.6V
VREF+ Positive reference voltage 1.8(2)(3)(4) -V
DDA V
fADC ADC clock frequency VDDA = 1.8(2)(4) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V(4) 0.6 30 36 MHz
fTRIG(5) External trigger frequency fADC = 30 MHz - - TBD kHz
--171/f
ADC
VAIN Conversion voltage range(6) 0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(5) External input impedance See Equation 1 for
details --50kΩ
RADC(5)(7) Sampling switch resistance - - 6 kΩ
CADC(5) Internal sample and hold
capacitor -4-pF
tlat(5) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
--3
(8) 1/fADC
tlatr(5) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
--2
(8) 1/fADC
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 119/167
tS(5) Sampling time fADC = 30 MHz 0.100 - 16 µs
3 - 416 1/fADC
tSTAB(5) Power-up time - 2 3 µs
tCONV(5) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.416 - 12.95 µs
fADC = 30 MHz
10-bit resolution 0.360 - 12.89 µs
fADC = 30 MHz
8-bit resolution 0.305 - 12.84 µs
fADC = 30 MHz
6-bit resolution 0.250 - 12.79 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(5)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC --2Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
--6Msps
IVREF+(5)
ADC VREF DC current
consumption in conversion
mode
fADC = 30 MHz
3 sampling time
12-bit resolution
- 300 500 µA
fADC = 30 MHz
480 sampling time
12-bit resolution
--TBDµA
IDDA(5)
ADC VDDA DC current
consumption in conversion
mode
fADC = 30 MHz
3 sampling time
12-bit resolution
-1.61.8
mA
fADC = 30 MHz
480 sampling time
12-bit resolution
--TBD
1. TBD stands for “to be defined”.
2. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
3. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
4. VDDA -VREF+ < 1.2 V.
5. Based on characterization, not tested in production.
6. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
7. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
8. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 65.
Table 65. ADC characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F405xx, STM32F407xx
120/167 Doc ID 022152 Rev 2
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Note: ADC accuracy vs. negative injection current: Injecting a negative current on any of the
standard (non-robust) analog input pins should be avoided as this significantly reduces the
accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
Table 66. ADC accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
3. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device
operates in a reduced temperature range (0 to 70 °C).
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
-------------------------------------------------------------- RADC
=
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 121/167
Figure 47. ADC accuracy characteristics
1. See also Ta b l e 6 6 .
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 48. Typical connection diagram using the ADC
1. Refer to Ta b l e 6 5 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
AIC
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3")$%!,
ai17534
STM32F
VDD
AINx
IL±1 µA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
C
ADC(1)
12-bit
converter
Sample and hold ADC
converter
Electrical characteristics STM32F405xx, STM32F407xx
122/167 Doc ID 022152 Rev 2
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 49 or Figure 50,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 49. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
Figure 50. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
VREF+
STM32F
VDDA
VSSA/V REF-
1 µF // 10 nF
1 µF // 10 nF
ai17535
(See note 1)
(See note 1)
VREF+/VDDA
STM32F
1 µF // 10 nF
VREF–/VSSA
ai17536
(See note 1)
(See note 1)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 123/167
5.3.21 Temperature sensor characteristics
5.3.22 VBAT monitoring characteristics
5.3.23 Embedded reference voltage
The parameters given in Ta b l e 6 9 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta b l e 1 1 .
Table 67. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 mV/°C
V25(1) Voltage at 25 °C - 0.76 V
tSTART(2) Startup time - 6 10 µs
TS_temp(3)(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
Table 68. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 2 -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5- -µs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 69. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage 10 - - µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3 V - 3 5 mV
TCoeff(2) Temperature coefficient - 30 50 ppm/°C
tSTART(2) Startup time - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Electrical characteristics STM32F405xx, STM32F407xx
124/167 Doc ID 022152 Rev 2
5.3.24 DAC electrical characteristics
Table 70. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.8(1) -3.6 V
VREF+ Reference supply voltage 1.8(1) -3.6VV
REF+ VDDA
VSSA Ground 0 - 0 V
RLOAD(2) Resistive load with buffer ON 5 - - kΩ
RO(2) Impedance output with buffer
OFF -- 15 kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --V
DDA – 0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --V
REF+ – 1LSB V
IVREF+(3)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
- 170 240
µA
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-50 75
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(3)
DAC DC VDDA current
consumption in quiescent
mode (Standby mode)
- 280 380 µA With no load, middle code (0x800)
on the inputs
- 475 625 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
-- ±0.5 LSB
Given for the DAC in 10-bit
configuration.
