      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
1
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
DSupply Current ...23 µA/Channel
DGain-Bandwidth Product . . . 220 kHz
DOutput Drive Capability . . . ±10 mA
DInput Offset Voltage ...20 µV (typ)
DVDD Range . . . 2.7 V to 6 V
DPower Supply Rejection Ratio . . . 106 dB
DUltralow-Power Shutdown Mode
IDD . . . 16 nA/ch
DRail-To-Rail Input/Output (RRIO)
DUltrasmall Packaging
− 5 or 6 Pin SOT-23 (TLV2450/1)
− 8 or 10 Pin MSOP (TLV2452/3)
description
The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for
supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of
gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with
increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of
older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of
each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic
range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical
equipment, patient monitoring systems, and data acquisition circuits.
FAMILY PACKAGE TABLE
DEVICE
NUMBER OF
PACKAGE TYPES
SHUTDOWN
UNIVERSAL
DEVICE
NUMBER OF
CHANNELS PDIP SOIC SOT-23 TSSOP MSOP
SHUTDOWN
UNIVERSAL
EVM BOARD
TLV2450 1 8 8 6 Yes
TLV2451 1 8 8 5
Refer to the EVM
TLV2452 2 8 8 8 Refer to the EVM
Selection Guide
TLV2453 2 14 14 10 Yes
Selection Guide
(Lit# SLOU060)
TLV2454 4 14 14 14
(Lit# SLOU060)
TLV2455 4 16 16 16 Yes
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS
DEVICE VDD
(V) BW
(MHz) SLEW RATE
(V/µs) IDD (per channel)
(µA) RAIL-TO-RAIL
TLV245X 2.7 − 6.0 0.22 0.11 23 I/O
TLV247X 2.7 − 6.0 2.8 1.5 600 I/O
TLV246X 2.7 − 6.0 6.4 1.6 550 I/O
TLV277X 2.5 − 6.0 5.1 10.5 1000 O
All specifications measured at 5 V.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications o
f
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
  !"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1
%$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (2, (,%&) $# ,') ")(%+&,"()
)('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0,
(,)(!"5 $# '// -'%'&,(,%)1
Copyright 1998−2005, Texas Instruments Incorporated
Operational Amplifier
+
All trademarks are the property of their respective owners.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
2WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
description (continued)
Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable
applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes
only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range
(−40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are
available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package,
making it perfect for high density circuits.
TLV2450 and TLV2451 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
SMALL OUTLINE
SOT-23
PLASTIC DIP
TA
SMALL OUTLINE
(D)(DBV) SYMBOL
PLASTIC DIP
(P)
0°C to 70°CTLV2450CD
TLV2451CD TLV2450CDBV
TLV2451CDBV VAQC
VARC TLV2450CP
TLV2451CP
−40°C to 125°C
TLV2450ID
TLV2451ID TLV2450IDBV
TLV2451IDBV VAQI
VARI TLV2450IP
TLV2451IP
−40
°
C to 125
°
C
TLV2450AID
TLV2451AID
TLV2450AIP
TLV2451AIP
This package is available taped and reeled. To order this packaging option, add an R suf fix to the part
number (e.g., TLV2450CDR).
TLV2452 and TLV2453 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
SMALL
OUTLINE
MSOP PLASTIC
DIP
PLASTIC
DIP
TA
OUTLINE
(D)(DGK)SYMBOL(DGS)SYMBOL
DIP
(N)
DIP
(P)
0°C to 70°CTLV2452CD
TLV2453CD TLV2452CDGK
xxTIABI
TLV2453CDGS
xxTIABK
TLV2453CN TLV2452CP
−40°C to 125°C
TLV2452ID
TLV2453ID TLV2452IDGK
xxTIABJ
TLV2453IDGS
xxTIABL
TLV2453IN TLV2452IP
−40
°
C to 125
°
C
TLV2452AID
TLV2453AID
TLV2453AIN TLV2452AIP
This package is available taped and reeled. To order this packaging option, add an R suf fix to the part number (e.g., TLV2452CDR).
xx represents the device date code.
TLV2454 and TLV2455 AVAILABLE OPTIONS
PACKAGED DEVICES
TASMALL OUTLINE
(D)PLASTIC DIP
(N) TSSOP
(PW)
0°C to 70°CTLV2454CD
TLV2455CD TLV2454CN
TLV2455CN TLV2454CPW
TLV2455CPW
−40°C to 125°C
TLV2454ID
TLV2455ID TLV2454IN
TLV2455IN TLV2454IPW
TLV2455IPW
−40
°
C to 125
°
C
TLV2454AID
TLV2455AID TLV2454AIN
TLV2455AIN TLV2454AIPW
TLV2455AIPW
This package is available taped and reeled. To order this packaging option, add an
R suffix to the part number (e.g., TLV2454CDR).