-- ±2 LSB
Given for the DAC in 12-bit
configuration.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 125/167
INL(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-- ±1 LSB
Given for the DAC in 10-bit
configuration.
-- ±4 LSB
Given for the DAC in 12-bit
configuration.
Offset(3)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-- ±10 mV
Given for the DAC in 12-bit
configuration
-- ±3 LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-- ±12LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(3) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(3)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6 µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(3) Total Harmonic Distortion
Buffer ON -- - dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1 MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
2. Guaranteed by design, not tested in production.
3. Guaranteed by characterization, not tested in production.
Table 70. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Electrical characteristics STM32F405xx, STM32F407xx
126/167 Doc ID 022152 Rev 2
Figure 51. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
5.3.25 FSMC characteristics
Asynchronous waveforms and timings
Figure 52 through Figure 55 represent asynchronous waveforms and Ta bl e 7 1 through
Ta bl e 7 4 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 1
AddressHoldTime = 0x1
DataSetupTime = 0x1
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
R
LOAD
C
LOAD
Buffered/Non-buffered DAC
DACx_OUT
Buffer(1)
12-bit
digital to
analog
converter
ai17157
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 127/167
Figure 52. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2THCLK–0.5 2 THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 3 ns
tw(NOE) FSMC_NOE low time 2THCLK–2 2THCLK+ 2 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 4.5 ns
th(A_NOE) Address hold time after FSMC_NOE high 4 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+4 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK ns
$ATA
&3-#?.%
&3-#?.",;=
&3-#?$;=
T
V",?.%
TH$ATA?.%
&3-#?./%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TSU$ATA?.%
TW.%
AIC
W./%
TTV./%?.% TH.%?./%
TH$ATA?./%
TH!?./%
TH",?./%
TSU$ATA?./%
&3-#?.!$6
TV.!$6?.%
TW.!$6
Electrical characteristics STM32F405xx, STM32F407xx
128/167 Doc ID 022152 Rev 2
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK+0.5 ns
tw(NWE) FSMC_NWE low time THCLK–1 THCLK+2 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK–1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK– 2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+3 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK–1 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK+0.5 ns
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_D[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:0]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
ai14990
FSMC_NADV(1)
tv(NADV_NE)
tw(NADV)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 129/167
Figure 54. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 73. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK–1 3THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK–0.5 2THCLK+0.5 ns
tw(NOE) FSMC_NOE low time THCLK–1 THCLK+1 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+1 ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK–1 - ns
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 2 ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+4 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
NBL
Data
FSMC_NBL[1:0]
FSMC_AD[15:0]
t
v(BL_NE)
th(Data_NE)
Address
FSMC_A[25:16]
t
v(A_NE)
FSMC_NWE
tv(A_NE)
ai14892b
Address
FSMC_NADV
tv(NADV_NE)
tw(NADV)
tsu(Data_NE)
t
h(AD_NADV)
FSMC_NE
FSMC_NOE
tw(NE)
tw(NOE)
tv(NOE_NE) th(NE_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE) th(Data_NOE)
Electrical characteristics STM32F405xx, STM32F407xx
130/167 Doc ID 022152 Rev 2
Figure 55. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 74. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4THCLK–0.5 4THCLK+3 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK -0.5 ns
tw(NWE) FSMC_NWE low tim e 2THCLK–0.5 2THCLK+3 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK -ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 1 ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK–2 - ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK -ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK–2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK–0.5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK -ns
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_AD[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:16]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(A_NE)
tw(NE)
ai14891B
Address
FSMC_NADV
tv(NADV_NE)
tw(NADV)
tv(Data_NADV)
t
h(AD_NADV)
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 131/167
Synchronous waveforms and timings
Figure 56 through Figure 59 represent synchronous waveforms and Ta b l e 7 6 through
Ta bl e 7 8 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 60 MHz).