NOTE: For the most current package and ordering information, see the Package Option Addendum located at the
end of this data sheet, or refer to our web site at www.ti.com.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
3
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TLV245x PACKAGE PINOUTS(1)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
1/2SHDN
4OUT
4IN
4IN+
GND
3IN+
3IN−
3OUT
3/4SHDN
(TOP VIEW)
TLV2455
D, N, OR PW PACKAGE
3
2
4
5
(TOP VIEW)
1
OUT
GND
IN+
VDD+
IN
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
GND
NC
1SHDN
NC
VDD+
2OUT
2IN
2IN+
NC
2SHDN
NC
(TOP VIEW)
TLV2451
DBV PACKAGE
3
2
4
6
(TOP VIEW)
1
OUT
GND
IN+
VDD+
IN
TLV2450
DBV PACKAGE
5SHDN
1
2
3
4
8
7
6
5
NC
IN
IN+
GND
SHDN
VDD+
OUT
NC
TLV2450
D OR P PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
NC
IN
IN+
GND
NC
VDD+
OUT
NC
TLV2451
D OR P PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
GND
VDD+
2OUT
2IN
2IN+
TLV2452
D, DGK, OR P PACKAGE
(TOP VIEW)
TLV2453
D OR N PACKAGE
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
GND
3IN+
3IN
3OUT
(TOP VIEW)
TLV2454
D, N, OR PW PACKAGE
NC − No internal connection
(1) SOT−23 may or may not be indicated
1
2
3
4
5
10
9
8
7
6
1OUT
1IN
1IN+
GND
1SHDN
VDD+
2OUT
2IN
2IN+
2SHDN
TLV2453
DGS PACKAGE
(TOP VIEW)
TYPICAL PIN 1 INDICATORS
Printed or
Molded Dot Bevel Edges
Pin 1
Molded ”U” Shape
Pin 1
Stripe Pin 1 Pin 1
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
4WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum junction temperature, TJ 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltage values, except differential voltages, are with respect to GND.
DISSIPATION RATING TABLE
PACKAGE θJC
(°C/W) θJA
(°C/W) TA 25°C
POWER RATING
D (8) 38.3 176 710 mW
D (14) 26.9 122.3 1022 mW
D (16) 25.7 114.7 1090 mW
DBV (5) 55 324.1 385 mW
DBV (6) 55 294.3 425 mW
DGK (8) 54.2 259.9 481 mW
DGS (10) 54.1 257.7 485 mW
N (14, 16) 32 78 1600 mW
P (8) 41 104 1200 mW
PW (14) 29.3 173.6 720 mW
PW (16) 28.7 161.4 774 mW
recommended operating conditions
MIN MAX UNIT
Supply voltage, VDD
Single supply 2.7 6
V
Supply voltage, VDD Split supply ±1.35 ±3V
Common-mode input voltage range, VICR 0 VDD V
Operating free-air temperature, TA
C-suffix 0 70
°C
Operating free-air temperature, T
AI-suffix −40 125 °
C
VIH 2
V
Shutdown on/off voltage level
VIL
VDD = 5V 0.8
V
Shutdown on/off voltage level
V
IL VDD = 3V 0.5 V
Relative to voltage on the GND terminal of the device.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
5
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
TLV245x
25°C 300 1500
VIO
TLV245x Full range 2000
V
VIO Input offset voltage
TLV245xA
25°C 300 1000 µV
TLV245xA Full range 1300
VIO
Temperature coef ficient of input
VDD =
±
1.5 V
VO = 0,
0.3
V/°C
αVIO
Temperature coef ficient of input
offset voltage
VDD = ±1.5 V
V
IC
= 0,
VO = 0,
RS = 50 0.3 µV/°C
IIO
Input offset current
VIC = 0,
RS = 50
25°C 0.3 4.5
nA
IIO Input offset current Full range 5.5 nA
IIB
Input bias current
25°C 0.9 5
nA
IIB Input bias current Full range 7nA
VOH
High-level output voltage
VIC = 1.5 V,
IOH = −500 A
25°C 2.85 2.95
V
VOH High-level output voltage VIC = 1.5 V, IOH = −500 µAFull range 2.83 V
VOL
Low-level output voltage
VIC = 1.5 V,
IOL = 500 A
25°C 0.09 0.16
V
VOL Low-level output voltage VIC = 1.5 V, IOL = 500 µAFull range 0.2 V
Sourcing
25°C 4 12
IOS
Short-circuit output current
Sourcing Full range 3
mA
IOS Short-circuit output current
Sinking
25°C 2 7 mA
Sinking Full range 1
IOOutput current VO = 0.5 V from rail 25°C±4 mA
AVD
Large-signal differential voltage
VO(PP) = 1 V,
RL = 10 k
25°C 96 110
dB
AVD
Large-signal differential voltage
amplification VO(PP) = 1 V, RL = 10 kFull range 91 dB
ri(d) Differential input resistance 25°C 109
CIC Common-mode input
capacitance f = 10 kHz 25°C 4.5 pF
zoClosed-loop output impedance f = 10 kHz, AV = 10 25°C 80
CMRR
Common-mode rejection ratio
VIC = 0 to 3 V,
25°C 70 80 dB
CMRR Common-mode rejection ratio
VIC = 0 to 3 V,
RS = 50 TLV245xC Full range 66 dB
VDD = 2.7 V to 6 V,
VIC = VDD/2,
25°C 76 89
kSVR
Supply voltage rejection ratio
VDD = 2.7 V to 6 V,
No load
VIC = VDD/2,
Full range 74
dB
kSVR
Supply voltage rejection ratio
(VDD /VIO)
VDD = 3 V to 5 V,
VIC = VDD/2,
25°C 88 106 dB
( VDD / VIO)
VDD = 3 V to 5 V,
No load
VIC = VDD/2,
Full range 84
25°C 23 35
I
DD
Supply current (per channel) V
O
= 1.5 V, No load TLV245xC Full range 40 µA
IDD
Supply current (per channel)
VO = 1.5 V, No load
TLV245xI Full range 45
µA
Supply current in shutdown
25°C 12 65
I
DD(SHDN)
Supply current in shutdown
mode (TLV2450, TLV2453,
TLV2455) (per channel)
SHDN = −V
DD
TLV245xC Full range 70 nA
IDD(SHDN)
mode (TLV2450, TLV2453,
TLV2455) (per channel)
SHDN = −VDD
TLV245xI Full range 80
nA
Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
6WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
operating characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
VO(PP) = 0.8 V,
CL = 150 pF,
25°C0.05 0.11
V/ s
SR Slew rate at unity gain
VO(PP) = 0.8 V,
RL = 10 k
CL = 150 pF,
Full range 0.02 V/µs
Vn
Equivalent input noise voltage
f = 100 Hz 25°C 49
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 51
nV/Hz
InEquivalent input noise current f = 1 kHz 25°C 3.5 pA/Hz
VO(PP) = 1.5 V,
AV = 1 0.04%
THD + N Total harmonic distortion plus noise
VO(PP) = 1.5 V,
R
L
= 10 k,
f = 1 kHz
AV = 10 25°C0.3%
THD + N
Total harmonic distortion plus noise
RL = 10 k,
f = 1 kHz AV = 100
25 C
1.5%
t(on) Amplifier turnon time
AV = 5, RL = OPEN,
25°C 59 µs
t(off) Amplifier turnoff time
AV = 5, RL = OPEN,
Measured at 50% point 25°C 836 ns
Gain-bandwidth product f = 10 kHz, RL = 10 k25°C 200 kHz
V(STEP)PP = 2 V,
AV = −1,
0.1% 26
ts
Settling time
AV = −1,
CL = 10 pF,
R
L
= 10 k0.01%
25°C
31
s
tsSettling time V(STEP)PP = 2 V,
AV = −1,
0.1% 25°C26 µs
AV = −1,
CL = 56 pF,
R
L
= 10 k0.01% 31
φmPhase margin RL = 10 k, CL = 1000 pF 25°C 56°
Gain margin RL = 10 k, CL = 1000 pF 25°C 7 dB
Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
7
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
TLV245x
25°C 300 1500
VIO
Input offset voltage
TLV245x Full range 2000
V
VIO Input offset voltage
TLV245xA
25°C 300 1000 µV
TLV245xA Full range 1300
VIO
Temperature coef ficient of input
VDD =
±
2.5 V
VO = 0,
0.3
V/°C
αVIO
Temperature coef ficient of input
offset voltage
VDD = ±2.5 V
V
IC
= 0,
VO = 0,
RS = 50 0.3 µV/°C
IIO
Input offset current
VIC = 0,
RS = 50
25°C 0.3 4.5
nA
IIO Input offset current Full range 5.5 nA
IIB
Input bias current
25°C 0.5 5
nA
IIB Input bias current Full range 7nA
VOH
High-level output voltage
VIC = 2.5 V,
IOH = −500 A
25°C 4.87 4.97
V
VOH High-level output voltage VIC = 2.5 V, IOH = −500 µAFull range 4.85 V
VOL
Low-level output voltage
VIC = 2.5 V,
IOL = 500 A
25°C 0.07 0.15
V
VOL Low-level output voltage VIC = 2.5 V, IOL = 500 µAFull range 0.16 V
Sourcing
25°C 20 32
IOS
Short-circuit output current
Sourcing Full range 18
mA
IOS Short-circuit output current
Sinking
25°C 12 18 mA
Sinking Full range 10
IOOutput current VO = 0.5 V from rail 25°C±10 mA
AVD
Large-signal differential voltage
VO(PP) = 3 V,
RL = 10 k
25°C 96 103
dB
AVD
Large-signal differential voltage
amplification VO(PP) = 3 V, RL = 10 kFull range 91 dB
ri(d) Differential input resistance 25°C 109
CIC Common-mode input capacitance f = 10 kHz 25°C 4.5 pF
zoClosed-loop output impedance f = 10 kHz, AV = 10 25°C 45
CMRR
Common-mode rejection ratio
VIC = 0 to 5 V,
25°C 70 80
dB
CMRR Common-mode rejection ratio
VIC = 0 to 5 V,
RS = 50 TLV245xC Full range 68 dB
VDD = 2.7 V to 6 V,
VIC = VDD/2,
25°C 76 89
kSVR
Supply voltage rejection ratio
VDD = 2.7 V to 6 V,
No load
VIC = VDD/2,
Full range 74
dB
kSVR
Supply voltage rejection ratio
(VDD /VIO)
VDD = 3 V to 5 V,
VIC = VDD/2,
25°C 88 106 dB
( VDD / VIO)
VDD = 3 V to 5 V,
No load
VIC = VDD/2,
Full range 84
25°C 23 42
I
DD
Supply current (per channel) V
O
= 2.5 V, No load TLV245xC Full range 44 µA
IDD
Supply current (per channel)
VO = 2.5 V, No load
TLV245xI Full range 46
µA
Supply current in shutdown mode
25°C 16 70
I
DD(SHDN)
Supply current in shutdown mode
(TLV2450, TLV2453, TLV2455) (per
channel)
SHDN = −V
DD
TLV245xC Full range 70 nA
IDD(SHDN)
(TLV2450, TLV2453, TLV2455) (per
channel)
SHDN = −VDD
TLV245xI Full range 80
nA
Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
8WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
VO(PP) = 2 V,
CL = 150 pF,
25°C0.05 0.11
V/ s
SR Slew rate at unity gain
VO(PP) = 2 V,
RL = 10 k
CL = 150 pF,
Full range 0.02 V/µs
Vn
Equivalent input noise voltage
f = 100 Hz 25°C 49
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 52
nV/Hz
InEquivalent input noise current f = 1 kHz 25°C 3.5 pA/Hz
VO(PP) = 3 V,
AV = 1 0.02%
THD + N Total harmonic distortion plus noise
VO(PP) = 3 V,
R
L
= 10 k,
f = 1 kHz
AV = 10 25°C0.18%
THD + N
Total harmonic distortion plus noise
RL = 10 k,
f = 1 kHz AV = 100
25 C
0.9%
t(on) Amplifier turnon time
AV = 5, RL = OPEN,
25°C 59 µs
t(off) Amplifier turnoff time
AV = 5, RL = OPEN,
Measured at 50% point 25°C 836 ns
Gain-bandwidth product f = 10 kHz, RL = 10 k25°C 220 kHz
V(STEP)PP = 2 V,
AV = −1,