Figure 56. Synchronous multiplexed NOR/PSRAM read timings
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?./%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,./%, TD#,+,./%(
TD#,+,!$6
TD#,+,!$)6
TSU!$6#,+(
TH#,+(!$6
TSU!$6#,+( TH#,+(!$6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIG
Electrical characteristics STM32F405xx, STM32F407xx
132/167 Doc ID 022152 Rev 2
Table 75. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 2 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 4.5 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 - ns
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 133/167
Figure 57. Synchronous multiplexed PSRAM write timings
Table 76. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 0.5 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 3 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0 - ns
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?.7%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
AIG
TD#,+,$ATA
&3-#?.",
Electrical characteristics STM32F405xx, STM32F407xx
134/167 Doc ID 022152 Rev 2
Figure 58. Synchronous non-multiplexed NOR/PSRAM read timings
Table 77. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK –0.5 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0.5 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 2 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0.5 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?./%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,./%, TD#,+,./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIF
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 135/167
Figure 59. Synchronous non-multiplexed PSRAM write timings
Table 78. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 7 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 6 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 6 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 2 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 3 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 3 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?.7%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&3-#?.",
TD#,+,.",(
Electrical characteristics STM32F405xx, STM32F407xx
136/167 Doc ID 022152 Rev 2
PC Card/CompactFlash controller waveforms and timings
Figure 60 through Figure 65 represent synchronous waveforms, and Ta bl e 7 9 and Ta b le 8 0
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
COM.FSMC_SetupTime = 0x04;
COM.FSMC_WaitSetupTime = 0x07;
COM.FSMC_HoldSetupTime = 0x04;
COM.FSMC_HiZSetupTime = 0x00;
ATT.FSMC_SetupTime = 0x04;
ATT.FSMC_WaitSetupTime = 0x07;
ATT.FSMC_HoldSetupTime = 0x04;
ATT.FSMC_HiZSetupTime = 0x00;
IO.FSMC_SetupTime = 0x04;
IO.FSMC_WaitSetupTime = 0x07;
IO.FSMC_HoldSetupTime = 0x04;
IO.FSMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Figure 60. PC Card/CompactFlash controller waveforms for common memory read
access
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
FSMC_NWE
tw(NOE)
FSMC_N
OE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2(1)
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NCE4_1-NOE)
tsu(D-NOE) th(NOE-D)
tv(NCEx-A)
td(NREG-NCEx)
td(NIORD-NCEx)
th(NCEx-AI)
th(NCEx-NREG)
th(NCEx-NIORD)
th(NCEx-
NIOWR
)
ai14895b
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 137/167
Figure 61. PC Card/CompactFlash controller waveforms for common memory write
access
td(NCE4_1-NWE) tw(NWE)
th(NWE-D)
tv(NCE4_1-A)
td(NREG-NCE4_1)
td(NIORD-NCE4_1)
th(NCE4_1-AI)
MEMxHIZ =1
tv(NWE-D)
th(NCE4_1-NREG)
th(NCE4_1-NIORD)
th(NCE4_1-NIOWR)
ai14896b
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
td(D-NWE)
FSMC_NCE4_2 High
Electrical characteristics STM32F405xx, STM32F407xx
138/167 Doc ID 022152 Rev 2
Figure 62. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
td(NCE4_1-NOE) tw(NOE)
tsu(D-NOE) th(NOE-D)
tv(NCE4_1-A) th(NCE4_1-AI)
td(NREG-NCE4_1) th(NCE4_1-NREG)
ai14897b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NOE-NCE4_1)
High
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 139/167
Figure 63. PC Card/CompactFlash controller waveforms for attribute memory write
access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 64. PC Card/CompactFlash controller waveforms for I/O space read access
tw(NWE)
tv(NCE4_1-A)
td(NREG-NCE4_1)
th(NCE4_1-AI)
th(NCE4_1-NREG)
tv(NWE-D)
ai14898b
FSMC_NWE
FSMC_NOE
FSMC_D[7:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
High
td(NCE4_1-NWE)
td(NIORD-NCE4_1) tw(NIORD)
tsu(D-NIORD) td(NIORD-D)
tv(NCEx-A) th(NCE4_1-AI)
ai14899B
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
Electrical characteristics STM32F405xx, STM32F407xx
140/167 Doc ID 022152 Rev 2
Figure 65. PC Card/CompactFlash controller waveforms for I/O space write access
TD.#%?.)/72 TW.)/72
TV.#%X! TH.#%?!)
TH.)/72$
!44X():
TV.)/72$
AIC
&3-#?.7%
&3-#?./%
&3-#?$;=
&3-#?!;=
&3-#?.#%?
&3-#?.#%?