0.1% 24
ts
Settling time
AV = −1,
CL = 10 pF,
R
L
= 10 k0.01%
25°C
30
s
tsSettling time V(STEP)PP = 2 V,
AV = −1,
0.1% 25°C25 µs
AV = −1,
CL = 56 pF,
R
L
= 10 k0.01% 30
φmPhase margin RL = 10 k, CL = 1000 pF 25°C 56°
Gain margin RL = 10 k, CL = 1000 pF 25°C 7 dB
Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
9
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage vs Common-mode input voltage 1, 2
IIO Input offset current vs Common-mode input voltage
vs Free-air temperature 3, 4
7, 8
IIB Input bias current vs Common-mode input voltage
vs Free-air temperature 5, 6
7, 8
AVD Differential voltage amplification vs Frequency 9, 10
Phase vs Frequency 9, 10
VOL Low-level output voltage vs Low-level output current 11, 13
VOH High-level output voltage vs High-level output current 12, 14
ZoOutput impedance vs Frequency 15, 16
CMRR Common-mode rejection ratio vs Frequency 17
PSRR Power supply rejection ratio vs Frequency 18
IDD Supply current vs Supply voltage 19
IDD Supply current vs Free-air temperature 20
VnEquivalent input noise voltage vs Frequency 21
THD + N Total harmonic distortion plus noise vs Frequency 22, 23
φmPhase margin vs Load capacitance 24
Gain-bandwidth product vs Supply voltage 25
SR
Slew rate
vs Supply voltage
26
SR Slew rate
vs Supply voltage
vs Free-air temperature
26
27
VO(PP) Maximum peak-to-peak output voltage vs Frequency 28
Crosstalk vs Frequency 29, 30
Small-signal follower pulse response vs Time 31, 33
Large-signal follower pulse response vs Time 32, 34
Shutdown on supply current vs Time 35
Shutdown off supply current vs Time 36
Shutdown supply current vs Free-air temperature 37
Shutdown supply current vs Time 38 − 41
Shutdown pulse vs Time 38 − 41
Shutdown off pulse response vs Time 42, 43
Shutdown on pulse response vs Time 44, 45
Shutdown reverse isolation vs Frequency 46
Shutdown forward isolation vs Frequency 47
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
10 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 1
50
0
−100
−150
−200
−50
0 0.5 1 1.5 2 2.5 3
150
100
200
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VIC − Common-Mode Input Voltage − V
− Input Offset Voltage −
VIO Vµ
VDD =3 V
TA = 25°C
−0.5 3.5
Figure 2
0
−20
−60
−80
−100
80
−40
0 0.5 1 1.5 2 2.5 3
40
20
60
100
3.5 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VIC − Common-Mode Input Voltage − V
4.5 5
VDD =5 V
TA = 25°C
− Input Offset Voltage −
VIO Vµ
−0.5 5.5
Figure 3
0
INPUT OFFSET CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VIC − Common-Mode Input Voltage − V
0.5 1 1.5
− Input Offset Current − pA
IO
I
0 0.5 1
−60
−40
20
60
−20
40
0
VDD = 3 V
TA = 25°C
Figure 4
−600
−50
INPUT OFFSET CURRENT
vs
COMMON-MODE INPUT VOLTAGE
20
5
VIC − Common-Mode Input Voltage − V
−20
0
10
−40
0.5 1 1.5
− Input Offset Current − pA
−10
−30
2 2.5 3 3.5 4
IO
I
VDD = 5 V
TA = 25°C
4.5
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
11
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 5
VIC − Common-Mode Input Voltage − V
0
−1
−3
−4 0 0.5 1 1.5
− Input Bias Current − nA
2
3
2 2.5 3
1
−2
IIB
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
−0.5 3.5
VDD = 3 V
TA = 25°C
Figure 6
1
0
−2
−3
−4
−1
0 0.5 1 1.5 2 2.5 3
3
2
3.5 4
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VIC − Common-Mode Input Voltage − V
4.5 5
− Input Bias Current − nA
IIB
5.5−0.5
VDD =5 V
TA = 25°C
Figure 7
/IIO − Input Bias and Input Offset Currents − nAIIB
0.5
0.4
0.3
0.2
0.1
0.8
−55 −35 −15 5 25 45
0.7
0.6
0.9
TA − Free-Air Temperature − °C
INPUT OFFSET CURRENT
AND INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
65 85 105 125
0
−0.1
VDD = 3 V
IIB
IIO
1.1
1
1.4
1.3
1.2
1.5
Figure 8
/IIO − Input Bias and Input Offset Currents − nAIIB
0.5
0.4
0.3
0.2
0.1
0.8
−55 −35 −15 5 25 45
0.7
0.6
0.9
TA − Free-Air Temperature − °C
INPUT OFFSET CURRENT
AND INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VDD = 5 V
IIB
IIO
65 85 105 125
0
−0.1
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
12 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
1k 10k 100k 1M
−60
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE
vs
FREQUENCY
120
f − Frequency − Hz
0
60
90
30
−30
100
VDD = ±3 V
TA = 25°C
Phase
Gain
− Differential Voltage Amplification − dBAVD
Phase − °
120
60
0
−60
−120
−180
Figure 9
1k 10k 100k 1M
−60
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE
vs
FREQUENCY
120
f − Frequency − Hz
0
60
90
30
−30
100
VDD = ±5 VDC
TA = 25°C
Phase
Gain
− Differential Voltage Amplification − dBAVD
Phase − °
120
60
0
−60
−120
−180
Figure 10