&3-#?.2%'
&3-#?.)/72
&3-#?.)/2$
Table 79. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol Parameter Min Max Unit
tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns
th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+4 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+0.5 ns
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK +0.5 ns
tw(NOE) FSMC_NOE low width 8THCLK–1 8THCLK+1 ns
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+2.5 - ns
tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4.5 - ns
th(N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 3 - ns
tw(NWE) FSMC_NWE low width 8THCLK–0.5 8THCLK+ 3 ns
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK–1 -ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK –1 - ns
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK –1 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 141/167
NAND controller waveforms and timings
Figure 66 through Figure 69 represent synchronous waveforms, and Ta bl e 8 1 and Ta b le 8 2
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FSMC_WaitSetupTime = 0x03;
COM.FSMC_HoldSetupTime = 0x02;
COM.FSMC_HiZSetupTime = 0x01;
ATT.FSMC_SetupTime = 0x01;
ATT.FSMC_WaitSetupTime = 0x03;
ATT.FSMC_HoldSetupTime = 0x02;
ATT.FSMC_HiZSetupTime = 0x01;
Bank = FSMC_Bank_NAND;
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
ECC = FSMC_ECC_Enable;
ECCPageSize = FSMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 80. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FSMC_NIOWR low width 8THCLK –1 - ns
tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK– 1 ns
th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK– 2 - ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 2.5 ns
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK–1.5 - ns
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 2 ns
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 1.5 - ns
tw(NIORD) FSMC_NIORD low width 8THCLK–0.5 - ns
tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9 - ns
td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Electrical characteristics STM32F405xx, STM32F407xx
142/167 Doc ID 022152 Rev 2
Figure 66. NAND controller waveforms for read access
Figure 67. NAND controller waveforms for write access
&3-#?.7%
&3-#?./%.2%
&3-#?$;=
TSU$./% TH./%$
AIC
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
TH.7%$
TV.7%$
AIC
&3-#?.7%
&3-#?./%.2%
&3-#?$;=
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%.7% TH.7%!,%
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 143/167
Figure 68. NAND controller waveforms for common memory read access
Figure 69. NAND controller waveforms for common memory write access
Table 81. Switching characteristics for NAND Flash read cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(N0E) FSMC_NOE low width 4THCLK
0.5 4THCLK+ 3 ns
tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 10 - ns
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 0 - ns
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK– 2 - ns
&3-#?.7%
&3-#?.
/%
&3-#?$;=
TW./%
TSU$./% TH./%$
AIC
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
TW.7%
TH.7%$
TV.7%$
AIC
&3-#?.7%
&3-#?.
/%
&3-#?$;=
TD$.7%
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
Electrical characteristics STM32F405xx, STM32F407xx
144/167 Doc ID 022152 Rev 2
5.3.26 Camera interface (DCMI) timing specifications
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Ta b l e 8 4 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Ta b l e 1 1 .
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 70. SDIO high-speed mode
Table 82. Switching characteristics for NAND Flash write cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NWE) FSMC_NWE low width 4THCLK–1 4THCLK+ 3 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns
th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK –2 - ns
td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK–3 - ns
td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK ns
th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK–2 - ns
Table 83. DCMI characteristics
Symbol Parameter Conditions Min Max Unit
Frequency ratio DCMI_PIXCLK/fHCLK(1)
1. Maximum value of DCMI_PIXCLK = 54 MHz.
0.4
tW(CKH)
CK
D, CMD
(output)
D, CMD
(input)
tC
tW(CKL)
tOV tOH
tISU tIH
tftr
ai14887
STM32F405xx, STM32F407xx Electrical characteristics
Doc ID 022152 Rev 2 145/167
Figure 71. SD default mode
5.3.28 RTC characteristics
Table 84. SD / MMC characteristics(1)
1. TBD stands for “to be defined”.
Symbol Parameter Conditions Min Max Unit
fPP Clock frequency in data transfer
mode CL 30 pF TBD TBD MHz
- SDIO_CK/fPCLK2 frequency ratio - - TBD -
tW(CKL) Clock low time, fPP = 16 MHz CL 30 pF TBD -
ns
tW(CKH) Clock high time, fPP = 16 MHz CL 30 pF TBD -
trClock rise time CL 30 pF - TBD
tfClock fall time CL 30 pF - TBD
CMD, D inputs (referenced to CK)
tISU Input setup time CL 30 pF TBD -
ns
tIH Input hold time CL 30 pF TBD -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time CL 30 pF - TBD
ns
tOH Output hold time CL 30 pF TBD -
CMD, D outputs (referenced to CK) in SD default mode(2)
2. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
tOVD Output valid default time CL 30 pF - TBD
ns
tOHD Output hold default time CL 30 pF TBD -
CK
D, CMD
(output)
tOVD tOHD
ai14888
Table 85. RTC characteristics
Symbol Parameter Conditions Min Max Unit
-fPCLK1/RTCCLK frequency
ratio
Any read/write
operation from/to an
RTC register
4--
Package characteristics STM32F405xx, STM32F407xx
146/167 Doc ID 022152 Rev 2
6 Package characteristics
6.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
STM32F405xx, STM32F407xx Package characteristics
Doc ID 022152 Rev 2 147/167
Figure 72. LQFP64 – 10 x 10 mm 64 pin low-profile
quad flat package outline(1) Figure 73. Recommended footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
A
A2
A1
c
L1
L
EE1
D
D1
e
b
ai14398b
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Table 86. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 12.000 0.4724
D1 10.000 0.3937
E 12.000 0.4724
E1 10.000 0.3937
e 0.500 0.0197
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
NNumber of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F405xx, STM32F407xx
148/167 Doc ID 022152 Rev 2
Figure 74. LQFP100, 14 x 14 mm 100-pin low-profile
quad flat package outline(1) Figure 75. Recommended footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
D
D1
D3
75 51
50
76
100 26
125
E3 E1 E
e
b
Pin 1
identification
SEATING PLANE
GAGE PLANE
C
A
A2
A1
Cccc
0.25 mm
0.10 inch
L
L1
k
C
1L_ME
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906
Table 87. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.80v 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0°3.5°7° 0°3.5°7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32F405xx, STM32F407xx Package characteristics
Doc ID 022152 Rev 2 149/167
Figure 76. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline(1) Figure 77. Recommended
footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
D1
D3
D
E1
E3
E
e
Pin 1
identification
73
72
37
36
109
144
108
1
AA2A1 bc
A1 L
L1
k
Seating plane
C
ccc C
0.25 mm
gage plane
ME_1A
0.5
0.35
19.9
17.85
22.6
1.35
22.6
19.9
a
136
37
72
73108
109
144
Table 88. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.689
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0°3.5°7° 0°3.5°7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F405xx, STM32F407xx
150/167 Doc ID 022152 Rev 2
Figure 78. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline
1. Drawing is not to scale.
Seating plane
C
A2
A4
A3
Cddd
A1
A
A
B
eF
D
F
E
e
R
eee MCAB
Cfff
(176 balls)Øb
M
Ø
ØA0E7_ME
Ball A1
A
15 1
Table 89. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.130 0.0051
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.3740 0.3937 0.3957
E 9.950 10.000 10.050 0.3740 0.3937 0.3957
e 0.600 0.650 0.700 0.0236 0.0256 0.0276
F 0.400 0.450 0.500 0.0157 0.0177 0.0197
ddd 0.080 0.0031
eee 0.150 0.0059
fff 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32F405xx, STM32F407xx Package characteristics
Doc ID 022152 Rev 2 151/167
Figure 79. LQFP176 24 x 24 mm, 144-pin low-profile quad flat package outline
1. Drawing is not to scale.
ccc C
Seating plane
C
AA2
A1 c
0.25 mm
gauge plane
HD
D
A1
L
L1
k
89
88
EHE
45
44
e
1
176
Pin 1
identification
b
133
132
1T_ME
ZD
ZE
Table 90. LQFP176, 24 x 24 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020
A2 1.350 1.450 0.0531 0.0060
b 0.170 0.270 0.0067 0.0106
C 0.090 0.200 0.0035 0.0079
D 23.900 24.100 0.9409 0.9488
E 23.900 24.100 0.9409 0.9488
e 0.500 0.0197
HD 25.900 26.100 1.0200 1.0276
HE 25.900 26.100 1.0200 1.0276
L 0.450 0.750 0.0177 0.0295
L1 1.000 0.0394
ZD 1.250 0.0492
ZE 1.250 0.0492
ccc 0.080 0.0031
k0 °7 °0 °7 °
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F405xx, STM32F407xx
152/167 Doc ID 022152 Rev 2
6.2 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 91. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 46
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.65 mm pitch 39
STM32F405xx, STM32F407xx Part numbering
Doc ID 022152 Rev 2 153/167
7 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 92. Ordering information scheme
Example: STM32 F 405 R E T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
405 = STM32F40x, connectivity, USB OTG FS/HS,
407= STM32F40x, connectivity, USB OTG FS/HS, camera interface,
Ethernet
Pin count
R = 64 pins or 66 pins
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
C = 256 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
F = 768 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
Application block diagrams STM32F405xx, STM32F407xx
154/167 Doc ID 022152 Rev 2
Appendix A Application block diagrams
A.1 Main applications versus package
Ta bl e 9 3 gives examples of configurations for each package.