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
13
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 11
IOL − Low-Level Output Current − mA
TA = −40°C
TA = 25°C
TA = 85°C
TA = 125°C
1.5
1
0.5
00123456
− Low-Level Output Voltage − V
2
2.5
3
78910
VOL
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 3 V
Figure 12
IOH − High-Level Output Current − mA
1.5
1
0.5
00 2.5 5 7.5
− High-Level Output Voltage − V
2
2.5
3
10 12.5 15
VOH
TA = 125°C
TA = 85°C
TA = 25°C
TA = −40°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VDD = 3 V
Figure 13
2.5
2
1
0.5
0
1.5
3
0 5 10 15 20 25
VDD = 5 V
TA = −40°C
TA = 125°C
TA = 25°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
OL
V − Low-Level Output Voltage − V
IOL − Low-Level Output Current − mA
TA = 85°C
3.5
4
4.5
5
Figure 14
2.5
2
1
0.5
0
4.5
1.5
3.5
3
4
5
0 5 10 15 20 25 30 35 40
VDD = 5 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
TA = −40°C
TA = 125°C
TA = 25°C
IOH − High-Level Output Current − mA
VOH − High-Level Output Voltage − V
TA = 85°C
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
14 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 15
f − Frequency − Hz
10k
1k
100
10
1100 1k 10k 100k 1M
− Output Impedance −Zo
OUTPUT IMPEDANCE
vs
FREQUENCY
AV = 10
AV = 1
AV = 100
VDD = 3 V
TA = 25°C
Figure 16
OUTPUT IMPEDANCE
vs
FREQUENCY
f − Frequency − Hz
10k
1k
100
10
1
0.1100 1k 10k 100k 1M
− Output Impedance −Zo
AV = 10
AV = 1
AV = 100
VDD = 5 V
TA = 25°C
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
f − Frequency − Hz
10 1k 10k 100k 1M
CMRR − Common-Mode Rejection Ratio − dB
VDD = 3 V or 5 V
TA = 25°C
100
80
60
40
20
0
120
100
Figure 17
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
15
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 18
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
f − Frequency − Hz
10 1k 10k 100k 1M
PSRR − Power Supply Rejection Ratio − dB
100
90
80
70
60
40
30
20
10
0
50
VDD = 3 V or 5 V
TA = 25°C
PSRR +
PSRR −
100
Figure 19
20
15
5
02.5 3 3.5 4
− Supply Current −
25
35
40
4.5 5 5.5
30
10
TA = 125°C
TA = 85°C
TA = 25°C
TA = −40°C
VDD − Supply Voltage − V
IDD Aµ
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
AV = 1
SHDN = VDD
Per Channel
Figure 20
5
0
25
−55 −35
15
10
20
30
−15 5
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
TA − Free-Air Temperature − °C
25 45
VI = VDD /2
SHDN = VDD
per channel
65
VDD = 3 V
DD
I Supply Current − −Aµ
VDD = 5 V
85 105 125
Figure 21
100 1k 10k
1
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
f − Frequency − Hz
10
10
nV/ Hz− Equivalent Input Noise Voltage −Vn
100k
VDD = 3 V or 5 V
TA = 25°C
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
16 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 22
0.1%
0.01%
0.001%10 100 1k
1%
10%
f − Frequency − MHz
100%
10k 100k
AV = 100
AV = 10
AV = 1
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
THD+N − Total harmonic Distortion + Noise
VDD = 3 V
VO(PP) = 1.5 V
RL = 10 k
TA = 25°C
Figure 23
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10%
1%
0.1%
0.010%
0.001%
100%
THD+N − Total harmonic Distortion + Noise
10 100 1k 10k 100k
f − Frequency − Hz
VDD = 5 V
VO(PP) = 3 V
RL = 10 k
TA = 25°C
AV = 1
AV = 10
AV = 100
Figure 24
PHASE MARGIN
vs
LOAD CAPACITANCE
CL − Load Capacitance − pF
VDD = 5 V
RL = 10 k
TA = 25°C
100
90
80
70
60
40
30
20
10
0
50
°
°
°
°
°
°
°
°
°
°
°
100 1k 10k 100k
m
φ− Phase Margin
RNULL = 500
RNULL = 200
RNULL = 100
RNULL = 50
RNULL = 10
RNULL = 0
Figure 25
Gain-Bandwidth Product − kHz
2.5 3 3.5 4 4.5
VDD − Supply Voltage − V 5
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
5.5
240
230
220
210
200
270
260
250
280
190
180
f = 1 kHz
RL = 10 k
TA = 25°C
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
17
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 26
0.1
0.092.5 3 3.5 4
SR − Slew Rate −
0.11
0.12
4.5 5
VDD − Supply Voltage − V
sµ
V/
f = 10 kHz
TA = 25°C
RL = 10 k
CL = 160 pF
AV = 1
SLEW RATE
vs
SUPPLY VOLTAGE
Figure 27
0.1
0.08
0.06
−40 −20 0 20 40 60 80
SR − Slew Rate −
0.12
0.14
0.16
100 120
TA − Free-Air Temperature − °C
sµ
V/
VDD = 5 V VDD = 3 V
f = 10 kHz
RL = 10 k
CL = 160 pF
AV = 1
140
SLEW RATE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
f − Frequency − Hz
100 1k 10k 100k
VO(PP) = 5 V
5
4.5
4
3.5
3
2
1.5
1
0.5
2.5
THD + N < 5%
AV = 5
RL = 20 k
TA = 25°C
− Maximum Peak-to-Peak Output Voltage − V
VO(PP)
VO(PP) = 3 V
0
Figure 28
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
18 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 29
−60
−80
−90
−11010 100 1k
Crosstalk − dB
−40
−30
f − Frequency − Hz
−20
10k 100k
−50
−70
−100
VDD = 3 V
AV = 1
RL = 10 k
All Channels
CROSSTALK
vs
FREQUENCY
Figure 30
−60
−80
−90
−11010 100 1k
Crosstalk − dB
−40
−30
f − Frequency − Hz
−20
10k 100k
−50
−70
−100
VDD = 5 V
AV = 1
RL = 10 k
All Channels
CROSSTALK
vs
FREQUENCY
t − Time − µs
0.1
0.05
0
−0.1−2 0 2 4 6 8 10
− Output Voltage − V
0.2
0.25
0.3
12 14 16
0.15
−0.05
0.15
0.1
0.05
0
−0.05
−0.1
−0.15
−0.2
−0.25
−0.3
−0.35
−0.4
VO
− Input Voltage − VVI
VI
VO
VDD = 3 V
RL = 10 k
CL = 160 pF
AV = 1
TA = 25°C
f = 45 kHz
SMALL-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
Figure 31
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
19
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
1
0
−1
−2
4
−20 0 20 40
3
2
5
60
t − Time − µs80
LARGE-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
VDD = 3 V
AV = 1
RL = 10 k
CL = 160 pF
f = 10 kHz
TA = 25°C
−2
−3
−4
−5
1
0
−1
2
− Output Voltage − VVO
VI− Input Voltage − V
VI
VO
100
Figure 32
80
40
0
−40
−80
200
−5 0 5 10 15 20
160
120
240
t − Time − µs
SMALL-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
VDD = 5 V
AV = 1
RL = 10 k
CL = 160 pF
TA = 25°C
−80
−120
−160
−200
−240
40
0
−40
80
− Output Voltage − mVVO
VI− Input Voltage − mV
VI
VO
Figure 33
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
20 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
t − Time − µs
4
2
0
−4
−10 0 10 20 30 40 50
− Output Voltage − V
6
8
10
60 70 100
−2
2
1
0
−1
−4
−5
−7
−8
−10
VO
− Input Voltage − VVI
VI
VO
VDD = 5 V
RL = 10 k
CL = 160 pF
AV = 1
TA = 25°C
f = 10 kHz
80 90
−2
−3
−6
−9
LARGE-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
Figure 34
−20
−4
0
SHUTDOWN ON SUPPLY CURRENT
vs
TIME
180
10
t − Time − µS
100
140
160
20
40
60
−2 0 2
Shutdown Control Signal
DD
I Supply Current − −Aµ
Shutdown Pulse − V
120
80
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
468
Supply Current − IDD
Figure 35
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
21
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
−10
−20
SHUTDOWN OFF SUPPLY CURRENT
vs
TIME
50
80
t − Time − µS
10
30
40
−10 0 20
DD
I Supply Current − −Aµ
Shutdown Pulse − V
20
0
10
5
0
−5
−10
−15
−20
40 60 70
10 30 50
Shutdown Control Signal
Supply Current − IDD
Figure 36
0.8
0.4
0.2
0
−55 −35 −15 5 25 45 65
− Supply Current −
1
1.4
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
1.6
85 105 125
1.2
0.6
IDD Aµ
TA − Free-Air Temperature − °C
VDD = 3 V
Shutdown Mode
AV = 1
RL = Open
VI = VDD/2 V
VDD = 5 V
Figure 37
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
22 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
0
−5 −3 −1 1 3 5 7
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
9111315
3
4
5
2
1
0
t − Time − µs
− Shutdown Supply Current −
Shutdown Pulse − V
IDD(SD) Aµ
IDD(SD)
VDD = 3 V
AV = 1
VI = 1.5 V
RL = 10 k
CL = 160 pF and 10 pF
TA = 25°C
5
10
15
20
25
SD Pulse
30
Figure 38
5
−100 −50 0 50
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
100 150 200
2
3
4
5
1
0
t − Time − µs
− Shutdown Supply Current −
Shutdown Pulse − V
IDD(SD) A
µ
SD Pulse
IDD(SD)
VDD = 3 V
AV = 1
VI = 1.5 V
RL = 10 k
CL = 160 pF and 10 pF
TA = 25°C
0
10
15
20
25
30
Figure 39
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
23
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
−100 −50 0 50
− Shutdown Supply Current −
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
100 150 200
0
3
4
5
2
1
0
Shutdown Pulse − V
t − Time − µs
IDD(SD) Aµ
VDD = 5 V
AV = 1
VI = 2.5 V
RL = 10 k
CL = 160 pF and 10 pF
TA = 25°C
SD Pulse
IDD(SD)
5
10
15
20
25
Figure 40
−10 −5 0 5
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
10 15
0
0
2
3
5
4
1
t − Time − µs
− Shutdown Supply Current −
Shutdown Pulse − V
IDD(SD) A
µ
SD Pulse
IDD(SD)
VDD = 5 V
AV = 1
VI = 2.5 V
RL = 10 k
CL = 160 pF and 10 pF
TA = 25°C
5
10
15
20
25
30
Figure 41
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
24 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 42
1
0
−1
−10 10 30 50 70
− Output Voltage − V
2
3
4
90 110 130 150
VO
t − Time − µs
SD Pulse
VO Channel 1
VDD = 3 V
AV = 1
VI = 2.5 V
RL = 10 k
CL = 160 pF and 8 pF
TA = 25°C
SHUTDOWN OFF PULSE RESPONSE
vs
TIME
Figure 43
3
2
0
−1
−20 0 20 40 60 80
4
5
6
100 120 140
1
t − Time − µs
− Output Voltage − VVO
SD Pulse
VO Channel 1
VDD = 5 V
AV = 1
VI = 4 V
RL = 10 k
CL = 160 pF and 8 pF
TA = 25°C
SHUTDOWN OFF PULSE RESPONSE
vs
TIME
Figure 44
1
0
−1−2 −1 0 1 2 3 4
2
3
SHUTDOWN ON PULSE RESPONSE
vs
TIME
4
56
t − Time − µs
− Output Voltage − VVO
SD Pulse
VDD = 3 V
AV = 1
VI = 2.5 V
RL = 10 k