Table 93. Main applications versus package for STM32F407xx microcontrollers(1)
64 pins 100 pins 144 pins 176 pins
Config
1
Config
2
Config
3
Config
1
Config
2
Config
3
Config
4
Config
1
Config
2
Config
3
Config
4
Config
1
Config
2
USB 1
OTG
FS XXXXXX - X X X
FS XXXXXXXXXXXX
USB 2
HS
ULPI ---X---XX XX
OTGFS---X XX XX
FS - - - XXXXXXXXXX
Ethernet
MII -----XX XXXX
RMII----XXXXXXXXX
SPI/I2S2
SPI/I2S3 - X - - XXXXXXXXX
SDIO SDIO
SDIO
or
DCMI
SDIO
or
DCMI
-
SDIO
or
DCMI
SDIO
or
DCMI
SDIO
or
DCMI
X
SDIO
or
DCMI
X
SDIO
or
DCMI
XXX
DCMI
8bits
Data - X X XXX
10bits
Data - X X XXX
12bits
Data - X X XXX
14bits
Data ------- X XXX
FSMC
NOR/
RAM
Muxed
- - - XXXXXXXXXX
NOR/
RAM - - - XXXXXX
NAND - - - X X X*22 X*19 XX*
19 X*22 X*19 X*22 X*22
CF -------XXXXXX
CAN - XX - XXX - - XX - X
1. X*y: FSMC address limited to “y”.
STM32F405xx, STM32F407xx Application block diagrams
Doc ID 022152 Rev 2 155/167
A.2 Application example with regulator OFF
Figure 80. Regulator OFF/internal reset ON
1. This mode is available only on UFBGA176 package.
Figure 81. Regulator OFF/internal reset OFF
1. This mode is available only on UFBGA176 package.
"90!33?2%'
6#!0?
AI
6#!0?
0! .234
!PPLICATIONRESETSIGNAL
OPTIONAL
6
6$$
0OWERDOWNRESETRISEN
AFTER6#!0?6#!0?STABILIZATION
"90!33?2%'
6#!0?
6#!0?
0!
6
6$$
0OWERDOWNRESETRISEN
BEFORE6#!0?6#!0?STABILIZATION
.234
6$$ 6$$
!PPLICATIONRESET
SIGNALOPTIONAL
6#!0?MONITORING
%XTRESETCONTROLLERACTIVE
WHEN6#!0?6
0$2?/. 0$2?/.
"90!33?2%'
6#!0?
AI
6#!0?
.234
6
6$$
6$$
6$$MONITORING
%XTRESETCONTROLLERACTIVE
WHEN6$$6
OR6#!0?6#!0?6
6$$
0$2?/.
6$$
0!
Application block diagrams STM32F405xx, STM32F407xx
156/167 Doc ID 022152 Rev 2
A.3 USB OTG full speed (FS) interface solutions
Figure 82. USB controller configured as peripheral-only and used
in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 83. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6TO6$$
6OLATGEREGULATOR 
6$$
6"53
$0
633
0!0"
0!0"
0!0"
53"3TD"CONNECTOR
$-
/3#?).
/3#?/54
-36
34-&XX
6$$
6"53
$0
633
53"3TD!CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
0!0"
0!0"
0!0"
STM32F405xx, STM32F407xx Application block diagrams
Doc ID 022152 Rev 2 157/167
Figure 84. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6$$
6"53
$0
633
0!0"
0!0"
0!0"
53"MICRO!"CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
6TO6
$$
VOLTAGEREGULATOR 
6$$
)$
0!0"
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
Application block diagrams STM32F405xx, STM32F407xx
158/167 Doc ID 022152 Rev 2
A.4 USB OTG high speed (HS) interface solutions
Figure 85. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
$0
34-&XX
$-
6
"53
6
33
$-
$0
)$
53"
53"(3
/4'#TRL
&30(9
5,0)
(IGHSPEED
/4'0(9
5,0)?#,+
5,0)?$;=
5,0)?$)2
5,0)?340
5,0)?.84
NOTCONNECTED
CONNECTOR
-#/OR-#/
OR-(Z84

0,, 84
8)
-36
STM32F405xx, STM32F407xx Application block diagrams
Doc ID 022152 Rev 2 159/167
A.5 Complete audio player solutions
Two solutions are offered, illustrated in Figure 86 and Figure 87.
Figure 86 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 86. Complete audio player solution 1
Figure 87 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 87. Complete audio player solution 2
#ORTEX-&CORE
UPTO-(Z
/4'
HOST
MODE
0(9
30)
30)
'0)/
)3
84!,
-(Z
OR-(Z
53"
-ASSSTORAGE
DEVICE
--#
3$#ARD
,#$
TOUCH
SCREEN
#ONTROL
BUTTONS
$!#
!UDIO
AMPLI
&ILE
3YSTEM
0ROGRAMMEMORY
!UDIO
#/$%#
5SER
APPLICATION
34-&XX
-36
#ORTEX-&CORE
UPTO-(Z
/4'
0(9
30)
30)
'0)/
)3
53"
-ASSSTORAGE
DEVICE
--#
3$#ARD
,#$
TOUCH
SCREEN
#ONTROL
BUTTONS
!UDIO
AMPLI
&ILE
3YSTEM
0ROGRAMMEMORY
!UDIO
#/$%#
5SER
APPLICATION
34-&XX
-36
3/&
3/&SYNCHRONIZATIONOFINPUTOUTPUT
AUDIOSTREAMING
84!,
-(Z
OR-(Z
Application block diagrams STM32F405xx, STM32F407xx
160/167 Doc ID 022152 Rev 2
Figure 88. Audio player solution using PLL, PLLI2S, USB and 1 crystal
Figure 89. Audio PLL (PLLI2S) providing accurate I2S clock
/4'
-(Z
0(9
84!,
-(Z
OR-(Z
34-&XX
-36
)3

ACCURACY
$!#
!UDIO
AMPLI
-#,+OUT
3#,+
-#/
-#/
0,,)3
X.
0,,
X.
/3#
$IV
BY-
$IV
BY0
$IV
BY1
#ORTEX-&CORE
UPTO-(Z
$IV
BY2
-#,+
IN
-#/02%
-#/02%
I2S CTL
I2S_MCK = 256 × F
SAUDIO
11.2896 MHz for 44.1 kHz
12.2880 MHz for 48.0 kHz
I2S_MCK
PLLI2S
/M
M=1,2,3,..,64
1 MHz 192 to 432 MHz
N=192,194,..,432
I2SCOM_CK
PhaseC
VCO
/N
/R
CLKIN
Phase lock detector
R=2,3,4,5,6,7 I2SD=2,3,4.. 129
ai16041b
STM32F405xx, STM32F407xx Application block diagrams
Doc ID 022152 Rev 2 161/167
Figure 90. Master clock (MCK) used to drive the external audio DAC
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
Figure 91. Master clock (MCK) not used to drive the external audio DAC
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
I2S_CK
I2S controller
I2S_MCK = 256 × F
SAUDIO
= 11.2896 MHz for F
SAUDIO
= 44.1 kHz
= 12.2880 MHz for F
SAUDIO
= 48.0 kHz
/(2 x 16)/8
/I2SD
F
SAUDIO
I2S_SCK
(1)
= I2S_MCK/8 for 16-bit stereo
for 16-bit stereo
/(2 x 32)/4
for 32-bit stereo
F
SAUDIO
2,3,4,..,129
= I2S_MCK/4 for 32-bit stereo
ai16042
I2SCOM_CK
I2S controller
/(2 x 16)
/I2SD
F
SAUDIO
I2S_SCK
(1)
for 16-bit stereo
/(2 x 32)
for 32-bit stereo
F
SAUDIO
ai16042
Application block diagrams STM32F405xx, STM32F407xx
162/167 Doc ID 022152 Rev 2
A.6 Ethernet interface solutions
Figure 92. MII mode using a 25 MHz crystal
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 93. RMII with a 50 MHz oscillator
1. fHCLK must be greater than 25 MHz.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
-$)/
-$#
(#,+
003?/54
84!,
-(Z
34-
/3#
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
-))
PINS
-))-$#
PINS
-36
-#/-#/
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-
/3#
-(Z
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
-(Z
STM32F405xx, STM32F407xx Application block diagrams
Doc ID 022152 Rev 2 163/167
Figure 94. RMII with a 25 MHz crystal and PHY with PLL
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-&
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
84!,
-(Z /3# 0,,
2%&?#,+
-#/-#/
Revision history STM32F405xx, STM32F407xx
164/167 Doc ID 022152 Rev 2
8 Revision history
Table 94. Document revision history
Date Revision Changes
15-Sep-2011 1 Initial release.
24-Jan-2012 2
Added WLCSP90 package on cover page.
Renamed USART4 and USART5 into UART4 and UART5, respectively.
Updated number of USB OTG HS and FS in Table 2: STM32F405xx
and STM32F407xx: features and peripheral counts.
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and
Figure 4: Compatible board design between STM32F2xx and
STM32F4xx for LQFP176 package, and removed note 1 and 2.
Updated Section 2.2.9: Flexible static memory controller (FSMC).
Modified I/Os used to reprogram the Flash memory for CAN2 and
USB OTG FS in Section 2.2.13: Boot modes.
Updated note in Section 2.2.14: Power supply schemes.
PDR_ON no more available on LQFP100 package. Updated
Section 2.2.16: Voltage regulator. Updated condition to obtain a
minimum supply voltage of 1.7 V in the whole document.
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for
UART4 and UART5 in Table 4: USART feature comparison.
Removed support of I2C for OTG PHY in Section 2.2.29: Universal
serial bus on-the-go full-speed (OTG_FS).