TA = 25°C
CL = 160 pF
CL = 8 pF
Figure 45
3
2
0
−1−2 0 2 4 6
4
5
SHUTDOWN ON PULSE RESPONSE
vs
TIME
6
81012
1
t − Time − µs
− Output Voltage − VVO
SD Pulse VDD = 5 V
AV = 1
VI = 4 V
RL = 10 k
TA = 25°C
CL = 160 pF
CL = 8 pF
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
25
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
TYPICAL CHARACTERISTICS
Figure 46
80
60
40
010 100 1 k 10k
Shutdown Reverse Isolation − dB
100
120
f − Frequency − Hz
SHUTDOWN REVERSE ISOLATION
vs
FREQUENCY
140
100k 1M 10M
20
VDD = 3 V and 5 V
VI(PP) = 0.1, 1.5, 2.5 V
RL = 10 k
CL = 28 pF
TA = 25°C
Figure 47
80
60
20
010 100 1k 10k
100
120
SHUTDOWN FORWARD ISOLATION
vs
FREQUENCY
140
100k 1M
40
Shutdown Forward Isolation − dB
f − Frequency − Hz
VDD = 3 V and 5 V
VI(PP) = 0.1, 1.5, 2.5 V
RL = 10 k
CL = 28 pF
TA = 25°C
PARAMETER MEASUREMENT INFORMATION
_
+
Rnull
RLCL
Figure 48
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
26 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
APPLICATION INFORMATION
shutdown function
Three members of the TLV245x family (TLV2450/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is pulled to the voltage level on the GND terminal of the
device, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in
a high impedance mode. To enable the amplifier, the shutdown terminal must be pulled high. The shutdown
terminal should never be left floating. The shutdown terminal threshold is always referenced to the GND terminal
of the device. Therefore, when operating the device with split supply voltages (e.g. ±2.5 V), the shutdown
terminal needs to be pulled to VDD− (not system ground) to disable the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figures 42, 43, 44, and 45. The amplifier is powered
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output
waveform. The times for the single, dual, and quad are listed in the data tables.
Figures 46 and 47 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is
powered b y ±1.35-V su p p l i e s a nd c o n f i g u r e d a s a v o l t a g e f o llower (AV = 1). The isolation performance is plotted
across frequency using 0.1-VPP, 1.5-VPP, and 2.5-VPP input signals. During normal operation, the amplifier
would not be able to handle a 2.5-VPP input signal with a supply voltage of ±1.35 V since it exceeds the
common-mode in put voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown
even under a worst case scenario.
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 49. A minimum value of 20 should work well for most applications.
CLOAD
RF
Input Output
RGRNULL
+
Figure 49. Driving a Capacitive Load
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
27
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
APPLICATION INFORMATION
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
VOO +VIOǒ1)ǒRF
RGǓǓ"ǒIIB)Ǔ RSǒ1)ǒRF
RGǓǓ"ǒIIB*Ǔ RF
+
VI+
RG
RS
RF
IIB−
VO
IIB+
Figure 50. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 51).
VIVO
C1
+
RGRF
R1
VO
VI+ǒ1)RF
RGǓǒ1
1)sR1C1Ǔ
f–3dB +1
2pR1C1
Figure 51. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
VI
C2
R2R1
C1
RF
RG
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
(
=1
Q
2 − )
RGRF
_
+f–3dB +1
2pRC
Figure 52. 2-Pole Low-Pass Sallen-Key Filter
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
28 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
APPLICATION INFORMATION
general power dissipation considerations
For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:
PD+ǒTMAX–TA
qJA Ǔ
Where: PD= Maximum power dissipation of TLV245x IC (watts)
TMAX= Absolute maximum junction temperature (150°C)
TA= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
1
0.75
0.5
0
−55−40 −25 −10 5
Maximum Power Dissipation − W
1.25
1.5
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
1.75
20 35 50
0.25
TA − Free-Air Temperature − °C
2
65 80 95 110 125
MSOP Package
Low-K Test PCB
θJA = 260°C/W
TJ = 150°C
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 53. Maximum Power Dissipation vs Free-Air Temperature
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
29
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 54 are generated using
the TLV245x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademarks of MicroSim Corporation.
      
  µ   
   
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
30 WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
APPLICATION INFORMATION
* AMP_TLV2450−X operational amplifier ”macromodel” subcircuit
* created using Parts release 8.0 on 10/12/98 at 11:06
* Parts is a MicroSim product.