Added Table 5: Legend/abbreviations used in the pinout table.
Table 6: STM32F40x pin and ball definitions: replaced VSS_3, VSS_4,
and VSS_8 by VSS; reformatted Table 6: STM32F40x pin and ball
definitions to better highlight I/O structure, and alternate functions
versus additional functions; signal corresponding to LQFP100 pin 99
changed from PDR_ON to VSS; EVENTOUT added in the list of
alternate functions for all I/Os; ADC3_IN8 added as alternate function
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions for
PD11 and PD12, respectively; PH10 alternate function
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PAA5 pin
type.
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN,
OTG_FS_SDA, OTG_FS_SCL alternate functions in Table 6:
STM32F40x pin and ball definitions and Table 7: Alternate function
mapping.
Changed TCM data RAM to CCM data RAM in Figure 15: Memory
map.
Added IVDD and IVSS maximum values in Tabl e 9 : Curr e n t
characteristics.
Added Note 1 related to fHCLK, updated Note 2 in Table 11: General
operating conditions, and added maximum power dissipation values.
Updated Table 12: Limitations depending on the operating power
supply range.
STM32F405xx, STM32F407xx Revision history
Doc ID 022152 Rev 2 165/167
24-Jan-2012 2
(continued)
Added V12 in Table 16: Embedded reset and power control block
characteristics.
Updated Table 17: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 18: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure ,
Figure 22, Figure 23, anhd Figure 24.
Updated Table 19: Typical and maximum current consumption in Sleep
mode and removed Note 1.
Updated Table 20: Typical and maximum current consumptions in Stop
mode and Table 21: Typical and maximum current consumptions in
Standby mode, Table 22: Typical and maximum current consumptions
in VBAT mode, and Table 23: Switching output I/O current consumption.
Section : On-chip peripheral current consumption: modified conditions,
and updated Table 24: Peripheral current consumption and Note 2.
Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in
Table 26: High-speed external user clock characteristics.
Added Cin(LSE) in Table 27: Low-speed external user clock
characteristics.
Updated maximum PLL input clock frequency, removed related note,
and deleted jitter for MCO for RMII Ethernet typical value in Table 32:
Main PLL characteristics. Updated maximum PLLI2S input clock
frequency and removed related note in Table 33: PLLI2S (audio PLL)
characteristics.
Updated Section : Flash memory to specify that the devices are
shipped to customers with the Flash memory erased. Updated
Table 35: Flash memory characteristics, and added tME in Table 36:
Flash memory programming.
Updated Table 39: EMS characteristics, and Table 40: EMI
characteristics.
Updated Table 53: I2S characteristics
Updated Figure 43: ULPI timing diagram and Table 60: ULPI timing.
Added tCOUNTER and tMAX_COUNT in Table 48: Characteristics of TIMx
connected to the APB1 domain and Table 49: Characteristics of TIMx
connected to the APB2 domain. Updated Table 63: Dynamics
characteristics: Ethernet MAC signals for RMII.
Removed USB-IF certification in Section : USB OTG FS
characteristics.
Table 94. Document revision history (continued)
Date Revision Changes
Revision history STM32F405xx, STM32F407xx
166/167 Doc ID 022152 Rev 2
24-Jan-2012 2
(continued)
Updated Table 57: USB FS clock timing parameters and Table 59: USB
HS clock timing parameters
Updated Table 65: ADC characteristics.
Updated Table 66: ADC accuracy at fADC = 30 MHz.
Updated Note 1 in Table 70: DAC characteristics.
Section 5.3.25: FSMC characteristics: updated Ta b l e 7 1 toTa bl e 8 2 ,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 57:
Synchronous multiplexed PSRAM write timings.
Updated Table 91: Package thermal characteristics.
Appendix A.3: USB OTG full speed (FS) interface solutions: modified
Figure 82: USB controller configured as peripheral-only and used in
Full speed mode added Note 2, updated Figure 83: USB controller
configured as host-only and used in full speed mode and added
Note 2, changed Figure 84: USB controller configured in dual mode
and used in full speed mode and added Note 3.
Appendix A.4: USB OTG high speed (HS) interface solutions: removed
figures USB OTG HS device-only connection in FS mode and USB
OTG HS host-only connection in FS mode, and updated Figure 85:
USB controller configured as peripheral, host, or dual-mode and used
in high speed mode and added Note 2.
Added Appendix A.6: Ethernet interface solutions.
Table 94. Document revision history (continued)
Date Revision Changes
STM32F405xx, STM32F407xx
Doc ID 022152 Rev 2 167/167
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com