*
* connections: noninverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt AMP_TLV2450−X 1 2 3 4 5
*C1 11 12 354.48E−15
C2 6 7 7.5000E−12
CEE 10 99 42.237E−15
DC 5 53 dy
DE 54 5 dy
DLP 90 91 dx
DLN 92 90 dx
DP 4 3 dx
EGND 99 0 poly(2) (3,0) (4,0) 0 .5 .5
FB 7 99 poly(5) vb vc ve vlp vln 0
+ 207.31E6 −1E3 1E3 210E6 −210E6
GA 6 0 11 12 15.254E−6
GCM 0 6 10 99 48.237E−12
IEE 10 4 dc 938.61E−9
HLIM 90 0 vlim 1K
Q1 11 2 13 qx1
Q2 12 1 14 qx2
R2 6 9 100.00E3
RC1 3 11 65.557E3
RC2 3 12 65.557E3
RE1 13 10 10.367E3
RE2 14 10 10.367E3
REE 10 99 213.08E6
RO1 8 5 10
RO2 7 99 10
RP 3 4 147.06
VB 9 0 dc 0
VC 3 53 dc .82
VE 54 4 dc .82
VLIM 7 8 dc 0
VLP 91 0 dc 38
VLN 0 92 dc 38
.model dx D(Is=800.00E−18)
.model dy D(Is=800.00E−18 Rs=1m Cjo=10p)
.model qx1 NPN(Is=800.00E−18 Bf=843.08)
.model qx2 NPN(Is=800.0000E−18 Bf=843.08)
.ends
13
rp
IN+
rc1 rc2 ree egnd fb ro2
ro1
vlim
OUT
ga
ioffgcm
vb
c1
dc
iee
re2re1
dp
GND
VDD+
IN− q1 q2
cee
c2
ve de
dlp dln
vlnhlimvlp
14
10
4
2
111 12
3
53
54
96
8
5
7
91 90 92
vc
99
+
+
+
+
+
+
+
+
r2
Figure 54. Boyle Macromodel and Subcircuit
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2450AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2450AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2450CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CDBVRG4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CDBVTG4 ACTIVE SOT-23 DBV 6 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2450CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2450ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450IDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450IDBVRG4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450IDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2450IDBVTG4 ACTIVE SOT-23 DBV 6 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2450IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2451AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2451CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2451CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2451ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2451IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2451IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2451IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2452AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2452AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2452CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDGK ACTIVE VSSOP DGK 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDGKG4 ACTIVE VSSOP DGK 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2452CDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDGK ACTIVE VSSOP DGK 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDGKG4 ACTIVE VSSOP DGK 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2452IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2452IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2453AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2453AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2453CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDGS ACTIVE MSOP DGS 10 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 5
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2453CDGSG4 ACTIVE MSOP DGS 10 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDGSR ACTIVE MSOP DGS 10 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDGSRG4 ACTIVE MSOP DGS 10 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453IDGS ACTIVE MSOP DGS 10 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453IDGSG4 ACTIVE MSOP DGS 10 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453IDGSR ACTIVE MSOP DGS 10 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453IDGSRG4 ACTIVE MSOP DGS 10 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2453IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2453INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454AID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454AIPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 6
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2454AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454CPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2454IPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2454IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 7
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2454IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AID ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIDG4 ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIDR ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIDRG4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIN ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2455AINE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLV2455AIPW ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIPWR ACTIVE TSSOP PW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455AIPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455CD ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455CDG4 ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455CN ACTIVE PDIP N 16 TBD Call TI Call TI
TLV2455CNE4 ACTIVE PDIP N 16 TBD Call TI Call TI
TLV2455CPW ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455CPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455ID ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455IDG4 ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 8
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2455IDR ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455IPW ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2455IPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLV2450AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2450CDBVR SOT-23 DBV 6 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2450CDBVT SOT-23 DBV 6 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2450IDBVR SOT-23 DBV 6 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2450IDBVT SOT-23 DBV 6 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2451AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2451CDBVR SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2451CDBVT SOT-23 DBV 5 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2451CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2451CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2451IDBVR SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2451IDBVT SOT-23 DBV 5 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
TLV2451IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2452AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2452AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2452CDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2452CDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2452CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 1
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLV2452CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2452IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2452IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2452IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2452IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2453CDGSR MSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2453CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2453IDGSR MSOP DGS 10 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
TLV2454AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2454AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2454CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2454IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2454IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2455AIDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
TLV2455AIPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2455IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLV2450AIDR SOIC D 8 2500 340.5 338.1 20.6
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 2
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLV2450CDBVR SOT-23 DBV 6 3000 182.0 182.0 20.0
TLV2450CDBVT SOT-23 DBV 6 250 182.0 182.0 20.0
TLV2450IDBVR SOT-23 DBV 6 3000 182.0 182.0 20.0
TLV2450IDBVT SOT-23 DBV 6 250 182.0 182.0 20.0
TLV2451AIDR SOIC D 8 2500 340.5 338.1 20.6
TLV2451CDBVR SOT-23 DBV 5 3000 182.0 182.0 20.0
TLV2451CDBVT SOT-23 DBV 5 250 182.0 182.0 20.0
TLV2451CDR SOIC D 8 2500 367.0 367.0 35.0
TLV2451CDR SOIC D 8 2500 340.5 338.1 20.6
TLV2451IDBVR SOT-23 DBV 5 3000 182.0 182.0 20.0
TLV2451IDBVT SOT-23 DBV 5 250 182.0 182.0 20.0
TLV2451IDR SOIC D 8 2500 340.5 338.1 20.6
TLV2452AIDR SOIC D 8 2500 367.0 367.0 35.0
TLV2452AIDR SOIC D 8 2500 340.5 338.1 20.6
TLV2452CDGKR VSSOP DGK 8 2500 358.0 335.0 35.0
TLV2452CDGKR VSSOP DGK 8 2500 364.0 364.0 27.0
TLV2452CDR SOIC D 8 2500 367.0 367.0 35.0
TLV2452CDR SOIC D 8 2500 340.5 338.1 20.6
TLV2452IDGKR VSSOP DGK 8 2500 364.0 364.0 27.0
TLV2452IDGKR VSSOP DGK 8 2500 358.0 335.0 35.0
TLV2452IDR SOIC D 8 2500 367.0 367.0 35.0
TLV2452IDR SOIC D 8 2500 340.5 338.1 20.6
TLV2453CDGSR MSOP DGS 10 2500 358.0 335.0 35.0
TLV2453CDR SOIC D 14 2500 367.0 367.0 38.0
TLV2453IDGSR MSOP DGS 10 2500 358.0 335.0 35.0
TLV2454AIDR SOIC D 14 2500 367.0 367.0 38.0
TLV2454AIPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2454CPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2454IDR SOIC D 14 2500 367.0 367.0 38.0
TLV2454IPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2455AIDR SOIC D 16 2500 367.0 367.0 38.0
TLV2455AIPWR TSSOP PW 16 2000 367.0 367.0 35.0
TLV2455IDR SOIC D 16 2500 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Aug-2012
Pack Materials-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated